
Automated Analysis of Feature Models:
A Detailed Literature Review

Version 1.0

David Benavides, Sergio Segura and Antonio Ruiz-Cortés

{benavides,sergiosegura,aruiz}@us.es

Applied Software Engineering Research Group
University of Seville, Spain

December 2009

Technical Report ISA-09-TR-04

This report was prepared by the

Applied Software Engineering Research Group (ISA)
Department of computer languages and systems
Av/ Reina Mercedes S/N, 41012 Seville, Spain
http://www.isa.us.es/

Copyright c©2009 by ISA Research Group.

Permission to reproduce this document and to prepare derivative works from this docu-
ment for internal use is granted, provided the copyright and ’No Warranty’ statements
are included with all reproductions and derivative works.

NO WARRANTY
THIS ISA RESEARCH GROUP MATERIAL IS FURNISHED ON AN ’AS-IS’ BASIS.
ISA RESEARCH GROUP MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIM-
ITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

Use of any trademarks in this report is not intended in any way to infringe on the
rights of the trademark holder

Support: This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT projects SETI (TIN2009-07366)
and WebFactories(TIN2006-00472) and by the Andalusian Government under ISABEL
project (TIC-2533).

3

Contents

1 20 years of analysis of feature models 2

A Summary of papers analysed 3

A.1 1990 . 3
A.2 2002 . 5
A.3 2003 . 7
A.4 2004 . 10
A.5 2005 . 14
A.6 2006 . 22
A.7 2007 . 30
A.8 2008 . 36
A.9 2009 . 50
A.10 Papers out of the scope . 65

i

List of Tables

A.1 Kang et al. 1990 FODA . 4
A.2 Deursen et al. 2002 JCIT . 5
A.3 Mannion 2002 SPLC . 6
A.4 Cao et al. 2003 SERP . 7
A.5 Mannion et al. 2003 PFE . 8
A.6 Massen et al. 2003 PFE . 9
A.7 Benavides et al. 2004 SVM . 10
A.8 Massen et al. 2004 SVMPD . 11
A.9 Storm 2004 ICSR . 12
A.10 Zhang et al. 2004 ICFEM . 13
A.11 Benavides et al. 2005 CAiSE . 15
A.12 Benavides et al. 2005 SEKE . 16
A.13 Batory 2005 SPLC . 17
A.14 Czarnecki et al. 2005 OOPSLA 18
A.15 Massen et al. 2005 SPLC . 19
A.16 Sun et al. 2005 ICECCS . 20
A.17 Wang et al. 2005 SWESE . 21
A.18 Batory et al. 2006 CACM . 22
A.19 Benavides et al. 2006 GTTSE . 23
A.20 Fan et al. 2006 KES . 24
A.21 Gheyi et al. 2006 Alloy . 25
A.22 Benavides et al. 2006 SPLC . 26
A.23 Schobbens et al. 2006 RE . 27
A.24 Trinidad et al. 2006 CAiSE . 28
A.25 Zhang et al. 2006 RE . 29
A.26 Djebbi et al. 2007 APSEC . 30
A.27 Bachmeyer et al. 2007 ICCS . 31
A.28 Benavides et al. 2007 VaMoS . 32
A.29 Schobbens et al. 2007 CN . 33
A.30 Storm 2007 SC . 34
A.31 Wang et al. 2007 JWS . 35
A.32 Heymans et al. 2008 Software IET 36
A.33 Hemakumar 2008 ASPL . 38
A.34 Gheyi et al. 2008 JUCS . 39
A.35 Mendonca 2008 JS . 40

ii

A.36 Mendonça et al. 2008 GPCE . 42
A.37 Osman et al. 2008 ASPL . 43
A.38 Segura 2008 ASPL . 44
A.39 White et al. 2008 SPLC . 46
A.40 White et al. 2008 ASPL . 47
A.41 Trinidad et al. 2008 JSS . 48
A.42 Zhang et al. 2008 ICSR . 49
A.43 Abo et al. 2009 SAC . 50
A.44 Broek et al. 2009 VaMoS . 51
A.45 Fernandez et al. 2009 SPLC . 52
A.46 Mendonca et al. 2009 SPLC . 54
A.47 Osman et al. 2009 VaMoS . 55
A.48 Salinesi et al. 2009 VaMoS . 56
A.49 Thum et al. 2009 ICSE . 58
A.50 Trinidad et al. 2009 VAMOS . 60
A.51 White et al. 2009 JSS . 62
A.52 White et al. 2009 SPLC . 63
A.53 Yan et al. 2009 ICSR . 64
A.54 Robak et al. 2003 ECBS . 65
A.55 Czarnecki et al. 2004 SPLC . 66
A.56 Pieczynski et al. 2004 ECBS . 67
A.57 Robak et al. 2004 ICAISC . 68
A.58 Zhao et al. 2004 SEKE . 69
A.59 Czarnecki et al. 2005 SPIP . 70
A.60 Czarnecki et al. 2005 SPIP (II) 71
A.61 Peng et al. 2006 ICSR . 72
A.62 Mendonça et al. 2007 HICSS . 73
A.63 Metzger et al. 2007 RE . 74
A.64 Janota et al. 2007 SPLC . 75
A.65 Czarnecki et al 2007 SPLC . 76
A.66 Etxeberria et al. 2008 JBCS . 77
A.67 Czarnecki et al 2008 SPLC . 78
A.68 Janota 2008 ASPL . 79
A.69 Kaviani et al. 2008 SWESE . 80
A.70 Mendonca et al. 08 SAC . 81
A.71 Zaid et al. 2008 SWESE . 82
A.72 Sincero et al. 2009 HICSS . 83

1

Chapter 1

20 years of analysis of

feature models

2

Automated Analysis of Feature Models after 20 years: A

Literature Review✩,✩✩

David Benavides, Sergio Segura and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos, University of Seville
Av. Reina Mercedes s/n, 41012, Seville - Spain

Abstract

Software product line engineering is about producing a set of related products that share
more commonalities than variabilities. Feature models are widely used for variability
and commonality management in software product lines. Feature models are information
models where a set of products are represented as a set of features in a single model.
The automated analysis of feature models cope with the computer–aided extraction of
information from feature models. The literature on this topic has contributed with a set
of operations, techniques, tools and empirical results which have not been surveyed until
now. This paper provides a compehensive literature review on the automated analysis of
feature models after 20 years of their invention. We contribute in this paper by bringing
together previously-disparate streams of work to help shed light on this thriving area.
We also present a conceptual framework to understand the different proposals as well as
categorise future contributions. We finally discuss the different studies and propose some
challenges to be faced in the future.

Key words: Feature models, automated analyses, software product lines, literature
review

1. Introduction

Mass production is defined as the production of a large amount of standardized prod-
ucts using standardized processes that produce a large volume of the same product in
a reduced time to market. Generally, the customers’ requirements are the same and no
customization is performed (imagine Japanese watches of the nineteens). After the in-
dustrial revolution, large companies started to organise –and are still organising– their
production in a mass production environment.

However, mass production is already not enough in a highly competitive and segmented
market and mass customization is devised to be a must for market succeed. According

✩This work has been partially supported by the European Commission (FEDER) and Spanish Gov-
ernment under CICYT projects SETI (TIN2009-07366) and WebFactories(TIN2006-00472) and by the
Andalusian Government under ISABEL project (TIC-2533)

✩✩A very preliminay version of this paper was published in Jornadas de Ingenieŕıa del Software y Bases
de Datos (JISBD’06)

Email address: {benavides,sergiosegura,aruiz}@us.es (David Benavides, Sergio Segura and
Antonio Ruiz-Cortés)

Preprint submitted to Information Systems December 18, 2009

to Tseng and Jiao [87], mass customization is about “producing goods and services to
meet individual customer’s needs with near mass production efficiency”. There are two
key parts in this definition. Firstly, mass customization tries to meet as much individual
customer’s needs as possible (imagine current mobile phones). Secondly, this has to be
done trying to meet as much as possible the mass production efficiency. To achieve
this efficiency, practitioners propose to build products from existing assets sharing more
commonalities than singularities.

Information systems market is a peculiar branch of industry in relation to more tra-
ditional branches. Making the parallelism with the history of traditional industries, the
industrialization of information systems started with artisanal methods, evolved to mass
production and is now pursuing mass customization to succeed in the market. In the
software engineering literature, the mass customization of software products is known as
software product lines [24] or software product families [66]. In order to achieve customer’s
personalization, software product line engineering promote the production of a family of
software products from common features instead of producing them one by one from
scratch. This is the key change: software product line engineering is about producing
families of similar systems rather than the production of individual systems.

Software product lines have found a broad adoption in several branches of software
production such as embedded systems for mobile devices, car embedded software and
avionics [89]. However, other types of software and systems applications such as desktop
or web applications are also pursuing the adoption.

An organisation decides to set up a software product line and faces the following
questions, How is a particular product specified?, and How is the software product line
itself specified? When this question was first posed, there was an ample evidence for a
solution: in other industries product lines are specified in terms of features. Products in a
software product line are differentiated by their features, where a feature is an increment
in program functionality [6]. Individual products are specified using features, software
product lines are specified using feature models.

Feature model languages are a common family of visual languages to represent software
product lines [73]. The first formulation of a feature model language is due by Kang et al.
in 1990 [48]. A feature model captures software product line information about common
and variant features of the software product line at different levels of abstraction. A
feature model is represented as a hierarchically arranged set of features with different
relationships among those features. It models all possible products of a software product
line in a given context. In contrast to classical information models, feature models not
only represent a single product but a family of them in the same model.

The automated analysis of feature models is about extracting information from feature
models using automated mechanisms [6]. Analysing feature models is an error–prone
tedious task, manually infeasible with large–scale feature models. It is an active area of
research and is gaining importance in both practitioners and researchers in the software
product line community [6, 8]. Since the introduction of feature models, the literature
has contributed with a number of operations of analysis, tools, paradigms and algorithms
to support the analysis process.

In this article, we present a structured literature review on existing proposals for the
automated analysis of feature models. We used a structured and systematic method to

2

perform the literature review inspired by the guidelines proposed by Kitchenham [51] and
Webster et al. [98]. The main contribution in this article is to bring together previously–
scattered studies to put the basis for future research as well as introduce new researchers
and practitioners in this thriving area. We present a conceptual framework to understand
the different proposals and classify new contributions in the future. 53 primary studies
were analysed from where we report 30 operations of analysis and 4 different groups of
proposals to automate those operations. As a result of our literature review, we also
report some challenges that remain open for research.

The main target audience of this literature review are researchers in the field of auto-
mated analysis, tool developers or practitioners that are interested in analysis of feature
models as well as researchers and professionals on information systems interested in soft-
ware product lines, their models and analyses.

The remaining of the paper is structured as follows: Section 2 presents feature models
in a nutshell. Section 3 presents the method used in the literature review. Section 4
describes the conceptual framework that we use to clasify primary studies and define
some cocepts used along the paper. Section 5 presents the main results of this review
where different analysis operations are presented and explained and primary studies are
classified according to the automated method used for analysis. Section 6 discusses the
results about performance analysis of feature models. Section 7 discusses the results
obtained and describe some challenges to be faced in the future. Finally, Section 8 presents
some conclusions.

2. Feature Models

A feature model represents the information of all possible products of a software
product line in terms of features and relationships among them. Feature models are a
special type of information models widely used in software product line engineering. A
feature model is represented as a hierarchically arranged set of features composed by:

1. relationships between a parent (or compound) feature and its child features (or
subfeatures).

2. cross–tree (or cross–hierarchy) constraints that are typically inclusion or exclusion
statements of the form: if feature F is included, then features A and B must also be
included (or excluded).

Figure 1 depicts a simplified feature model inspired by the mobile phone industry. The
model illustrates how features are used to specify and build software for mobile phones.
The software loaded in the phone is determined by the features that it supports. According
to the model, all phones must include support for calls, and displaying information in
either a basic, colour or high resolution screen. Furthermore, the software for mobile
phones may optionally include support for GPS and multimedia devices such as camera,
MP3 player or both of them.

Feature models are used in different scenarios of software production ranging from
model driven development [85], feature oriented programming [5], software factories [44]
or generative programming [27], all of them around software product line development.
Although feature models are studied in software product line engineering, these infor-
mation models can be used in different contexts ranging from requirements gathering

3

Mobile Phone

Calls GPS

ColourBasic

Screen Media

Camera MP3

Mandatory

Optional

Alternative

Or

Requires

Excludes

High resolution

Figure 1: A sample feature model

[23] to data model structures, hence the potential importance of feature models in the
information systems domain.

The term feature model was coined by Kang et al. in the FODA report back in 1990
[48] and has been one of the main topics of research in software product lines since then.
There are different feature model languages. We refer the reader to [73] for a detailed
survey on the different feature model languages. Following, we review the most well known
notations for those languages.

2.1. Basic feature models

We group as basic feature models those allowing the following relationships among
features:

• Mandatory. A child feature has a mandatory relationships with its parent when
the child is included in all products in which its parent feature appears. For instance,
every mobile phone system in our example must provide support for calls.

• Optional. A child feature has an optional relationship with its parent when the
child can be optionally included in all products in which its parent feature appears.
In the example, software for mobile phones may optionally include support for GPS.

• Alternative. A set of child features have an alternative relationship with their
parent when only one feature of the children can be selected when its parent feature
is part of the product. In the example, mobile phones may include support for a
basic, colour or high resolution screen but only one of them.

• Or. A set of child features have an or-relationship with their parent when one or
more of them can be included in the products in which its parent feature appears.
In Figure 1, whenever Media is selected, Camera, MP3 or both can be selected.

Notice that a child feature can only appear in a product if its parent feature does. The
root feature is a part of all the products within the software product line. In addition to
the parental relationships between features, a feature model can also contain cross-tree
constraints between features. These are typically of the form:

4

• Requires. If a feature A requires a feature B, the inclusion of A in a product
implies the inclusion of B in such product. Mobile phones including a camera must
include support for a high resolution screen.

• Excludes. If a feature A excludes a feature B, both features cannot be part of the
same product. GPS and basic screen are incompatible features.

More complex cross-tree relationships have been proposed later in the literature [4]
allowing constraints in the form of generic propositional formulas, e.g. “A and B implies
not C”.

2.2. Cardinality–based feature models

Some authors propose extending FODA feature models with UML-like multiplicities
(so-called cardinalities) [29, 69]. Their main motivation was driven by practical appli-
cations [26] and “conceptual completeness”. The new relationships introduced in this
notation are defined as follows:

• Feature cardinality. A feature cardinality is a sequence of intervals denoted [n..m]
with n as lower bound and m as upper bound. These intervals determines the
number of instances of the feature that can be part of a product. This relationship
may be used as a generalization of the original mandatory ([1, 1]) and optional ([0, 1])
relationships defined in FODA.

• Group cardinality. A group cardinality is an interval denoted 〈n..m〉, with n

as lower bound and m as upper bound limiting the number of child features that
can be part of a product when its parent feature is selected. Thus, an alternative
relationship is equivalent to a 〈1..1〉 group cardinality and an or–relationship is
equivalent to 〈1..N〉, being N the number of features in the relationship.

2.3. Extended feature models

Sometimes it is necessary to extend feature models to include more information about
features. This information is added in terms of so–called feature attributes. These type
of models where additional information is included are called extended, advanced or at-
tributed feature models

FODA [48], the seminal report on feature models, already contemplated the inclusion
of some additional information in feature models. For instance, relationships between
features and feature attributes were introduced. Later, Kang et al. [49] make an explicit
reference to what they called “non–functional” features related to feature attributes. In
addition, other group of authors have also proposed the inclusion of attributes in feature
models [4, 6, 10, 11, 28, 30, 77, 100]. There is no consensus on a notation to define
attributes. However, most proposals agree that an attribute should consist at least of a
name, a domain and a value. Figure 2 depicts a sample feature model including attributes
using the notation proposed by Benavides et al. in [10]. As illustrated, attributes can be
used to specify extra-functional information such as cost, speed or RAM memory required
to support the feature.

Extended feature models can also include complex constraints among attributes and
features like: “If attribute A of feature F is lower than a value X, then feature T can not
be part of the product”.

5

Connectivity

WifiBluetooth

USB

Name: Cost
Domain: Real
Value: 85.5

Name: MaxSpeed
Domain: Real
Value: 3.6

Name: Memory
Domain: Real
Value: 725

Name: Memory
Domain: Real
Value: 425

Name: Cost
Domain: Real
Value: 50

Name: MaxSpeed
Domain: Real
Value: 2.1

Name: Cost
Domain: Real
Value: 35.50

Name: MaxSpeed
Domain: Real
Value: 12

Name: Memory
Domain: Real
Value: 179

Figure 2: A sample extended feature model

3. Review method

Within the context of this paper we have carried out a literature review in order to
examine studies proposing automated analysis of feature models. To perform this review
we followed a systematic and structured method inspired by the guidelines of Kitchenham
[51] and Webster et al. [98]. Following, we detail the main data regarding the review
process and its structure.

3.1. Research questions

Performing this review we intend to answer the following research questions:

• RQ1: What operations of analysis on feature models have been proposed? This
question motivates the following sub-questions:

– What operations have been formally described?

• RQ2: What kind of automated support has been proposed and how it is performed?
This question motivates the following sub-questions:

– Which analysis operations have been automated?

– Which tools have been proposed to automate the analysis?

– What is the feature modelling notation supported by each approach?

– What proposals present any performance evaluation of their results?

After reviewing all this information we also want to answer a more general question:

• RQ3: What are the challenges to be faced in the future?

3.2. Source material

As recommended by Webster et al. [98], we used the following sources of information:

6

• Leading journals and conferences related to the software product line community,
namely: Software Product Line Conference (SPLC), International Conference on
Software Engineering (ICSE), International Conference on Software Reuse (ICSR),
Generative Programming and Component Engineering (GPCE), Conference on Ad-
vances Information Systems Engineering (CAiSE) and Requirements Engineering
Conference (RE). We also reviewed special issues of different journals related to
the former publications as well as general top journals in software engineering pub-
lishing results on software product lines such as IEEE Transactions on Software
Engineering (TSE) and ACM Transactions on Software Engineering and Method-
ology (TOSEM). We may mention that no studies were found in the latter two
journals. Finally, we also looked at specific workshops and events where one of the
main topics are automated analysis on feature models, namely, Workshop on Au-
tomated Analyses of Software Product Lines (ASPL) and Variability Management
for Software–intensive Systems (VaMoS).

• References in papers identified in the previous step. We analysed the references of
the papers identified in our initial search to determine prior articles to be considered.

• As a last step, we searched, using web–based tools like google scholar [43], scopus
[74] or citeseer [21], the citation of other papers to the key papers identified in
previous steps.

All papers included in our work are peer-reviewed and were presented in international
events or journals with the exception of the work of Kang et al. [48], seminal report in
the field of feature modelling.

3.3. Search process

For the selection of candidate papers from the literature we carried out a three–steps
search process:

1. We examined the selected proceedings and journals using a manual scan of titles.
We selected those papers whose title suggests any kind of analysis or automation in
software product lines, e.g. “Product line model validation”.

2. We examined the abstracts of the papers identified in the previous step. Excep-
cionally, we overview the context of certain papers when unsure. As a result, we
narrowed the search to 72 candidate papers.

3. Finally, we read the papers carefully to determine whether they propose some kind of
analysis of feature models. From the original 72 papers, 19 were discarded resulting
in a total of 53 papers that were in the scope of this review (see Figure 3). We
refer the reader to [12] for details of matrix and data extracted. These 53 papers
are referred as primary studies [18].

The former method was incremental and some papers were included after analysing
some others. Figure 3 classifies primary studies according to the year and type of publi-
cation. From the 53 papers included in the review, 10 were published in journals, 25 in
conferences, 16 in workshops, 1 in the formal post proceeding of a summer school and 1
in a technical report. The graph indicates that there was an important gap between 1990
and 2002 and since then the tendency seems to be ascendant.

7

[48]

[92]
[56] [20,57,93] [90,106]

[9,94] [30,96]

[6,105]
[39,72]
[13,41,82]

[14]

[73,97]
[3,38,91]
[15]

[42,46,60,80]
[62,103,107]
[45,63,75,102]

[100]

[64,70,84,88]
[1,40,61,79,101,104][4,10,11,78,95]

Figure 3: Classification of papers per year and type of publication

3.4. Inclusion and exclusion criteria

Articles on the following topics, published between January 1st 1990 and December
31st 2009, were included: i) papers proposing any analysis operation on feature models
in which the original model is not modified, ii) papers proposing the automation of any
analysis on feature models, and iii) performance studies of analysis operations.

Works of the same authors but with very similar content were intentionally classified
and evaluated as separated primary studies for a more rigorous analysis. Later, in the
presentation of results, we grouped those works with no major differences.

Some related works were discarded to keep the size and complexity of the review
in a manageable level, namely: i) papers proposing operations where the input feature
model is modified by returning a new feature model, i.e. only operations proposing
information extraction where considered, ii) papers presenting any application of the
analysis of feature models rather than proposing new analyses, and iii) papers dealing
with the analysis of other kinds of variability models like OVM [66], decision models [71]
and further extensions of feature models like probabilistic feature models [31].

3.5. Data collection

All 72 candidate papers identified in our search process were analysed and classified
into a research technical report [12] (more than 100 pages). The data extracted from each
paper was:

• Full reference including its source, e.g. conference.

• Brief summary of the paper remarking its main contribution in terms of analysis.

• Analysis operations proposed and whether the authors provide support for them
(addressing RQ1 and RQ2)

• Paradigm used for the automation (addressing RQ2).

• Solver or tool used to automated the analyses (addressing RQ2)

8

• Feature model notation supported (addressing RQ2).

• Whether the approach is formalized (addressing RQ1).

• Performance evaluation (addressing RQ2).

Based on the the information obtained, we selected the primary studies according
to our inclusion and exclusion criteria. All papers were read at least two times by two
different authors to reduce misunderstandings or missing information.

We contacted the first author of each paper and sent them the paper to contrast that
the information collected was correct. Some minor changes were proposed and corrected.

3.6. Structure of the review

To present the data, we used a concept–centric approach in contrast to author–centric.
That is, we focus on the main concepts that determine the comparative framework of the
review (i.e. research questions) rather than simply present a summary of each article. To
make the transition from author–centric to concept–centric we followed the recommenda-
tion given in [98] and compiled a concept table with the information described in previous
section as we read each article. Author–centric tables are available in the technical report
[12]. Concept–centric tables are presented in this paper (see Section 5.3 and 6).

4. Conceptual framework

In this section, we propose a conceptual framework that we provide after extracting
and synthesizing data from primary studies. This framework attempts to provide a high-
level vision of the analysis process and clarify the meaning of various usually ambiguous
terms found in the literature. This is the result of the common concepts and practices
identified in the primary studies of our review.

As a result of the literature review we found that the automated analysis of feature
models can be defined as the computer–aided extraction of information from feature mod-
els. This extraction is mainly carried out in a two–step process depicted in Figure 4.
Firstly, the input parameters (i.e. feature model) are translated into a specific represen-
tation or paradigm such as propositional logic, constraint programming, description logic
or ad–hoc data structures. Then, off–the–shelf solvers or specific algorithms are used to
automatically analyse the representation of the input parameters and provide the result
as an output.

The analysis of feature models is performed in terms of analysis operations. An op-
eration takes a set of parameters as input and returns a result as output. In addition to
feature models, typical input and output parameters are:

• Configuration. Given a feature model with a set of features F , a configuration is
a 2–tuple of the form (S,R) such that S,R ⊆ F being S the set of features to be
selected and R the set of features to be removed such that S ∩ R = ∅.

– Full configuration. If S ∪ R = F the configuration is called full configuration.

– Partial configuration. if S ∪ R ⊂ F the configuration is called partial configu-
ration

9

Figure 4: Process for the automated analysis of feature models

As an example, consider the model in Figure 1 and the full (FC) and partial (PC)
configurations described below:

FC = ({MobilePhone,Calls,Screen,Colour},

{GPS,Basic,High resolution,Media,Camera,MP3})

PC = ({MobilePhone,Calls,Camera},{GPS})

• Product. A product is equivalent to a full configuration where only selected features
are specified and omitted features are implicitly removed. For instance, the following
product is equivalent to the full configuration described above:

P = {MobilePhone,Calls,Screen,Colour}

5. Analysis operations and automated support

5.1. Analysis operations on feature models

In this section, we answer RQ1 : What operations of analysis on feature models have
been proposed? For each operation, its definition, an example and possible practical
applications are presented.

5.1.1. Void feature model

This operation takes a feature model as input and returns a value informing whether
such feature model is void or not. A feature model is void if it represents no products.
The reasons that may make a feature model to be void are related with a wrong usage of
cross–tree constraints, i.e. feature models without cross-tree constraints can not be void.

As an example, Figure 5 depicts a void feature model. Constraint C-1 makes not
possible the selection of the mandatory features B and C, what adds a contradiction to
the model because both features are mandatory.

10

A

B C
C-1

Figure 5: A void feature model

The automation of this operation is specially helpful when debugging large scale feature
models in which the manual detection of errors is recognized to be an error-prone and
time–consuming task [4, 48, 80]. This operation is also referred by some authors as
“model validation”, “model cosnsistency checking”, “model satisfiability checking”, “model
solvability checking“ and “model constraints checking”.

5.1.2. Valid product

This operation takes a feature model and a product (i.e. set of features) as input and
returns a value determining whether the product belongs to the set of products represented
by the feature model or not. For instance, consider the products P1 and P2, described
below, and the feature model of Figure 1.

P1={MobilePhone,Screen,Colour,Media,MP3}

P2={MobilePhone,Calls,Screen,High resolution,GPS}

Product P1 is not valid since it does not include the mandatory feature Calls. On the
other hand, product P2 does belong to the set of products represented by the model.

This operation may be helpful for software product line analysts and managers to de-
termine whether a given product is available in a software product line. This operation is
sometimes also referred as “valid configuration checking”,“valid single system”, “configu-
ration consistency”, “feature compatibility”, “product checking” and “product specification
completeness”.

5.1.3. Valid partial configuration

This operation takes a feature model and a partial configuration as input and returns
a value informing whether the configuration is valid or not, i.e. a partial configuration
is valid if it does not include any contradiction. Consider as an example the partial
configurations C1 and C2, described below, and the feature model of Figure 1.

C1 = ({MobilePhone,Calls,Camera}, {GPS,High resolution})

C2 = ({MobilePhone,Calls,Camera}, {GPS})

C1 is not a valid partial configuration since it selects support for camera and remove
high resolution screen what is explicitly required by the software product line. C2 does not
include any contradiction and therefore could still be extended to a valid full configuration.

This operation results helpful during the product derivation stage to give the user an
idea about the progress of the configuration. A tool implementing this operation could
inform the user as soon as a configuration becomes invalid, thus saving time and effort.

11

5.1.4. All products

This operation takes a feature model as input and returns all the products represented
by the model. For instance, the set of all the products of the feature model presented in
Figure 1 is detailed below:

P1 = {MobilePhone,Calls,Screen,Basic}

P2 = {MobilePhone,Calls,Screen,Basic,Media,MP3}

P3 = {MobilePhone,Calls,Screen,Colour}

P4 = {MobilePhone,Calls,Screen,Colour,GPS}

P5 = {MobilePhone,Calls,Screen,Colour,Media,MP3}

P6 = {MobilePhone,Calls,Screen,Colour,Media,MP3,GPS}

P7 = {MobilePhone,Calls,Screen,High resolution}

P8 = {MobilePhone,Calls,Screen,High resolution,Media,MP3}

P9 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,Camera}

P10 = {MobilePhone,Calls,Screen,High resolution,Media,Camera}

P11 = {MobilePhone,Calls,Screen,High resolution,GPS}

P12 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,GPS}

P13 = {MobilePhone,Calls,Screen,High resolution,Media,Camera,GPS}

P14 = {MobilePhone,Calls,Screen,High resolution,Media,Camera,MP3,GPS}

This operation may be helpful to identify new valid requirements combinations not
considered in the initial scope of the product line. The set of products of a feature model
is also referred in the literature as “all valid configurations” and “list of products”.

5.1.5. Number of products

This operation returns the number of products represented by the feature model re-
ceived as input. Note that a feature model is void iff the number of products represented
by the model is zero. As an example, the number of products of the feature model
presented in Figure 1 is 14.

This operation provides information about the flexibility and complexity of the soft-
ware product line [10, 30, 92]. A big number of potential products may reveal a more
flexible as well as more complex product line. The number of products of a feature models
is also referred in the literature as “variation degree”.

5.1.6. Filter

This operation takes as input a feature model and a configuration (potentially partial)
and returns the set of products including the input configuration that can be derived
from the model. Note that this operation does not modify the feature model but filter
the features that are considered.

For instance, the set of products of the feature model in Figure 1 applying the partial
configuration (S,R) = ({Calls,GPS}, {Colour, Camera}), being S the set of features to
be selected and R the set of features to be removed, is:

P1 = {MobilePhone,Calls,Screen,High resolution,GPS}

P2 = {MobilePhone,Calls,Screen,High resolution,Media,MP3,GPS}

Filtering may be helpful to assist users during the configuration process. Firstly,
users can filter the set of products according to their key requirements. Then, the list of
resultant products can be inspected to select the desired solution [30].

12

5.1.7. Anomalies detection

A number of analysis operations address the detection of anomalies in feature models
i.e. undesirable properties such as redundant or contradictory information. These opera-
tions take a feature model as input and return information about the anomalies detected.
We identified five main types of anomalies in feature models reported in the literature.
These are:

Dead features. A feature is dead if it cannot appear in any of the products of the software
product line. Dead features are caused by a wrong usage of cross–tree constraints. These
are clearly undesired since they give the user a wrong idea of the domain. Figure 6 depicts
some typical situations that generate dead features.

A

B C

D E

A

B C

D E

A

B C

A

B C

Figure 6: Common cases of dead features. Grey features are dead

Conditionally dead features. A feature is conditionally dead if it becomes dead under
certain circumstances (e.g. when selecting another feature) [45]. Both, unconditional
and conditional dead features are often referred in the literature as “contradictions” or
“inconsistencies”. In Figure 7 feature B becomes dead whenever feature D is selected.
Note that, with this definition, features in an alternative relationship are conditionally
dead.

A

B C D E

(B and D) implies C
C implies not B

Figure 7: An example of a conditionally dead feature

False optional features. A feature is false optional if it is included in all the products
of the product line despite not being modelled as mandatory. Figure 8 depicts some
examples of false optional features.

A

B C

D E

A

B C

D E

A

B C

A

B C

D E

Figure 8: Some examples of false optional features. Grey features are false optional

Wrong cardinalities. A group cardinality is wrong if it cannot be instantiated [84].
These appear in cardinality–based feature models where cross–tree constraints are in-
volved. An example of wrong cardinality is provided in Figure 9. Notice that features B

13

and D excludes each other and therefore the selection of three subfeatures, as stated by
the group cardinality, is not possible.

A

B C D

<1..3>

Figure 9: An example of wrong cardinality

Redundancies. A feature model contains redundancies when some semantic information
is modelled in multiple ways [94]. Generally, this is regarded as a negative aspect since
it may decrease the maintainability of the model. Nevertheless, it may also be used as
a means of improving readability and understandability of the model. Figure 10 depicts
some examples of redundant constraints in feature models.

A

B C

D

A

B C

A

B

A

B C

Figure 10: Some examples of redundancies. Gray constraints are redundant

5.1.8. Explanations

This operation takes a feature model and an analysis operation as inputs and returns
information (so-called explanations) about the reasons of why or why not the correspond-
ing response of the operation [84]. Causes are mainly described in terms of the features
and/or relationships involved in the operation and explanations are ofter related to anoma-
lies. For instance, Figure 11 presents a feature model with a dead feature. A possible
explanation for the problem would be “Feature D is dead because of the excludes con-
straint with feature B”. We refer the reader to [84] for a detailed analysis on explanation
operations.

A

B C

D E
C-1

Figure 11: Grey feature is dead because relationship C–1

Explanations are a challenging operation in the context of feature model error analysis,
(a.k.a. feature model debugging) [6, 80, 84]. In order to provide an efficient tool support,

14

explanations must be as accurate as possible when detecting the source of an error, i.e. it
should be minimal. This become even a more challenging task when considering extended
feature models and relationships between feature attributes.

5.1.9. Corrective explanations

This operation takes a feature model and an analysis operation as inputs and returns
a set of corrective explanations indicating changes to be made in the original inputs in
order to change the output of the operation. In general, a corrective explanation provides
suggestions to solve a problem, usually once this has been detected and explained.

For instance, some possible corrective explanations to remove the dead feature in
Figure 11 would be “remove excludes constraint C-1” or “model feature B as optional”.
This operation is also referred in the literature as “corrections”.

5.1.10. Feature model relations

These operations take two different feature models as inputs and returns a value in-
forming how the models are related. The set of features in both models are not necessarily
the same. These operations are helful to determine how a model has evolved over time.
Thüm et al. [79] classify the possible relationships between two feature models as follows:

Refactoring. A feature model is a refactoring of another one if they represents the
same set of products while having a different structure. For instance, model in Figure
12(b) is a refactoring of model in Figure 12(a) since they represent the same products
i.e. {{A,B},{{A,B,C}, {A,B,D},{A,B,C,D}}. Refactorings are useful to restructure a
feature model without changing its semantics. When this property is fulfilled the models
are often referred as “equivalent”.

Generalization. A feature model, F , is a generalization of another one, G, if the set
of products of F maintains and extends the set of products of G. For example, feature
model in Figure 12(c) is a generalization of the model in Figure 12(a) because it add a
new product ({A}) and does not remove any existing one. Generalization occur naturally
while extending a software product line.

Specialization. A feature model, F , is a specialization of another one, G, if the set of
products of F is a subset of the set of products of G. For example, Figure 12(d) depicts
a specialization of the model in Figure 12(a) since it removes a product from the original
model ({A,B,C,D}) and adds no new ones.

Arbitrary edit. There is no explicit relationship between the input models, i.e. there
is not any of the relationships defined above. Models in Figure 12(a) and Figure 12(e)
illustrate an example of this. Thüm et al. [79] advise avoiding arbitrary edits and replacing
these by a sequence of specialization, generalizations and refactorings edits for a better
understanding of the evolution of a feature model.

5.1.11. Optimization

This operation takes a feature model and a so-called objective function as inputs
and returns the product fulfilling the criteria established by the function. An objective

15

A

B C

D

(a) Original

A

B C D

(b) Refactoring

A

B C

D

(c) Generalization

A

B C

D

(d) Specialization

A

B C

E

(e) Arbitrary

Figure 12: Types of relationships between two feature models

function is a function associated with an optimization problem which determines how
good a solution is.

This operation is chiefly useful when dealing with extended feature models where
attributes are added to features. In this context, operations of optimization may be
used to select a set of features maximizing or minimizing the value of a given feature
attribute. For instance, mobile phones minimizing connectivity cost in Figure 2 should
include support for USB connectivity exclusively, i.e. USB is the cheapest.

5.1.12. Core features

This operation takes a feature model as input and returns the set of features that are
part of all the products in the software product line. For instance, the set of core features
of the model presented in Figure 1 is {MobilePhone,Calls,Screen}.

Core features are the most relevant features of the software product line since they are
supposed to appear in all products. Hence, this operation is useful to determine which
features should be developed in first place [81] or to decide which features should be part
of the core architecture of the software product line [65].

5.1.13. Variant features

This operation takes a feature model as input and returns the set of variant features
in the model [84]. Variant features are those that do not appear in all the products of
the software product line. For instance, the set of variant features of the feature model
presented in Figure 1 is {Basic,Colour,High resolution,Media,Camera, MP3,GPS}.

5.1.14. Atomic sets

This operation takes a feature model as input and returns the set of atomic sets of
the model. An atomic set is a group of features (at least one) that can be treated as
a unit when performing certain analyses. The intuitive idea behind atomic sets is that
mandatory features and their parent features always appear together in products and
therefore can be grouped without altering the result of certain operations. Once atomic
sets are computed, this can be used to create a reduced version of the model by simple
replacing each feature by the atomic set that contains it.

Figure 13 depicts an example of atomic sets computation. From the original model 4
atomic sets are derived reducing the number of features from 7 to 4. Note that the reduced
model is equivalent to the original one since both represent the same set of products.

16

A

B D

F GE

C

AS-1={A,C,D}

AS-2={B,E} AS-3={F} AS-4={G}

Figure 13: Atomic sets computation

Using this technique, mandatory features are safely removed from the model. This
operation is used as an efficient preprocessing technique to reduce the size of feature
models prior to their analysis [75, 106].

5.1.15. Dependency analysis

This operation takes a feature model and a partial configuration as input and returns
a new configuration with the features that should be selected and/or removed as a result
of the propagation of constraints in the model [60]. As an example, consider the input
and output configurations described below and the model in Figure 1.

Input = ({MobilePhone,Calls,Camera}, {MP3})

Output = ({MobilePhone,Calls,Camera,Media,Screen,High resolution}, {MP3,Basic,Colour})

Features Screen and High resolution are added to the configuration to satisfy the
requires constraint with Camera. Media is also included to satisfy the parental relationship
with Camera. Similarly, features Basic and Colour are removed to fulfil the constraints
imposed by the alternative relationship.

This operation is the basis for constraint propagation during the interactive configu-
ration of feature models [60]

5.1.16. Multi–step configuration

A multi–step configuration problem is defined as the process of producing a series of
intermediate configurations, i.e. a configuration path, going from a feature model con-
figuration to another [101]. An operation of analysis solving a multi–step configuration
problem takes as input a feature model, an initial configuration, a desired final configu-
ration, a number of steps in the configuration path K, a global constraint that can not
be violated (usually referred to feature attributes) and a function determining the cost
to transition from one configuration in step T to another in step U . As a result, the
operation provides an ordered list of K configurations that determines the possible steps
that can be taken to go from the initial configuration to the desired final configuration
without violating the feature model and global constraints. For a detailed example and a
rigorous definition of the operation we refer the reader to [101].

5.1.17. Other operations

In this section, we group those operations that perform some computation based on
the values of previous operations. We also classify in this group those analysis operations
proposed as part of other algorithms.
Homogeneity. This operation takes a feature model as input and returns a number that
provides an indication of the degree to which a feature model is homogeneous [40]. An

17

more homogeneous feature model would be one with few features that are unique in one
product (i.e. a unique feature apprears only in one product) while a less homogeneous one
would be one with a lot of unique features. According to [40] it is calculated as follows:

Homogeneity = 1 −
#uf

#products

#uf is the number of features that are unique in one product and #products denotes
the total number of products represented by the feature model. The range of this indicator
is [0,1]. If all the products have unique features the indicator is 0 (lowest degree of homo-
geneity). If there is no unique features, the indicator is 1 (highest degree of homogeneity).

Commonality.This operation takes a feature model and a configuration as inputs and
returns the percentage of products represented by the model including the input configu-
ration. An as example, consider the partial configurations described below and the model
in Figure 1:

C1 = {{Calls}, {}}

C2 = {{Calls},{MP3}}

The commonality of both configurations is calculated as follows:

Commonality(C1) =
|filter(FM, {{Calls}, {}})|

#products(FM)
=

14

14
= 1

Commonality(C2) =
|filter(FM, {{Calls}, {MP3}})|

#products(FM)
=

7

14
= 0.5

The range of this indicator is [0,1]. Configuration C1 appear in the 100% of the
products whereas C2 is included only in the 50% of them.

This operation may be used to prioritize the order in which the features are going to
be developed [81] or to decide which features should be part of the core architecture of
the software product line [65].

Variability factor. This operation takes a feature model as input and returns the ratio
between the number of products and 2n where n is the number of features considered. In
particular, 2n is the potential number of products represented by feature model assuming
that any combination of features is allowed. The root and non-leaf features are often not
considered. As an example, the variability of the feature model presented in Figure 1
taking into account only leaf features is:

N.Products

2n

=
14

27
= 0.0625

An extremely flexible feature model would be one with all its features as optionals.
For instance, the feature model of Figure 14 has the following variability factor:

N.Products

2n

=
8

23
= 1

18

A

B DC

Figure 14: Sample feature model with three optional features

The range of this indicator would depend on the features considered to calculate the
factor. The feature model variability can be used to measure the flexibility of the feature
model. For instance, a small factor means that the number of combinations of features is
very limited compared to the total number of potential products.

Degree of orthogonality. This operation takes a feature model and a subtree (repre-
sented by its root feature) as input and returns their degree of orthogonality. Czarnecki
et al. [30] defines the degree of orthogonality as the ratio between the total number of
products of the feature model and the number of products of the subtree. Only local
constraints in the subtree are considered for counting the products. For instance, the
formula below shows the degree of orthogonality for the subtree Screen in Figure 1.

Orthogonality(Screen) =
14

3
= 4.66

The range of this indicator is [0,1]. A high degree of orthogonality indicates that de-
cisions can be taken locally without worrying about the influence in the configuration of
other parts of the tree [30].

Extra Constraint Representativeness (ECR). This operation takes a feature model
as input and returns the degree of representativeness of the cross-tree constraints in the
tree. Mendonça et al. [62, 61] defines the Extra Constraint Representativeness (ECR) as
the ratio of the number of features involved in cross-tree constraints (repeated features
counted once) to the number of features in the feature tree. For instance, ECR in Figure
1 is calculated as follows:

ECR =
4

10
= 0.4

The range of this indicator is [0,1]. This operation has successfully used to design and
evaluate heuristics for the automated analysis of feature models [62].

Lowest Common Ancestor (LCA). This operation takes a feature model and a set of
features as input and returns a feature that is the lowest common ancestor of the input
features. Mendonça et al. [62] defines the Lowest Common Ancestor (LCA) of a set of
features, LCA(FM, {f1, ..., fn}), as the shared ancestor that is located farthest from the
root. In Figure 1, LCA(FM, {Basic, Camera}) = MobilePhone.

Root features. This operation takes a feature model and a set of features as in-
puts and returns a set of features that are the roots features in the model. Given

19

l = LCA(FM, {f1, ..., fn}), Mendonça et al. [62] defines the roots of a set of features,
Roots(FM, {f1, ..., fn}) as the subset of child features of l that are ancestor of f1, ..., fn.
In Figure 1, Roots(FM, {Basic, Camera}) = {Media, Screen}.

5.2. Automated support

Previously, we have presented the different analysis operations that we found in the
literature. In this section, we address RQ2: What kind of automated support has been
proposed and how it is performed? To answer this question, we classified the primary
studies in four different groups according to the logic paradigm or method used to provide
the automated support. In particular, we next present the group of approaches using
Propositional Logic(PL), Constraint Programming(CP), Description Logic(DL), and other
contributions based not classified in the former groups proposing on ad-hoc solutions,
algorithms or paradigms.

5.2.1. Propositional logic based analyses

A propositional formula consists of a set of primitive symbols or variables and a set of
logical connectives constraining the values of the variables, e.g. ¬,∧,∨,⇒,⇔.

A SAT solver is a software package that takes as input a propositional formula and
determines if the formula is satisfiable, i.e. there is a variable assignment that makes the
formula evaluates to true. Input formulas are usually specified in Conjunctive Normal
Form (CNF). CNF is a standard form to represent propositional formulas that is used by
most of SAT solvers where only three connectives are allowed: ¬,∧,∨. It has been proved
that every propositional formula can be converted into an equivalent CNF formula [25].
SAT solving is a well known NP-complete problem [25], however, current SAT solvers can
deal with big problems where in most of the cases the performance is not an issue [58].

Similarly, a Binary Decision Diagram (BDD) solver is a software package that takes
a propositional formula as input (not necessarily in CNF) and translates it into a graph
representation (the BDD itself) which allows determining if the formula is satisfiable and
providing efficient algorithms for counting the number of possible solutions [19]. The size
of the BDD is crucial because it can be exponential in the worst case. Although it is
possible to find a good variable ordering that reduces the size of the BDD, the problem
of finding the best variable ordering remains NP-complete [17].

The mapping of a feature model into a propositional formula can change depending on
the solver that is used later for analysis. In general, the following steps are performed: i)
each feature of the feature model maps to a variable of the propositional formula, ii) each
relationship of the model is mapped into one or more small formulas depending on the
type of relationship, in this step some auxiliary variables can appear, iii) the resulting
formula is the conjunction of all the resulting formulas of step ii plus and additional
constraint assigning true to the variable that represents the root, i.e. root ⇐⇒ true.

Concrete rules for translating a feature model into a propositional formula are listed
in Figure 15. Also, the mapping of our running example of Figure 1 is presented. We may
mention that the mapping of the propositional formulas listed in Figure 15 into CNF is
straightforward (see [25]).

There are some works in the literature that propose the usage of propositional formulas
for the automated analysis of feature models (see Table 3). In these studies the analysis
is performed in two steps. Firstly, the feature model is translated into a propositional

20

formula. Then, an off–the–shelf solver is used to automatically analyse the formula and
subsequently the feature model. A summary of the solvers used for analysis is shown in
Table 1.

Tool Proposals

SAT Solver [16] [4, 13, 15, 61, 75, 79]
Alloy [35] [41, 78]
BDD Solver [99] [13, 15, 30, 62, 75, 90, 91, 107, 104]
SMV [36] [105, 106]
Not specified [56, 57]

Table 1: Propositional logic based tools used for FM analysis���������	�
 �� �

��� ����� �	��� ����
���������������������
����������������� �!"�#�� A B

A B

$%
↔ %$
→ &'((('')* +,- ∨∨∨↔

./
→ 0./1

∧¬

&&*'((('')') &&*'(((')') &&*'(((')') -+,-+ +-, +,-
∧¬∧∧¬∧¬↔

∧∧¬∧∧¬↔
∧∧¬∧∧¬↔

−

P

C

P

C

P

C1 C2 Cn

P

C1 C2 Cn

$23345678935%:7; ↔ <=>55;5678935%:7; ↔ 5678935%:7;?%<
→ 5678935%:7;65@92 → &AB*'CDEFC)BEGHC ∨↔

IJFEEK&&'LMLFNCOHJ)PQHLK)RHSTFEOLM IJFEEK&&QHLKRHSTFEOLMPNCOHJ))'LMLF IJFEEK&&QHLKRHSTFEOLMP'LMLF))NCOHJ
∧¬∧¬↔

∧∧¬∧¬↔
∧∧¬∧¬↔

U97;V9W:>5473X$2Y5>2 → &NCOHJZ*I)
∧¬

Figure 15: Mapping from feature model to propositional logic

To underline the most important contributions in terms of innovations with respect
to prior work we may mention the following studies: Mannion et al. [56, 57] was the
first to connect propositional formulas and feature models. Zhang et al. [106] reported
a method to calculate atomic sets, later explored by Segura [75]. Batory [4] shows the
connections among grammars, feature models and propositional formulas, this was the
first time that a SAT solver was proposed to analyse feature models. In addition, a Logic

21

Truth Maintenance System (a system that maintains the consequences of a propositional
formula) was designed to analyse feature models. Sun et al. [78] propose using Z, a
formal specification language, to provides semantics to feature models. Alloy was used
to implement those semantics and analyse feature models. Benavides et al.[13, 15, 75]
propose using a multi–solver approach where different solvers are used (e.g. BDD or SAT
solvers) depending on the kind of analysis operations to be performed. For instance,
they suggest that BDD solvers seems to be more efficient in general than SAT solvers for
counting the number of products of a feature model. Mendonca et al. [62] used also BDDs
for analysis and compared different classical heuristics found in the literature for variable
ordering of BDDs with new specific heuristics for analysis of BDDs representing feature
models. They experimentally showed that existing BDD heuristics fails to scale for large
feature models meanwhile their novel heuristics can scale for models with up to 2,000
features. Thüm et al. [79] present an automated method for classifying feature model
edits, i.e. changes in an original feature model, according to a taxonomy. The method
is based on propositional logic algorithms using a SAT solver and constraint propagation
algorithms. Yan al. [104] propose an optimization method to reduce the size of the logic
representation of the feature models by removing irrelevant constraints. Mendonca et. al.
[61] shows by means of an experiment that the analysis of feature models with similar
properties to those found in the literature using SAT solvers is computationally affordable.

5.2.2. Constraint programming based analyses

A Constraint Satisfaction Problem (CSP) [86] consists of a set of variables, a set
of finite domains for those variables and a set of constraints restricting the values of
the variables. Constraint programming can be defined as the set of techniques such as
algorithms or heuristics that deal with CSPs. A CSP is solved by finding states (values
for variables) in which all constraints are satisfied. In contrast to propositional formulas,
CSP solvers can deal not only with binary values (true or false) but also with numerical
values such as integers or intervals.

A CSP solver is a software package that takes a problem modelled as a CSP and
determines whether it exists any solution for the problem. From a modelling point of
view, CSP solvers provide a richer set of modelling elements in terms of variables (e.g.
sets, finite integer domains, etc.) and constraints (not only propositional connectives)
than propositional logic solvers.

The mapping of a feature model into CSP can change depending on the concrete solver
that is used later for the analysis. In general, the following steps are performed: i) each
feature of the feature model maps to a variable of the CSP with a domain of 0..1 or TRUE,
FALSE, depending on the kind of variable supported by the solver, ii) each relationship
of the model is mapped into a constraint depending on the type of relationship, in this
step some auxiliary variables can appear, iii) the resulting CSP is the one defined by the
variables of steps i and ii with the corresponding domains and a constraint that is the
conjunction of all precedent constraints plus and additional constraint assigning true to
the variable that represents the root, i.e. root ⇐⇒ true or root == 1, depending on the
variables domains.

Concrete rules for translating a feature model into a CSP are listed in Figure 16. Also,
the mapping of our running example of Figure 1 is presented.

22

There are some works in the literature that propose the usage of constraint program-
ming for the automated analysis of feature models (see Table 3). Analyses are performed
in two steps. Firstly, the feature model is translated into a CSP. Then, an off–the–shelf
solver is used to automatically analyse the CSP and subsequently the feature model. A
summary of the solvers used for analysis is shown in Table 2.

Tool Proposals

JaCoP [37] [13, 14, 15, 75]
Choco [33] [14, 103, 101]
OPL studio [47] [9, 10, 11]
GNU Prolog [34] [38]
Not specified [82, 80]

Table 2: CSP based tools used for FM analysis

Benavides et al. were the first authors proposing the usage of constraint programming
for analyses on feature models [9, 10, 11]. In those works, a set of mapping rules to
translate feature models into a CSP were provided. Benavides et al. proposals provide
support for the analysis of extended feature models (i.e. including feature attributes) and
the operation of optimization. Authors also provide tool support [15, 83] and they have
compared the performance of different solvers when analysing feature models [14, 13, 75].
Trinidad et al. [82, 80] focus on the detection and explanation of errors on feature models
based on Reiter’s theory of diagnosis [68] and constraint programming. Djebbi et al. [38]
propose a method to extract information from feature models in terms of queries. A
set of rules to translate feature models to boolean constraints are given. Additionally,
they also describe a tool under development enabling the analysis of feature models using
constraint programming. White et al. [103] propose a method to detect conflicts in a
given configuration and propose changes in the configuration in terms of features to be
selected or deselected that remedy the problem. Their technique is based on translating
a feature model into a CSP adding some extra variables in order to detect and correct
the possible errors after applying optimization operations. In [101], White et al. provide
support for the analysis of multi–step configuration problems.

5.2.3. Description logic based analyses

Description logics are a family of knowledge representation languages enabling the
reasoning within knowledge domains by using specific logic reasoners [2]. A problem
described in terms of description logic is usually composed by a set of concepts (a.k.a.
classes), a set of roles (e.g. properties or relationships) and set of individuals (a.k.a.
instances).

A description logic reasoner is a software package that takes as input a problem de-
scribed in description logic and provides facilities for consistency and correctness checking
and other reasoning operations.

We found four primary studies proposing the usage of description logic to analyse
feature models. Wang et al. [96] were the first to enable the automated analysis of

23

[\]^_`abcd`e fgh i^ee`bj iak`]\ hdab\ lm^ne]\opqrpstuvtwsxtqpytu
pyszuqpsx{zuz|}xuz~z��y}rz~

A B

A B

P

C

P

C

P

C1 C2 Cn

P

C1 C2 Cn

P = C

if (P = 0)
 C = 0

if (P > 0)
 Sum(C1,C2,...Cn) in {1..n}
else
 C1= 0, C2=0,…., Cn=0

if (P > 0)
 Sum(C1,C2,...Cn) in {1..1}
else
 C1= 0, C2=0,…., Cn=0

if (A > 0)
 B>0

if (A > 0)
 B=0

 Mobilephone = Calls
 Mobilephone = Screen

if (Mobilephone = 0)
GPS = 0

if (Mobilephone = 0)
Media = 0

if (Media > 0)
 Sum(Camera,MP3) in {1..2}
else
 Camera = 0, MP3 = 0

if (Screen > 0)
 Sum(Basic,Colour,High resolution) in {1..1}
else
 Basic = 0,Colour = 0, High resolution = 0

if (Camera > 0)
 High resolution > 0

if (GPS > 0)
 Basic = 0

Figure 16: Mapping from feature model to CSP

24

feature models using description logic. In their work, the authors introduce a set of
mapping rules to translate feature models into OWL-DL ontologies [32]. OWL-DL is
an expressive yet decidable sub language of OWL [32]. Then, the authors suggest using
description logic reasoning engines such as RACER[67] to perform automated analysis
over the OWL representations of the models. In [97], the authors extend their previous
proposal [96] with support for explanations by means of an OWL debugging tool. Fan et
al. [39] also propose translating feature models into description logic and using reasoners
such as RACER to perform their analyses. In [1], Abo et al. propose using semantic
web technologies to enable the analyses. They use OWL for modelling and the Pellet [22]
reasoner for the analysis.

5.2.4. Other studies

There are some primary studies that are not classified in the former groups, namely:
i) studies in which the conceptual logic used is not clearly exposed and ii) studies using
ad–hoc algorithms, paradigms or tools for analysis.

Kang et al. did an explicit mention to automated analysis of feature models in the
original FODA report [48, pag. 70]. A prolog–based prototype is also reported. However,
not detailed information is provided to replicate their prolog coding. After the FODA
report, Deursen et al. [92] were the first authors proposing some kind of automated sup-
port for the automated analysis of feature models. In their work, they propose a textual
feature diagram algebra together with a prototype implementation using the ASF+SDF
Meta-Environment [52]. Von der Massen et al. [93] present Requiline, a requirement
engineering tool for software product lines. The tool is mainly implemented using a re-
lational data base and ad–hoc algorithms. Later, Von der Massen et al. [95] propose a
method to calculate a rough approximation of the number of products of a feature model,
what they call variation degree. The technique is described using mathematical expres-
sions. In [3], Bachmeyeret al. present conceptual graph feature models. Conceptual graphs
are a formalism to express knowledge. Using this transformation, they provide an algo-
rithm that is used to compute analysis. Hemakumar [45] proposes a method to statically
detect conditional dead features. The method is based on model checking techniques
and incremental consistency algorithms. Mendonça et al. [59, 60] study dependencies
among feature models and cross–tree constraints using different techniques obtaining a
noticeable improvement in efficiency. Gheyi et al. [42] present a set of algebraic laws
in feature models to check configurability of feature model refactorings. They use the
PVS tool to do some analysis although this is not the main focus of the paper. White
et al. [100] present an extension of their previous work [102]. The same method is pre-
sented but giving enough details to make it reproducible since some details were missed
in their previous work. The method is called Filtered Cartesian Flattering which maps
the problem of optimally selecting a set of features according to several constraints to a
Multi–dimensional Multi–choice Knapsack Problem and then they use several existing al-
gorithms to this problem that perform much faster while offering an approximate answer.
Van den Broek et al. [88] propose transforming feature models into generalised feature
trees and computing some of their properties. A generalised feature tree is a feature model
in which cross-tree constraints are removed and features can have multiple occurrences.
Some algorithms and an executable specification in the functional programming language

25

Miranda is provided. The strength of their proposal lies in the efficiency of the analysis
operation. Fernandez et al. [40] propose an algorithm to compute the total number of
products on what they call Neutral Feature Trees, these trees allow complex cross-tree
constraints. Computing the total number of products the authors are also able to calcu-
late the homogeneity of a feature tree as well as the commonality of a given feature. They
finally compare the computational complexity of their approach with respect to previous
work.

5.3. Summary and analysis of operations and support

A summary of the analysis operations (RQ1) and automated support (RQ2) identified
in the literature is shown in Table 3. Operations are listed horizontally and ordered by
the total number of papers mentioning it. Primary studies are listed vertically. Related
works of the same author are grouped in a single column. Primary studies are grouped
according to the paradigm they use for the analyses as follows: i) Propositional Logic
(PL), ii). Constraint Programming (CP) iii) Description Logic (DL), iv) works that inte-
grate more than one paradigm and/or solver (Multi), v) studies that use their own tools
not categorized in the former groups (Others), and vi) proposals that present different
operations but do not provide automated support for them (No support).

The cells of the matrix indicates the information about a primary study in terms of
operations supported. Cells marked with ‘+’ indicate that the proposal of the column
provides support for the operation of the row. We use the symbol ‘∼’ for proposals with
no automated support for the corresponding operation but explicit definition of it. We
also remark the primary study that first proposed an operation using the symbols ‘⊕’
(when support is provided) and ‘⊖’ (when no support is provided). To fully answer the
research questions we also extracted some additional information about different aspects
of the primary studies, namely: i) feature model notations supported: ‘B’ (basic feature
model), ‘C’ (cardinality–based feature model) ii) whether the approach support extended
feature models or not, iii) whether the approach is described formally. This information
is also reported in the final rows of Table 3.

Table 4 depicts a chronological view of the data presented in Table 3. More specifically,
it shows the amount of references to operations, notation, formalization and kind of
automated support found in the literature for each year. Vertically, we list all the years
where primary studies were published. Last column indicates the total number of primary
studies referring the operation, the notation of feature models, the formalization provided
and the type of automated support used for analysis. The table also shows the number
of new operations proposed by each year.

As illustrated in Tables 3 and 4, there are 11 out of 30 operations that only appeared in
one primary study. Likewise, 6 operations were treated in more than 10 studies from which
4 were already mentioned in the original FODA report back in 1990 [48]. This denotes,
in our opinion, that FODA authors were quite visionary in predicting the importance of
automated analysis on feature models and pinpointing some of most referred operations.
We may remark that 11 new operations were proposed in the last two years of our study
and 22 of them were referred in 2009 suggesting that the analysis of feature models is an
active research field.

26

B
at

or
y

[4
]

C
za

rn
ec

k
i
et

al
.

[3
0]

G
h
ey

i
et

al
.

[4
1]

M
an

n
io

n
et

al
.

[5
6,

57
]

M
en

d
on

ca
et

al
.

[6
2]

M
en

d
on

ca
et

al
.

[6
1]

S
u
n

et
al

.
[7

8]

T
h
ü
m

et
al

.
[7

9]

va
n

d
er

S
to

rm
[9

0,
91

]

Z
h
an

g
et

al
.

[1
06

,
10

5]

Z
h
an

g
et

al
.

[1
07

]

Y
an

et
al

.
[1

04
]

B
en

av
id

es
et

al
.

[9
,
10

,
11

]

B
en

av
id

es
et

al
.

[1
4]

D
je

b
ii

et
al

.
[3

8]

T
ri

n
id

ad
et

al
.

[8
2,

80
]

W
h
it

e
et

al
.

[1
03

]

W
h
it

e
et

al
.

[1
01

]

A
b
o

et
al

.
[1

]

F
an

et
al

.
[3

9]

W
an

g
et

al
.

[9
6,

97
]

B
en

av
id

es
et

al
.

[1
3]

B
en

av
id

es
et

al
.

[1
5]

S
eg

u
ra

[7
5]

B
ac

h
m

ey
er

et
al

.
[3

]

C
ao

et
al

.
[2

0]

F
er

n
an

d
ez

et
al

.
[4

0]

H
em

ak
u
m

ar
[4

5]

G
h
ey

i
et

al
.

[4
2]

K
an

g
et

al
.

[4
8]

M
en

d
on

ca
et

al
.

[6
0]

O
sm

an
et

al
.

[6
3,

64
]

S
al

in
es

i
et

al
.

[7
0]

V
an

d
en

B
ro

ek
et

al
.

[8
8]

V
an

D
eu

rs
en

et
al

.
[9

2]

V
on

d
er

M
as

se
n

et
al

.
[9

3]

V
on

d
er

M
as

se
n

et
al

.
[9

5]

W
h
it

e
et

al
.

[1
02

,
10

0]

B
at

or
y

et
al

.
[6

]

S
ch

ob
b
en

s
et

al
.

[4
6,

72
,
73

]

T
ri

n
id

ad
et

al
.

[8
4]

V
on

d
er

M
as

se
n

et
al

.
[9

4]

PL CP DL Multi Others No support
Void feature model + ⊕ + + + + + ∼ ∼
#Products + ⊕ + + + + + + + + ⊕ + ∼
Dead features ∼ + + + + + + ⊕ + + + ∼ ∼ ∼
Valid product + + + + + + + + ⊕ + ∼ ∼ ∼
All products + + ⊕ + + + + + ⊕ ∼
Explanations + ∼ + + + + ⊕ + + ∼ ∼
Refactoring + ⊕ + + + ∼ ∼
Optimization ⊕ + + + ∼ ∼
Commonality ⊕ + + + ∼
Filter + ⊕ + + ∼
Valid partial configuration + + + ⊕ ∼
Atomic sets + ⊕ + +
False optional features ⊕ + + ∼ ⊖
Corrective explanations + + ⊖
Dependency analysis ⊕ +
ECR ⊕ +
Generalization ⊕ +
Core features + ⊖
Variability factor ⊕ ∼
Arbitrary edit +
Conditional dead features +
Homogeneity +
LCA +
Muti–step configuration +
Roots features +
Specialization +
Degree of orthogonality ∼
Redundancies ∼
Variant features ∼
Wrong cardinalities ∼

Feature model notation B C B B B B B B B B C B B C C B B B B B B B C B B B C B B B C C C B B B B B B C C B
Extended feature model + + + + + + + + + +
Formalization + + + + + + + + + + + + + + + + +

+ Supported ∼ No support ⊕ Supported(first reference) ⊖ No support (first reference) B Basic feature model C Cardinality–based feature models

Table 3: Summary of operations of analysis and support

27

1990 2002 2003 2004 2005 2006 2007 2008 2009 Total
Operations

Void feature model + + + + + + + + + 35
#Products + + + + + + + + 16
Dead features + + ∼ + + + 17
Valid product + + + + + + + ∼ 17
All products + + + + + + + 13
Explanations + + ∼ + + + 13
Refactoring + + + + + 9
Optimization + + ∼ + + + 9
Commonality + + + + 6
Filter + + + + 7
Valid partial configuration + + + ∼ 5
Atomic sets + + 4
False optional features + + + ∼ 6
Corrective explanations ∼ + 3
Dependency analysis + + 2
ECR + + 2
Generalization + + 2
Core features + 2
Variability + ∼ 3
Arbitrary edit + 1
Conditional dead features + 1
Homogeneity + 1
LCA + 1
Muti–step configuration + 1
Roots + 1
Specialization + 1
Degree of orthogonality ∼ 1
Redundancies ∼ 1
Variant features ∼ 1
Wrong cardinalities ∼ 1
New operations 6 2 0 6 4 1 0 4 7 30

Notation and formalization

Basic FMs + + + + + + + + + 40
Cardinality-based FMs + + + + + 13
Extended feature models + + + + + + + 13
Formalization + + + + + + 22

Support

Propositional logic + + + + + + + + 18
Constraint programming + + + + + + 12
Description logic + + + + 4
Others + + + + + + + 16

1 study 2-3 studies >3 studies

Table 4: Number of primary studies referring operations, notations and support for each year

28

Regarding the notation used, 40 out of 53 primary studies used basic feature model
notation for analysis of feature models. However, it seems to be an increasing interest in
the analysis of cardinality–based and extended feature models since 2004.

With respect to automated support for analysis, 18 out of 53 studies used propositional
logic meanwhile only 4 of them used description logic. Constraint programming was
referred in 12 studies leaded by three different groups of authors. We remark that no
support for extended feature models was found in the studies using propositional logic.
There are also 16 studies proposing ad–hoc solutions and this tendency seems to be in
progression in the last years which may suggest that researchers are looking for more
specific and efficient algorithms to perform analysis operations.

We also found that there are 22 studies proposing a formal or rigorous definition of
analysis operations. This tendency seems to be ascendant since 2004 which may indicate
that there is an increasing interest by the research community to accurately define an
report analysis operations.

B
at

or
y

[4
]

C
za

rn
ec

k
i
et

al
.

[3
0]

S
u
n

et
al

.
[7

8]

T
ri

n
id

ad
et

al
.

[8
2,

80
]

W
h
it

e
et

al
.

[1
03

]

A
b
o

et
al

.
[1

]

W
an

g
et

al
.

[9
6,

97
]

K
an

g
et

al
.

[4
8]

O
sm

an
et

al
.

[6
3,

64
]

V
an

d
en

B
ro

ek
et

al
.

[8
8]

B
at

or
y

et
al

.
[6

]

T
ri

n
id

ad
et

al
.

[8
4]

V
on

d
er

M
as

se
n

et
al

.
[9

4]

PL CP DL Others No
Valid product + ∼ + + + + ∼ ∼
Void feature model + + + + + + ∼
Dead features + + + ∼ ∼
Valid partial configuration + ∼ + ∼
False optional + ∼ ∼
Dependency analysis +
Core features ∼
Optimization ∼
Redundancies ∼
Variant features ∼
Wrong cardinalities ∼

Table 5: Summary of the proposals reporting explanations

Explanations are acknowledged to be an important operation for feature model error
analysis in the literature [6, 84]. As presented in Sections 5.1.8 and 5.1.9, this operations
take as input a feature model and an operation and return as a result the source of
the errors in the model and the possible actions to correct them respectively. Table
5 shows a detailed view of the operations that haven been used in explanations and
corrective explanations. As illustrated, there are only four operations with support for
explanations in more than one study. All logical paradigms have been used for explaining
different analysis operations. We found that explanations have been largely studied in
related problems in the communities of propositional logic, constraint programming and
description logic for years. This has provided researchers with helpful guidelines and
methods to assist on the the implementation of explanations in the analysis of feature
models. We also remark that all the operations of explanations are referred to the analysis
of basic or cardinality–based feature models but we have not found any study dealing

29

with explanations in extended feature models. Only Trinidad et al. [84] provided some
hints about explaining the optimization operation but no explicit method to support this
operations was presented.

6. Performance evaluation

Performance analyses play a key role in the evaluation of the analysis techniques
and tools. From the results obtained, the strengths and weaknesses of the proposals are
highlighted helping researchers to improve their solutions, identify new research directions
and show the applicability of the analysis operations.

Table 6 summarizes the proposals reporting performance results on the analysis of
feature models. We consider as performance results any data (e.g. time, memory) sug-
gesting how a proposal behave in practice. Works based on propositional logic, constraint
programming and ad–hoc solutions have presented a similar number of performance eval-
uations meanwhile only one proposal has presented results of description logic based sup-
port. Regarding operations, 18 out of 30 analysis operations identified in the literature
have been used in performance analyses. However, only 7 of them have been evaluated
by more than one proposal, providing some comparable results.

In general terms, the available results suggest that CP-based and PL-based automated
support provide similar performance in general [13, 75]. PL-based solutions relying on
BDDs (Binary Decision Diagrams) seems to be an exception providing execution times
much faster than the ones provided by the rest of known approaches, specially when
computing the number of solutions [13, 62, 75, 107]. The major drawback of this technique
is the size of the BDD representing the feature model that can be exponential in the worst
case. Several authors have worked in the development of new heuristics and techniques
to reduce the size of the BDDs used on the analysis of feature models [62, 107]. Others
focus on providing automated support using different paradigms in order to combine the
best of all of them in terms of performance [13, 15].

A key aspect in the experimental work related to the analysis of feature models lies
on the types of the subject problems used for the experiments. We found two main
types of feature models used for experimentation: realistic and automatically generated
feature models. We refer as realistic models to those modelling real–world domains or
a simplified version of them. Some of the realistic feature models most quoted in the
revised literature are: e-Shop [53] with 287 features, graph product line [55] with up to
64 features, BerkeleyDB [50] with 55 features and home integration system product line
[10] with 15 features.

Although there are reports from industry of feature models with hundreds or even
thousands of features [6, 54, 76], only a portion of them is typically published. This
has led authors to generate feature models automatically to show the scalability of their
approaches with large problems. These models are generated either randomly [13, 14,
60, 64, 75, 100, 101, 103, 104, 107] or trying to imitate the properties of the realistic
models found in the literature [61, 79]. Several algorithms for the automated generation
of feature models have been proposed [75, 79, 104].

In order to understand the relationship between realistic feature models and automat-
ically generated models in experimentation, we counted the number of works using each

30

G
h
ey

i
et

al
.

[4
1]

M
en

d
on

ca
et

al
.

[6
1]

T
h
ü
m

et
al

.
[7

9]

Z
h
an

g
et

al
.

[1
07

]

Y
an

et
al

.
[1

04
]

B
en

av
id

es
et

al
.

[9
,
10

,
11

]

B
en

av
id

es
et

al
.

[1
4]

W
h
it

e
et

al
.

[1
03

]

W
h
it

e
et

al
.

[1
01

]

W
an

g
et

al
.

[9
7]

B
en

av
id

es
et

al
.

[1
3]

S
eg

u
ra

[7
5]

H
em

ak
u
m

ar
[4

5]

M
en

d
on

ca
et

al
.

[6
0]

O
sm

an
et

al
.

[6
4]

W
h
it

e
et

al
.

[1
02

,
10

0]

PL CP DL Multi Others
Void feature model + + + + + +
#Products + + +
Dead features +
Valid product + + +
All products + +
Explanations + +
Refactoring + +
Optimization +
Atomic sets +
Corrective explanations +
Dependency analysis +
Generalization + +
Arbitrary edit +
Conditional dead features +
Muti-step configuration +
Specialization +

Table 6: Summary of the studies reporting performance results for analysis operations

type by year. The results are shown in Figure 17. For each type of model, we also show
the number of features of the largest feature model for each year. The figure shows an
increasing trend in the number of empirical works since 2004 being specially notable in
the last two years. First works used small realistic feature models in their experiments.
However, since 2006, far more automatically generated feature models than realistic ones
have been used. Regarding the size of the problems, there is a clear ascendant tendency
ranging from the model with 15 features used in 2004 to the model with 20,000 features
used in 2009. These findings reflect an increasing concern to evaluate and compare the
performance of different solutions using larger and more complex feature models. This
suggests that the analysis of feature models is maturing.

7. Discussions and challenges

In this section, we discuss the results obtained from the literature review. Based on
these results, we identify a number of challenges (RQ3) to be addressed in the future.
Challenges are part of the authors’ own personal view of open questions, based on the
analysis presented in this paper.

• Formal definition of analysis operations. As we have presented, most of the pro-
posals define operations in terms of informal descriptions. For implementing a tool,
it is desirable to have precise definition of the operations. Formal definitions of
operations would facilitate both, communication among the community and tool
development. Schobbens et al. [72, 73] and Benavides [7] have made some progress

31

Figure 17: Type and maximum size of the feature models used in performance evaluations for each year

in this direction. Note that [7] was not included as a primary study because it has
not published in a peer reviewed format.

Challenge 1: Formally describe all the operations of analysis and provide a formal
framework for defining new operations.

• Extended feature model analyses. Analysis on basic or cardinality–based feature
models are covered by most of the studies. However, extended feature models
where numerical attributes are included, miss further coverage. When including
attributes in feature models the analysis becomes more challenging because not
only attribute–value pairs can be contemplated, also, more complex relationships
can be included like “feature Camera requires Scree.resolution ≥ 640x480”. This
type of relationships can affect operations of analysis and can include new ones. For
instance, the number of products of a feature model can be reduced or augmented
if these relationships are considered.

Challenge 2: Include feature attribute relationships for analyses on feature models
and propose new operations of analysis leveraging extended feature models.

• Performance and scalability of the operations. Performance testing is being studied
more and more and recent works show empirical evidences of the computational
complexity of some analysis operations. We believe that a more rigorous analysis
of computational complexity is needed. Furthermore, a set of standard benchmarks
would be desirable to show how the theoretical computational complexity is run in
practice.

Challenge 3: Further studies about computational complexity of analysis.

Challenge 4: Develop standard benchmarks for analysis operations.

32

• Tools used for analysis. As we have presented, there are mainly three groups of
solvers used for analysis: constraint programming, description logic and propo-
sitional logic based solvers. From the primary studies, we detected that mainly
proposals using constraint programming–based solvers are able to deal with ex-
tended feature models, i.e. feature models with attributes. Propositional logic–
based solvers that use binary decisions diagrams as internal representations seem
to be much more efficient for counting the number of products but present serious
limitations regarding memory consumption. Description logic–based solvers have
not been studied in depth to show their strengths and limitations when analysing
feature models. Finally, it seems clear that not all solvers and paradigms will per-
formance equally well for all the identified operations. A characterisation of feature
models, operations and solvers seems to be an interesting topic to be explored in
the future.

Challenge 5: Study how propositional logic and description logic–based solvers
can be used to add attributes on feature models.

Challenge 6: Compare in depth description logic–based solvers with respect to
analysis operations and other solvers.

Challenge 7: Characterise feature models, analysis operations and solvers to select
the best choice in each case.

8. Conclusions

The automated analysis of feature models is thriving. The extended use of feature
models together with the many applications derived from their analysis has made this
discipline to gain importance among researchers in software product lines. As a result,
a number of analysis operations and approaches providing automated support for them
are rapidly proliferating. In this paper, we revised the state of the art on the automated
analysis of feature models by running a structured literature review covering 53 primary
studies and outlining the main advances made up to now. As a main result, we presented a
catalogue with 30 analysis operations identified in the literature and classified the existing
proposal providing automated support for them according to their underlying logical
paradigm. We also provided information about the tools used to perform the analyses and
the results and trends related to the performance evaluation of the published proposals.
From the analysis of current solutions, we conclude that the analysis of feature models
is maturing with an increasing number of contributions, operations, tools and empirical
works. We also identified a number of challenges for future research mainly related to the
formalization and computational complexity of the operations, performance comparison
of the approaches and the support of extended feature models.

Acknowledments

We would like to thank Don Batory, Deepak Dhungana, Jose Galindo, Abdelrahman
Osman Elfaki, Anna Queralt, Fabricia C. Roos, Ernets Teniente, Thomas Thum, Pablo

33

Trinidad and Pim Van den Broek for their helful commments in earlier versions of this
article.

References

[1] L. Abo, F. Kleinermann, and O. De Troyer. Applying semantic web technology to
feature modeling. In SAC, pages 1252–1256, 2009.

[2] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider,
editors. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA, 2003.

[3] R. Bachmeyer and H. Delugach. A conceptual graph approach to feature modeling.
In ICCS, pages 179–191, 2007.

[4] D. Batory. Feature models, grammars, and propositional formulas. In Software
Product Lines Conference, volume 3714 of Lecture Notes in Computer Sciences,
pages 7–20. Springer–Verlag, 2005.

[5] D. Batory. A tutorial on feature oriented programming and the ahead tool suite.
In Summer school on Generative and Transformation Techniques in Software Engi-
neering, 2005.

[6] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature models:
Challenges ahead. Communications of the ACM, December:45–47, 2006.

[7] D. Benavides. On the Automated Analyisis of Software Product Lines using Fea-
ture Models. A Framework for Developing Automated Tool Support. PhD thesis,
University of Seville, 2007.

[8] D. Benavides, D. Batory, P. Heymans, and A. Ruiz-Cortés, editors. First Workshop
on Analyses of Software Product Lines, September 2008.

[9] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with automatic reasoning on
software product lines. In Proceedings of the 2nd Groningen Workshop on Software
Variability Management, November 2004.

[10] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature
models. In Advanced Information Systems Engineering: 17th International Con-
ference, CAiSE 2005, volume 3520 of Lecture Notes in Computer Sciences, pages
491–503. Springer–Verlag, 2005.

[11] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint programming to
reason on feature models. In The Seventeenth International Conference on Software
Engineering and Knowledge Engineering, SEKE 2005, pages 677–682, 2005.

[12] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models:
A detailed literature review. Technical Report ISA-09-TR-02, ISA research group,
2009. Available at http://www.isa.us.es/.

34

[13] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step towards a
framework for the automated analysis of feature models. In Managing Variability
for Software Product Lines: Working With Variability Mechanisms, 2006.

[14] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using java csp solvers
in the automated analyses of feature models. Lecture Notes in Computer Science,
4143:389–398, 2006.

[15] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA: Tooling a frame-
work for the automated analysis of feature models. In Proceeding of the First In-
ternational Workshop on Variability Modelling of Software-intensive Systems (VA-
MOS), pages 129–134, 2007.

[16] D. Le Berre. SAT4J solver, www.sat4j.org. published on line.

[17] B. Bollig and I. Wegener. Improving the variable ordering of obdds is np-complete.
IEEE Trans. Comput., 45(9):993–1002, 1996.

[18] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons from
applying the systematic literature review process within the software engineering
domain. Journal of Systems and Software, 80(4):571–583, 2007.

[19] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35(8):677–691, 1986.

[20] F. Cao, B. Bryant, C. Burt, Z. Huang, R. Raje, A. Olson, and M. Auguston. Au-
tomating feature-oriented domain analysis. In International Conference on Software
Engineering Research and Practice (SERP’03), pages 944–949, June 2003.

[21] Citeseer. http://citeseer.ist.psu.edu/. published on line.

[22] Clark and Parsia. Pellet: the open source owl reasoner,
http://clarkparsia.com/pellet/. published on line.

[23] A. Classen, P. Heymans, and P.Y. Schobbens. What’s in a feature: A requirements
engineering perspective. In Fundamental Approaches to Software Engineering, vol-
ume 4961, pages 16–30. Springer, 2008.

[24] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI
Series in Software Engineering. Addison–Wesley, August 2001.

[25] S. Cook. The complexity of theorem-proving procedures. In Conference Record of
Third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[26] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker. Generative programming
for embedded software: An industrial experience report. In Generative Programming
and Component Engineering, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002,
pages 156–172, 2002.

[27] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Techniques,
and Applications. Addison–Wesley, may 2000. ISBN 0–201–30977–7.

35

[28] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement
and Practice, 10(2):143–169, 2005.

[29] K. Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[30] K. Czarnecki and P. Kim. Cardinality-based feature modeling and constraints: A
progress report. In Proceedings of the International Workshop on Software Factories
At OOPSLA 2005, 2005.

[31] K. Czarnecki, S. She, and A. Wasowski. Sample spaces and feature models: There
and back again. In proceedings of the Software Product Line Conference (SPLC),
pages 22–31, 2008.

[32] M. Dean and G. Schreiber. OWL web ontology language reference. W3C recom-
mendation, W3C, February 2004.

[33] CHOCO Developers. CHOCO solver, http://choco-solver.net/. published on line.

[34] GNU Prolog developers. GNU prolog, www.gprolog.org/. published on line.

[35] Various developers. Alloy analyzer, http://alloy.mit.edu/. published on line.

[36] Various developers. SMV system , www.cs.cmu.edu/∼modelcheck. published on
line.

[37] JaCoP development team. JaCoP solver, http://jacop.osolpro.com/. published on
line.

[38] O. Djebbi, C. Salinesi, and D. Diaz. Deriving product line requirements: the red-pl
guidance approach. Asia-Pacific Software Engineering Conference, 0:494–501, 2007.

[39] S. Fan and N. Zhang. Feature model based on description logics. In Knowledge-
Based Intelligent Information and Engineering Systems, 2006.

[40] D. Fernandez-Amoros, R. Heradio, and J. Cerrada. Inferring information from
feature diagrams to product line economic models. In Proceedings of the Sofware
Product Line Conference, 2009.

[41] R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy. In
Proceedings of the ACM SIGSOFY First Alloy Workshop, pages 71–80, Portland,
United States, nov 2006.

[42] R. Gheyi, T. Massoni, and P. Borba. Algebraic laws for feature models. Journal of
Universal Computer Science, 14(21):3573–3591, 2008.

[43] Google Scholar. http://scholar.google.es. published on line.

36

[44] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley, August 2004.

[45] Adithya Hemakumar. Finding contradictions in feature models. In First Interna-
tional Workshop on Analyses of Software Product Lines (ASPL’08), pages 183–190,
2008.

[46] P. Heymans, P.Y. Schobbens, J.C. Trigaux, Y. Bontemps, R. Matulevicius, and
A. Classen. Evaluating formal properties of feature diagram languages. Software
IET, 2(3):281–302, 2008.

[47] ILOG. OPL studio, www.ilog.com/products/oplstudio/. published on line.

[48] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, November 1990.

[49] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A feature–
oriented reuse method with domain–specific reference architectures. Annals of Soft-
ware Engineering, 5:143–168, 1998.

[50] C. Kastner, S. Apel, and D. Batory. A case study implementing features using
aspectj. In SPLC ’07: Proceedings of the 11th International Software Product Line
Conference, pages 223–232, Washington, DC, USA, 2007. IEEE Computer Society.

[51] B. Kitchenham. Procedures for performing systematic reviews. Technical report,
Keele University and NICTA, 2004.

[52] P. Klint. A meta-environment for generating programming environments. ACM
Trans. Softw. Eng. Methodol., 2(2):176–201, April 1993.

[53] S.Q. Lau. Domain analysis of e-commerce systems using featurebased model tem-
plates. master’s thesis. Dept. of ECE, University of Waterloo, Canada, 2006.

[54] F. Loesch and E. Ploedereder. Optimization of variability in software product lines.
In SPLC ’07: Proceedings of the 11th International Software Product Line Confer-
ence, pages 151–162, Washington, DC, USA, 2007. IEEE Computer Society.

[55] R.E Lopez-Herrejon and D. Batory. A standard problem for evaluating product-line
methodologies. In GCSE ’01: Proceedings of the Third International Conference on
Generative and Component-Based Software Engineering, pages 10–24, London, UK,
2001. Springer-Verlag.

[56] M. Mannion. Using first-order logic for product line model validation. In Proceedings
of the Second Software Product Line Conference (SPLC’02), LNCS 2379, pages 176–
187, San Diego, CA, 2002. Springer.

[57] M. Mannion and J. Camara. Theorem proving for product line model verification.
In Software Product-Family Engineering (PFE), volume 3014 of Lecture Notes in
Computer Science, pages 211–224. Springer Berlin / Heidelberg, 2003.

37

[58] F. Marić. Formalization and implementation of modern sat solvers. Journal of
Automated Reasoning, 43(1):81–119, June 2009.

[59] M. Mendonça, T.T. Bartolomei, and D. Cowan. Decision-making coordination in
collaborative product configuration. In Proceedings of the 2008 ACM symposium on
Applied computing (SAC ’08), pages 108–113, New York, NY, USA, 2008. ACM.

[60] M. Mendonça, D.D. Cowan, W. Malyk, and T. Oliveira. Collaborative product con-
figuration: Formalization and efficient algorithms for dependency analysis. Journal
of Software, 3(2):69–82, 2008.

[61] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT–based analysis of feature
models is easy. In Proceedings of the Sofware Product Line Conference, 2009.

[62] Marćılio Mendonça, Andrzej Wasowski, Krzysztof Czarnecki, and Donald D. Cowan.
Efficient compilation techniques for large scale feature models. In Generative Pro-
gramming and Component Engineering, 7th International Conference, GPCE , Pro-
ceedings, pages 13–22, 2008.

[63] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Knowledge based method to validate
feature models. In First International Workshop on Analyses of Software Product
Lines, pages 217–225, 2008.

[64] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first order logic to validate fea-
ture model. In Third International Workshop on Variability Modelling in Software-
intensive Systems (VaMoS), pages 169–172, 2009.

[65] J. Pena, M. Hinchey, A. Ruiz-Cortés, and P. Trinidad. Building the core architecture
of a multiagent system product line: With an example from a future nasa mission.
In 7th International Workshop on Agent Oriented Software Engineering, Lecture
Notes in Computer Sciences. Springer–Verlag, 2006.

[66] K. Pohl, G. Böckle, , and F. van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer–Verlag, 2005.

[67] Racer Systems GmbH Co. KG. RACER, www.racer-systems.com. published on
line.

[68] R Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–
95, 1987.

[69] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending feature dia-
grams with UML multiplicities. In 6th World Conference on Integrated Design &
Process Technology (IDPT2002), June 2002.

[70] C. Salinesi, C. Rolland, and R. Mazo. Vmware: Tool support for automatic verifi-
cation of structural and semantic correctness in product line models. In Third In-
ternational Workshop on Variability Modelling of Software-intensive Systems, pages
173–176, 2009.

38

[71] K. Schmid and I. John. A customizable approach to full lifecycle variability man-
agement. Sci. Comput. Program., 53(3):259–284, 2004.

[72] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Diagrams: A Sur-
vey and A Formal Semantics. In Proceedings of the 14th IEEE International Require-
ments Engineering Conference (RE’06), Minneapolis, Minnesota, USA, September
2006.

[73] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps. Generic semantics of
feature diagrams. Computer Networks, 51(2):456–479, Feb 2007.

[74] Scopus. www.scopus.com. published on line.

[75] S. Segura. Automated analysis of feature models using atomic sets. In First Work-
shop on Analyses of Software Product Lines (ASPL 2008). SPLC’08, pages 201–207,
Limerick, Ireland, September 2008.

[76] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and S. Ferber.
Introducing pla at bosch gasoline systems: Experiences and practices. In SPLC,
pages 34–50, 2004.

[77] D. Streitferdt, M. Riebisch, and I. Philippow. Details of formalized relations in
feature models using OCL. In Proceedings of 10th IEEE International Conference
on Engineering of Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE
Computer Society, pages 45–54, 2003.

[78] J. Sun, H. Zhang, Y.F. Li, and H. Wang. Formal semantics and verification for
feature modeling. In Proceedings of the 10th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), 2005.

[79] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature models. In
International Conference on Software Engineering, pages 254–264, 2009.

[80] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated error
analysis for the agilization of feature modeling. Journal of Systems and Software,
81(6):883–896, 2008.

[81] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. Improving decision making in
software product lines product plan management. In J. Dolado, I. Ramos, and
J. Cuadrado-Gallego, editors, Proceedings of the V ADIS 2004 Workshop on Deci-
sion Support in Software Engineering, volume 120. CEUR Workshop Proceedings
(CEUR-WS.org), 2004.

[82] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. A first step detecting inconsistencies
in feature models. In CAiSE Short Paper Proceedings, 2006.

[83] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.Jimenez. Fama frame-
work. In 12th Software Product Lines Conference (SPLC), 2008.

39

[84] Pablo Trinidad and Antonio Ruiz Cortés. Abductive reasoning and automated anal-
ysis of feature models: How are they connected? In Third International Workshop
on Variability Modelling of Software-Intensive Systems. Proceedings, pages 145–153,
2009.

[85] S. Trujillo, D. Batory, and Oscar Dı́az. Feature oriented model driven development:
A case study for portlets. In International Conference on Software Engineering,
pages 44–53, 2007.

[86] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

[87] M. Tseng and J. Jiao. Handbook of Industrial Engineering: Technology and Opera-
tions Management, chapter Mass Customization, page 685. Wiley, 2001.

[88] P. van den Broek and I. Galvao. Analysis of feature models using generalised fea-
ture trees. In Third International Workshop on Variability Modelling of Software-
intensive Systems, number 29 in ICB-Research Report, pages 29–35, Essen, Ger-
many, January 2009. Universität Duisburg-Essen.

[89] F. van der Linden, K. Schmid, and E. Rommes. Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2007.

[90] T. van der Storm. Variability and component composition. In Software Reuse: Meth-
ods, Techniques and Tools: 8th International Conference, ICSR 2004. Proceedings,
volume 3107 of Lecutre Notes in Computer Sciences, pages 157–166. Springer, July
2004.

[91] Tijs van der Storm. Generic feature-based software composition. In Software Com-
position, volume 4829 of LNCS, pages 66–80. Springer, 2007.

[92] A. van Deursen and P. Klint. Domain–specific language design requires feature
descriptions. Journal of Computing and Information Technology, 10(1):1–17, 2002.

[93] T. von der Massen and H. Lichter. Requiline: A requirements engineering tool
for software product lines. In F. van der Linden, editor, Proceedings of the Fifth
International Workshop on Product Family Engineering (PFE), LNCS 3014, Siena,
Italy, 2003. Springer Verlag.

[94] T. von der Massen and H. Lichter. Deficiencies in feature models. In Tomi Mannisto
and Jan Bosch, editors, Workshop on Software Variability Management for Product
Derivation - Towards Tool Support, 2004.

[95] T. von der Massen and H. Litcher. Determining the variation degree of feature
models. In Software Product Lines Conference, LNCS 3714, pages 82–88, 2005.

[96] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A semantic web approach to
feature modeling and verification. In Workshop on Semantic Web Enabled Software
Engineering (SWESE’05), November 2005.

40

[97] H. Wang, Y.F. Li, J. un, H. Zhang, and J. Pan. Verifying Feature Models using
OWL. Journal of Web Semantics, 5:117–129, June 2007.

[98] J. Webster and R. Watson. Analyzing the past to prepare for the future: Writing a
literature review. MIS Quarterly, 26(2):xiii–xxiii, 2002.

[99] J. Whaley. JavaBDD, http://javabdd.sourceforge.net/. published on line.

[100] J. White, B. Doughtery, and D. Schmidt. Selecting highly optimal architectural
feature sets with filtered cartesian flattening. Journal of Systems and Software,
82(8):1268–1284, 2009.

[101] J. White, B. Doughtery, D. Schmidt, and D. Benavides. Automated reasoning
for multi-step software product-line configuration problems. In Proceedings of the
Sofware Product Line Conference, pages 11–20, 2009.

[102] J. White and D. Schmidt. Filtered cartesian flattening: An approximation technique
for optimally selecting features while adhering to resource constraints. In First
International Workshop on Analyses of Software Product Lines (ASPL), pages 209–
216, 2008.

[103] J. White, D. Schmidt, D. Benavides P. Trinidad, and A. Ruiz-Cortes. Automated
diagnosis of product-line configuration errors in feature models. In Proceedings of
the Sofware Product Line Conference, 2008.

[104] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization strategy to feature
models’ verification by eliminating verification-irrelevant features and constraints.
In ICSR, pages 65–75, 2009.

[105] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement dependency analy-
sis and high-level software design. Requirements Engineering, 11(3):205–220, June
2006.

[106] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based method for verification
of feature models. In J. Davies, editor, ICFEM 2004, volume 3308, pages 115–130.
Springer–Verlag, 2004.

[107] Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin. A bdd–based approach to verifying
clone-enabled feature models’ constraints and customization. In High Confidence
Software Reuse in Large Systems, 10th International Conference on Software Reuse,
ICSR, Proceedings, LNCS, pages 186–199. Springer, 2008.

41

Appendix A

Summary of papers

analysed

A.1 1990

Paper title: Feature–Oriented Domain Analysis (FODA) Feasibility Study

Authors: K. Kang and S. Cohen and J. Hess and W. Novak and S. Peterson

Publication: Technical Report Year: 1990

Acronym: kang90-tr Pages: 148

DOI/URL: Personal web page

Summary

Kang et al. proposed feature models for the first time in [31]. In addition to a
whole method for domain analysis, authors propose feature models as a key modelling
technique to capture variabilities and commonalities. In the original report, explicit
mention to automated analysis of feature models was already made [31, pag. 70].
Indeed, void feature model, valid product, dead features detection and explanations
were already proposed as operation of analysis. A prolog–based prototype is also
reported. However, not detailed information is provided to replicate their prolog
coding.

Analyses

Paradigm: Prolog

FM notation: Basic FMs Extended FM: Yes

Formalization: No

3

http://selab.postech.ac.kr/classes/eece700A/materials/papers/2_FODA.pdf

Operations

Operation Alternative name Support

valid product Yes
void FM Yes
valid partial configuration Yes
dependency analysis Yes
dead features feature reachability Yes
explanations Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.1: Kang et al. 1990 FODA

4

A.2 2002

Paper title: Domain–Specific Language Design Requires Feature Descriptions

Authors: A. van Deursen and P. Klint

Publication: JCIT Year: 2002

Acronym: deursen02-jcit Pages: 20

DOI/URL: Eprint version

Summary

To the best of our knowledge, Deursen et al. [61] were the first authors proposing
some kind of automated support for the automated treatment of feature model after
their introduction in the FODA report [31] back in 1990. In their work, they propose
a textual feature diagram algebra together with a prototype implementation using
the ASF+SDF Meta-Environment [32]. In particular, they provide support for the
automated extraction of the number and list of products of a feature model and what
they call constraint satisfaction (i.e. checking if the model is not void).

Analyses

Paradigm: Ad–hoc

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM constraint satisfaction Yes
all products Yes
number of products variability Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.2: Deursen et al. 2002 JCIT

5

http://www.cwi.nl/~arie/papers/fdl/fdl.pdf

Paper title: Using First-Order Logic for Product Line Model Validation

Authors: M. Mannion

Publication: SPLC Year: 2002

Acronym: mannion02-splc Pages: 12

DOI/URL: 10.1007/3-540-45652-X

Summary

Mannion [33] was the first who connected propositional formulas to feature models.
In his work, feature models are used as requirements models for software product
lines. Rules for translating such models into propositional formulas are provided and
some operations are identified on the automated analysis of feature models.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product valid single system Yes
void FM PL model validation Yes
all products all possible products Yes
number of products Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.3: Mannion 2002 SPLC

6

http://dx.doi.org/10.1007/3-540-45652-X

A.3 2003

Paper title: Automating Feature-Oriented Domain Analysis

Authors: F. Cao, B. Bryant, C. Burt, Z. Huang, R. Raje, A. Olson and
M. Auguston

Publication: SERP Year: 2003

Acronym: cao03-serp Pages: 6

DOI/URL: Personal web page

Summary

Cao et al. [12] present ad-hoc algorithms for extracting the list of products of a basic
feature model in the context of generative programming [13]. In their work, they
deal with the simplification (also called normalization) of feature models in order to
make them easier to be processed. They also present a tool prototype based on their
algorithm.

Analyses

Paradigm: Ad–hoc

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM constraint checking Yes
all products list of feature instances Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.4: Cao et al. 2003 SERP

7

http://www.cs.iupui.edu/uniFrame/pubs-openaccess/SERP03-Final-Cao.pdf

Paper title: Theorem Proving for Product Line Model Verification

Authors: M. Mannion and J. Camara

Publication: PFE (SPLC-Europe) Year: 2003

Acronym: mannion03-pfe Pages: 14

DOI/URL: 10.1007/b97155

Summary

In [34], Mannion and J. Camara extend the work presented in [33]. The authors
propose an ad-hoc algorithm to deal with the propositional formulas representing the
feature models and gave some details about the computational complexity of their
approach.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product valid single system Yes
void FM PL model validation Yes
all products Yes
number of products Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.5: Mannion et al. 2003 PFE

8

http://dx.doi.org/10.1007/b97155

Paper title: RequiLine: A Requirements Engineering Tool for Software Prod-
uct Lines

Authors: T. Massen and H. Lichter

Publication: PFE Year: 2003

Acronym: massen03-pfe Pages: 13

DOI/URL: 10.1007/b97155

Summary

Von der Massen et al. [62] present Requiline, a requirement engineering tool for
software product lines. Feature modeling is supported by means of a custom fea-
ture model meta-model inspired by FODA. The tool is mainly implemented using
a relational data base and ad–hoc algorithms. Some analyses can be performed by
using a consistency checker integrated in the tool. Custom SQL queries are also al-
lowed to extract information from the requirement and featurem models stored in the
repository.

Analyses

Paradigm: Ad–hoc

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product configuration consistency Yes
void FM model consistency Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.6: Massen et al. 2003 PFE

9

http://dx.doi.org/10.1007/b97155

A.4 2004

Paper title: Coping with Automatic Reasoning on Software Product Lines

Authors: D. Benavides, A. Ruiz-Cortés and P. Trinidad

Publication: SVM Year: 2004

Acronym: benavides04-svm Pages: 13

DOI/URL: –

Summary

This is a preliminary work later published in [6]. In this work, authors provide with
a set of mapping rules to translate feature models into a CSP. They also provide an
algortihm to translate extended feature models to CSP.

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

void FM validation Yes
all products Yes
number of products Yes
filter Yes
optimization Yes

Empirical evaluation

Number of instances: Available: No
Type of problems: Published and real Format: XML
Environment description: No

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.7: Benavides et al. 2004 SVM

10

Paper title: Deficiencies in Feature Models

Authors: T. Massen and H. Lichter

Publication: SVMPD (SPLC workshop) Year: 2004

Acronym: massen04-svmpd Pages: 14

DOI/URL: Workshop web site

Summary

Von der Massen et al. [63] were the first categorizing the types of problems that
might arise in feature models. They classify these into three types: redundancies,
anomalies and inconsistencies. Both, anomalies and inconsistencies are specific cases
of dead features and false optionals. Some hints about how fixing these problems (i.e.
corrective explanations) are also provided. They present Requiline [62] as a feature
modeling prototype tool able to detect inconsistencies.

Analyses

Paradigm:

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

false optional anomalies No
dead features inconsistencies No
redundancies No
c. explanations No

Internal statistics

Self-citations:

FaMa ext.: Yes

Ideas: Implement redundancies detection in FaMa

Table A.8: Massen et al. 2004 SVMPD

11

http://www.soberit.hut.fi/SPLC%2DWS/AcceptedPapers/Massen.pdf

Paper title: Variability and Component Composition

Authors: T. van der Storm

Publication: ICSR Year: 2004

Acronym: storm04-icsr Pages: 10

DOI/URL: 10.1007/b98465

Summary

Van der Storm [59] present a method to deal with variability in component compo-
sition. In terms of analysis of feature models, they provide a method to verify if a
feature model is void and check for valid partial assignments. They represent FMs
using FDL (Feature Description Language) and then provide a mapping to translate
a FDL to BDD.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM internal consistency Yes
valid partial configuration Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.9: Storm 2004 ICSR

12

http://dx.doi.org/10.1007/b98465

Paper title: A Propositional Logic-Based Method for Verification of Feature
Models

Authors: W. Zhang, H. Zhao and H. Mei

Publication: ICFEM Year: 2004

Acronym: zhang04-icfem Pages: 16

DOI/URL: 10.1007/b102837

Summary

Zhang et al. [75] propose automating the analysis of feature models by means of
the SMV [20] System, a tool supporting the analysis of propositional formulas. One
of the main contributions of their work is the simplification of feature models by
grouping feature into so-called atomic sets, later explored by Segura [51]. Moreover,
a systematic way to detect dead features is provided as well.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

void FM satisfiability Yes
dead features usability Yes
false optional chance to be removed Yes
atomic sets Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.10: Zhang et al. 2004 ICFEM

13

http://dx.doi.org/10.1007/b102837

A.5 2005

Paper title: Automated Reasoning on Feature Models

Authors: D. Benavides, P. Trinidad and A. Ruiz-Cortés

Publication: CAiSE Year: 2005

Acronym: benavides05-caise Pages: 14

DOI/URL: 10.1007/11431855 34

Summary

Authros propose the usage of constraint programming for the automated analysis
of feature models [6]. In this work, authors provide with a set of mapping rules to
translate feature models into a CSP. In contrast to the rest of identified approaches,
this is the only proposal providing support for the analysis of extended feature models
(i.e. including feature attributes) and the operation of optimization.

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

void FM Yes
all products Yes
number of products Yes
variability Yes
commonality Yes
filter Yes
optimization Yes

Empirical evaluation

Number of instances: Available: No
Type of problems: Published and real Format:
Environment description: Yes

Internal statistics

Self-citations: benavides04-svm

14

http://dx.doi.org/10.1007/11431855_34

FaMa ext.:

Ideas:

Table A.11: Benavides et al. 2005 CAiSE

15

Paper title: Using Constraint Programming to Reason on Feature Models

Authors: D. Benavides, P. Trinidad and A. Ruiz-Cortés

Publication: SEKE Year: 2005

Acronym: benavides05-seke Pages: 6

DOI/URL: Personal web site

Summary

In [7], the authors present a short extension of the paper published in [6].

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

void FM validation Yes
all products Yes
number of products Yes
variability Yes
commonality Yes
filter Yes
optimization Yes

Empirical evaluation

Number of instances: 5 Available: No
Type of problems: Published and real Format:
Environment description: Yes

Internal statistics

Self-citations: benavides04-svm, benavides05-caise

FaMa ext.:

Ideas:

Table A.12: Benavides et al. 2005 SEKE

16

http://www.lsi.us.es/~dbc/dbc_archivos/pubs/seke05.pdf

Paper title: Feature Models, Grammars, and Propositional Formulas

Authors: D. Batory

Publication: SPLC Year: 2005

Acronym: batory05-splc Pages: 14

DOI/URL: 10.1007/11554844 3

Summary

In [4], Batory shows the connections between feature models, grammars and proposi-
tional formulas. Batory argue that feature models can be represented as context-free
grammars plus propositional formulas what can be the base for the construction of
feature model compilers and domain specific languages. A set of rules for translat-
ing grammars representing feature models into propositional formulas is provided.
Furthermore, a Logic Truth Maintenance System (a system that maintains the conse-
quences of a propositional formula) is presented for the automated analysis of feature
models. This system is constructed using a SAT solver and known boolean constraint
propagation algorithms.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product product specification completeness Yes
valid partial configuration Yes
explanations FM debugging Yes
void FM satisfiable Yes
all products Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Yes, use LMTS for explanations

Ideas:

Table A.13: Batory 2005 SPLC

17

http://dx.doi.org/10.1007/11554844_3

Paper title: Cardinality-Based Feature Modeling and Constraints: A Progress
Report

Authors: K. Czarnecki and P. Kim

Publication: WSF (OOPSLA workshop) Year: 2005

Acronym: czarnecki05-oopsla Pages: 9

DOI/URL: Workshop Web site

Summary

Czarnecki et al. [16] propose using Object-Constraint Language (OCL) to capture
constraints in cardinality-based feature models. The authors overview some of the
analyses that can be performed on feature models and present a tool prototype im-
plementing some of these using BDD. As a novel contribution, the authors suggest
using the degree of orthogonality as a way to measure how local decision in a subtree
can influence choices in other parts of the model.

Analyses

Paradigm: Propositional Logic(BDD)

FM notation: Cardinality-based FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product valid configuration Yes
valid partial configuration Yes
void FM Yes
number of products Yes
filter Yes
dead features
explanations
degree of orthogonality

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Yes

Ideas: Degree of orthogonality

Table A.14: Czarnecki et al. 2005 OOPSLA

18

http://softwarefactories.com/workshops/OOPSLA-2005/Papers/Czarnecki.pdf

Paper title: Determining the Variation Degree of Feature Models

Authors: T. Massen and H. Lichter

Publication: SPLC Year: 2005

Acronym: massen05-splc Pages: 7

DOI/URL: 10.1007/11554844 9

Summary

Von der Massen et al. [64] propose a method to calculate a rough approximation of
the number of products of a feature model, what they call variation degree. The tech-
nique is described using mathematical expressions. Not explicit automated support
is provided.

Analyses

Paradigm: Ad–hoc

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

number of products variation degree Yes

Internal statistics

Self-citations:

FaMa ext.: Yes

Ideas: Include this algorithm in FaMa

Table A.15: Massen et al. 2005 SPLC

19

http://dx.doi.org/10.1007/11554844_9

Paper title: Formal Semantics and Verification for Feature Modeling

Authors: J. Sun, H. Zhang, Y.F. Li and H. Wang

Publication: ICECCS Year: 2005

Acronym: sun05-iceccs.tex Pages: 10

DOI/URL: 10.1109/ICECCS.2005.48

Summary

Sun et al. [52] propose a formalization of feature models using Z [71]. They also
propose enabling the automated analysis of feature model by encoding them in Alloy
and using the Alloy Analyzer1. Alloy is a structural modelling language based on
first-order logic. Alloy Analyzer is a tool reasoning over alloy models that internally
uses a SAT solver to check model satisfiability. Specially relevant in this approach is
the identification and treatment of explanations when a feature model is void, i.e. it
represents no products.

Analyses

Paradigm: Propositional Logic (First Order Logic)

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

valid product valid configuration Yes
void FM FM solvability/consistency Yes
all products all configurations Yes
refactoring Yes
explanations causes of inconsistency Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.16: Sun et al. 2005 ICECCS

1http://alloy.mit.edu/

20

http://dx.doi.org/10.1109/ICECCS.2005.48

Paper title: A Semantic Web Approach to Feature Modeling and Verification

Authors: H. Wang, Y.F. Li, J. Sun, H. Zhang and J. Pan

Publication: SWESE Year: 2005

Acronym: wang05-swese Pages: 15

DOI/URL: Workshop Web site

Summary

Wang et al. [65] were the first to enable the automated analysis of feature models
using DL. In their work, the authors introduce a set of mapping rules to translate
feature models into OWL-DL ontologies [19]. OWL-DL is an expressive yet decidable
sub language of OWL [19]. Then, the authors suggest using DL reasoning engines
such as RACER2 to perform automated analysis over the OWL representations of the
models.

Analyses

Paradigm: Description Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product valid configuration Yes
explanations Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.17: Wang et al. 2005 SWESE

2http://www.racer-systems.com/

21

http://www.mel.nist.gov/msid/conferences/SWESE/repository/5sw_app2feature_mod.pdf

A.6 2006

Paper title: Automated Analyses of Feature Models: Challenges Ahead

Authors: D. Batory, D. Benavides and A. Ruiz-Cortés

Publication: CACM Year: 2006

Acronym: batory06-cacm Pages: 3

DOI/URL: 10.1145/1183264

Summary

In [5], Batory et al. propose a set of challenges ahead on the automated analysis of
feature models. One of those challenges is feature model debugging and explanations.

Analyses

Paradigm:

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

valid product feature compatibility No
optimization No
dead features No
explanations debugging No

Internal statistics

Self-citations: benavides05-gttse, benavides05-caise

FaMa ext.:

Ideas:

Table A.18: Batory et al. 2006 CACM

22

http://doi.acm.org/10.1145/1183264

Paper title: Using Java CSP Solvers in the Automated Analyses of Feature
Models

Authors: D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortés

Publication: GTTSE Year: 2006

Acronym: benavides05-gttse Pages: 10

DOI/URL: 10.1007/11877028 16

Summary

Benavides et al. [10] present a performance comparison between two CSP solvers for
the automated analysis of feature models. They also provide as a novel contribution
a mapping from cardinality–based feature models to CSP.

Analyses

Paradigm: Constraint Programmming

FM notation: Cardinality-based FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
number of products Yes

Empirical evaluation

Number of instances: 5 Available: No
Type of problems: Published and random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, benavides05-seke, benavides05-ewmt

FaMa ext.:

Ideas:

Table A.19: Benavides et al. 2006 GTTSE

23

http://dx.doi.org/10.1007/11877028_16

Paper title: Feature Model Based on Description Logics

Authors: S. Fan and N. Zhang

Publication: KES Year: 2006

Acronym: fan06-kes Pages: 8

DOI/URL: 10.1007/11893004 145

Summary

Fan et al. [22] also propose translating feature models into DL and using reasoners as
RACER to perform their anlayses. According to the authors, their proposal address
cardinality-based feature models. However, a clear example of how this can be done
is missed.

Analyses

Paradigm: Description Logic

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

void FM FM consistency Yes

Internal statistics

Self-citations: benavides05-caise,benavides04-svm

FaMa ext.: Introduce DL reasoners in FaMa

Ideas:

Table A.20: Fan et al. 2006 KES

24

http://dx.doi.org/10.1007/11893004_145

Paper title: A Theory for Feature Models in Alloy

Authors: R. Gheyi, T. Massoni and P. Borba

Publication: First Alloy Workshop Year: 2006

Acronym: gheyi06-alloy Pages: 10

DOI/URL: Workshop Web site

Summary

Gheyi et al. [24] propose using Alloy and the Alloy Analyzer to automate the analysis
of feature models. As a novel contribution, the authors detail how their proposal may
be used to check the correctness of feature model refactoring rules as described in one
of their papers[2].

Analyses

Paradigm: Propositional Logic (Alloy)

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

valid product Yes
all products Yes
refactoring Yes
generalization Yes

Empirical evaluation

Number of instances: 11 Available: Yes
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Yes, include Alloy analyzer

Ideas: Use Alloy to validate the merging of FMs

Table A.21: Gheyi et al. 2006 Alloy

25

http://alloy.mit.edu/workshop/papers/gheyi.pdf

Paper title: A first step towards a framework for the automated analysis of
feature models

Authors: D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cortés

Publication: SPLC WS Year: 2006

Acronym: benavides06-splc Pages: 5

DOI/URL: Techincal report web site

Summary

Benavides et al. [9] present a performance comparison between three of the most used
solvers for the automated analysis of feature models, namely: CSP, SAT and BDD.
They provide some experimental evidences that,in general, BDD perform faster than
CSP and SAT, however, BDD require more memory than CSP and SAT. They run
the experiments using two operations of analysis: void feature model and number of
products.

Analyses

Paradigm: Propositional Logic and Constraint Programmming

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
number of products Yes

Empirical evaluation

Number of instances: 200 Available: No
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, batory06-cacm, benavides05-seke,
benavides05-gttse

FaMa ext.:

Ideas:

Table A.22: Benavides et al. 2006 SPLC

26

http://www.sei.cmu.edu/splc2006/iese-152_06.pdf

Paper title: Feature Diagrams: A Survey and a Formal Semantics

Authors: P. Schobbens, P. Heymans and J. Trigaux

Publication: RE Year: 2006

Acronym: schobbens06-re Pages: 10

DOI/URL: 10.1109/RE.2006.23

Summary

In [49] (which is a previous work of [50]), Schobbens et al. survey the state-of-the-
art of feature model notations and compare the expressiveness and succinctness of
the different proposals. They do not provide any explicit automated support for the
automated analyses of feature models. However, they formally describe what they
call decision procedures.

Analyses

Paradigm:

FM notation: VFD Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

valid product product checking No
void FM checking satisfiabiliy No
refactoring equivalence No

Internal statistics

Self-citations: benavides05-caise

FaMa ext.:

Ideas:

Table A.23: Schobbens et al. 2006 RE

27

http://doi.ieeecomputersociety.org/10.1109/RE.2006.23

Paper title: Isolated Features Detection in Feature Models

Authors: P. Trinidad, D. Benavides and A. Ruiz-Cortés

Publication: CAiSE Forum Year: 2006

Acronym: trinidad06-caise Pages: 4

DOI/URL: Workshop proceedings

Summary

In [56], Trinidad et al. propose the detection of what they call insolated features
(a.k.a dead features). The propose to use Constraint Programmming to detect those
features using commonality factor. They also propose a possible optimization using
variation degree as described by [64].

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

commonality Yes
dead features insolated feature detection Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Introduce the optimization using variation degree

Ideas:

Table A.24: Trinidad et al. 2006 CAiSE

28

http://www.ceur-ws.org/Vol-231/Paper19.pdf

Paper title: Feature-driven requirement dependency analysis and high-level
software design

Authors: W. Zhang, H. Mei and H. Zhao

Publication: RE Year: 2006

Acronym: zhang06-re Pages: 16

DOI/URL: 10.1007/s00766-006-0033-x

Summary

In [74], Zhang et al. introduce four kind of dependencies between features and show
how these can be analysed and used to design high-level software architecture. As a
part of their work, they show how their previous approach [75] can be used to detect
17 kinds of anomalies and inconsistencies presented by von der Massen and Lichter
[63].

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM consistency Yes
dead features chance to be bound Yes
false optional chance to be removed Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.:

Ideas:

Table A.25: Zhang et al. 2006 RE

29

http://dx.doi.org/10.1007/s00766-006-0033-x

A.7 2007

Paper title: Deriving Product Line Requirements: the RED-PL Guidance Ap-
proach

Authors: O. Djebbi, C. Salinesi and D. Diaz

Publication: APSEC Year: 2007

Acronym: djebbi07-apsec Pages: 8

DOI/URL: 10.1109/ASPEC.2007.63

Summary

Djebbi et al. [21] propose a method to support product requirement derivation. As
a part of their approach, they suggest extracting information from feature model in
terms of queries. A set of rules to translate feature models to boolean constraints
are given. Additioinally, they also describe a tool under development enabling the
analysis of feture models using constraint programming.

Analyses

Paradigm: Constraint Programmming

FM notation: Cardinality-based FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
number of products Yes
filter Yes
optimization Yes

Internal statistics

Self-citations: benavides06-splc

FaMa ext.:

Ideas:

Table A.26: Djebbi et al. 2007 APSEC

30

http://doi.ieeecomputersociety.org/10.1109/ASPEC.2007.63

Paper title: A Conceptual Graph Approach to Feature Modeling

Authors: R. Bachmeyer and H. Delugach

Publication: ICCS Year: 2007

Acronym: bachmeyer07-iccs Pages: 13

DOI/URL: 10.1007/978-3-540-73681-3 14

Summary

In [3], Bachmeyeret al. present conceptual graph feature model. Conceptual graphs
are a formalism to express knowledge. Using this transformation, they provide an
algorithm that is used to compute analysis.

Analyses

Paradigm: Ad–hoc, Conceptual Graph

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

valid product Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.27: Bachmeyer et al. 2007 ICCS

31

http://dx.doi.org/10.1007/978-3-540-73681-3_14

Paper title: FAMA: Tooling a Framework for the Automated Analysis of Fea-
ture Models

Authors: D. Benavides, S. Segura, P. Trinidad and A. Ruiz–Cortés

Publication: VaMoS Year: 2007

Acronym: benavides07-vamos Pages: 6

DOI/URL: Workshop Web Site

Summary

In [11], the authors propose an Eclipse plug–in to edit and analyse feature models.
The input and output format of the models is XML. Three different solvers are used
to analyse those models: BDD, SAT and CSP solvers.

Analyses

Paradigm: Propositional Logic and Constraint Programmming

FM notation: Cardinality-based FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
all products Yes
number of products Yes
commonality Yes

Internal statistics

Self-citations: benavides05-caise, batory06-cacm, benavides06-jisbd,
benavides05-gttse, benavides06-splc, benavides05-ewmt

FaMa ext.:

Ideas:

Table A.28: Benavides et al. 2007 VaMoS

32

http://www.vamos-workshop.net/proceedings/VaMoS_2007_Proceedings.pdf

Paper title: Generic semantics of feature diagrams

Authors: P. Schobbens, P. Heymans, J. Trigaux and Y. Bontemps

Publication: Computer Networks Year: 2007

Acronym: schobbens07-cn Pages: 24

DOI/URL: 10.1016/j.comnet.2006.08.008

Summary

Schobbens et al. [50] survey the state-of-the-art of feature model notations and com-
pare the expressiveness and succinctness of the different proposals. In this context,
the authors propose a generic semantic on feature models to generalize all the work
studied (what they call Free Feature Diagrams). These formal semantics are provided
using mathematical notation. They do not provide any explicit automated support for
the automated analyses of feature models. However, they claim their formal semantics
could be easily translated to propositional formulas for that purpose.

Analyses

Paradigm:

FM notation: Cardinality-based FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

valid product product checking No
void FM satisfiability No
refactoring same valid models No

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Include VFD as language

Ideas: Catalog of operations and complexity for the operations

Table A.29: Schobbens et al. 2007 CN

33

http://dx.doi.org/10.1016/j.comnet.2006.08.008

Paper title: Generic Feature-Based Software Composition

Authors: T. van der Storm

Publication: SC Year: 2007

Acronym: storm07-sc Pages: 15

DOI/URL: 10.1007/978-3-540-77351-1 6

Summary

Van der Storm [60] present a method to analyse feature model together with other
artifacts. In terms of analysis they provide similar support to the one provided in [59]
but slightly changing the mapping to propositional formulas to generate the BDD.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM internal consistency Yes

Internal statistics

Self-citations: batory06-cacm

FaMa ext.:

Ideas:

Table A.30: Storm 2007 SC

34

http://dx.doi.org/10.1007/978-3-540-77351-1_6

Paper title: Verifying feature models using OWL

Authors: H. Wang, Y.F. Li, J. Sun, H. Zhang and J. Pan

Publication: Journal of Web Semantics Year: 2007

Acronym: wang07-jws Pages: 13

DOI/URL: 10.1016/j.websem.2006.11.006

Summary

Wang et al. [66] extend their previous proposal [65] with support for explanations
by means of an OWL debugging tool. Additionally, a CASE tool for the visual
development and analysis of feature models is presented.

Analyses

Paradigm: Description Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product valid configuration Yes
void FM consistent FM Yes
refactoring semantically equivalence Yes
explanations debugging Yes

Empirical evaluation

Number of instances: 1 Available: No
Type of problems: Large system Format:
Environment description: Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.31: Wang et al. 2007 JWS

35

http://dx.doi.org/10.1016/j.websem.2006.11.006

A.8 2008

Paper title: Evaluating formal properties of feature diagram languages

Authors: P. Heymans, P.Y. Schobbens, J.C. Trigaux, Y. Bontemps, R. Mat-
ulevicius and A. Classen

Publication: Software IET Year: 2008

Acronym: heymans08-iet Pages: 22

DOI/URL: 10.1049/iet-sen:20070055

Summary

In [27], Heymans et al. overview their previous works surveying feature diagram
notations and providing them with a generic syntax and semantics [49, 50]. As a
novel contribution, a general method to compare the semantic of feature diagrams is
presented. Some notes about the complexity of several analysis operations are given.

Analyses

Paradigm:

FM notation: Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

valid product model checking No
void FM satisfiability No
refactoring No

Internal statistics

Self-citations: benavides05-caise, benavides06-jisbd

FaMa ext.:

Ideas:

Table A.32: Heymans et al. 2008 Software IET

36

http://dx.doi.org/10.1049/iet-sen:20070055

Paper title: Finding Contradictions in Feature Models

Authors: A. Hemakumar

Publication: ASPL Year: 2008

Acronym: hemakumar08-aspl Pages: 8

DOI/URL: Workshop Web site

Summary

Hemakumar [26] proposes a new operation of analysis that is called contradiction. A
contradiction is a also defined as a conditional dead feature. An unconditionally dead
feature as described by [54] as a feature that is present in no product. A conditional
dead feature is a feature that becomes dead after selecting one or more features. It
is not obvious if this type of operation can be classified as an operation of analysis
because, for this detection, some previous selection of features are required. However,
Hemakumar proposes a method to statically detect conditional dead features, that
is why we classify this operation as an operation of analysis. The method is based
on model checking techniques and incremental consistency algorithms and what they
reveal is that even small feature models the time required to detect those features is
extremely high in general. The experiments also report that incremental consistency
algorithms perform better.

Analyses

Paradigm: Model checking and ad-hoc algorithms

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

conditional dead features contradiction Yes

Empirical evaluation

Number of instances: 11 Available: No
Type of problems: Published Format: Grammar
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, batory06-cacm, trinidad08-jss

FaMa ext.: Yes

Ideas:

37

http://www.isa.us.es/aspl08/?download=W5_P01_Batory_Finding_Contradictions_in_Feature_Models.pdf

Table A.33: Hemakumar 2008 ASPL

38

Paper title: Algebraic laws for feature models

Authors: R. Gheyi, T. Massoni and P. Borba

Publication: JUCS Year: 2008

Acronym: gheyi08-jucs Pages: 19

DOI/URL: 10.3217/jucs-014-21-3573

Summary

Gheyi et al. [25] present a set of algebraic laws in feature models to check configura-
bility of FM refactorings. They use the PVS tools to do some analysis although this
is not the main focus of the paper.

Analyses

Paradigm: PVS

FM notation: Basic FMs Extended FM: No

Formalization: Yes, using PVS

Operations

Operation Alternative name Support

void FM Yes
refactoring Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.:

Ideas:

Table A.34: Gheyi et al. 2008 JUCS

39

http://dx.doi.org/10.3217/jucs-014-21-3573

Paper title: Collaborative Product Configuration: Formalization and Efficient
Algorithms for Dependency Analysis

Authors: M. Mendonça, D. Cowan, W. Malyk, and T. Oliveira

Publication: Journal of Software Year: 2008

Acronym: mendonca08-js Pages: 14

DOI/URL: Journal Web site

Summary

In [37], Mendonça et al. extend their previous work [36] formalizing their approach
and providing some algorithms for dependency analysis in the context of collaborative
product configuration. Dependencies in the feature tree and cross-tree constraints are
analysed using different techniques obtaining a noticeable improvement in efficency.
Implicit support for atomic sets computation is also proposed.

Analyses

Paradigm: Ad–hoc

FM notation: Cardinality-based FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

dependency analysis Yes
atomic sets Yes

Empirical evaluation

Number of instances: 4 Available: No
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides07-vamos

FaMa ext.: Yes

Ideas: Process tree constraints and cross-tree constraints using different
techniques to improve efficiency

Table A.35: Mendonca 2008 JS

40

http://www.academypublisher.com/jsw/vol03/no02/jsw03026982.pdf

Paper title: Efficient compilation techniques for large scale feature models

Authors: M. Mendonça, A. Wasowski, K. Czarnecki and D. Cowan:

Publication: GPCE Year: 2008

Acronym: mendonca08-gpce Pages: 9

DOI/URL: 10.1145/1449913.1449918

Summary

Mendoca et al. [39] survey existing heuristics to compile a feature model problems
into a BDD representation. Using an experimental platform existing BDD heuristics
fail to scale for large feature models of up to 2,000 features. They propose new
heuristics for BDD ordering that are shown to be largely better than traditional ones.
For defining their heuristics, three new operations of analysis are defined, namely: i)
extra constraint representativeness ii) lowest common ancestor and iii) roots. For
detailed definition of this operations we refer the reader to [39, page 14].

Analyses

Paradigm: Propositional Logic (BDD)

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

CTC representativeness Yes
lowest common ancestor Yes
roots Yes
atomic sets Yes

Empirical evaluation

Number of instances: Available: Yes
Type of problems: Published and random Format: XML
Environment description: Yes

Internal statistics

Self-citations: batory06-cacm

FaMa ext.:

Ideas: Apply ECR as an heuristic for GFT [58]. Apply the same ideas
to CSP (heuristics for CSPs)

41

http://doi.acm.org/10.1145/1449913.1449918

Table A.36: Mendonça et al. 2008 GPCE

42

Paper title: Knowledge Based Method to Validate Feature Models

Authors: A. Osman, S. Phon-Amnuaisuk and C.K. Ho

Publication: ASPL Year: 2008

Acronym: osman08-aspl Pages: 9

DOI/URL: Workshop Web site

Summary

Osman et al. [41] propose a knowledge base method to validate feature models. In
their work, feature models are represented as a knowledge base containing predicates
and rules defined using first order logic. During the configuration process, choices are
added to the knowledge base by means of new rules which are then accepted or rejected
if constraints are not fulfilled. Inconsistencies and redundancies are identified by
looking for specific causes of error. The lacking of any proofs about the completeness
of their approach is the weakest point of their work.

Analyses

Paradigm: Propositional Logic (First Oder Logic)

FM notation: Cardinality-based FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

void FM Yes
optimization Yes
dead features Yes
explanations Yes
c. explanations corrections Yes

Internal statistics

Self-citations: benavides05-caise, benavides06-jisbd, trinidad06-caise,
trinidad08-jss, batory06-cacm

FaMa ext.:

Ideas:

Table A.37: Osman et al. 2008 ASPL

43

http://www.isa.us.es/aspl08/?download=W5_P06_Osman_Knowledge_Based.pdf

Paper title: Automated Analysis of Feature Models using Atomic Sets

Authors: S. Segura

Publication: ASPL (SPLC workshop) Year: 2008

Acronym: segura08-aspl Pages: 7

DOI/URL: Workshop Web site

Summary

Segura [51] proposes using atomic sets as a generic pre-processing technique for the
automated analysis of feature models. An algorithm for their computation and a
performance evaluation measuring its effectiveness are presented.

Analyses

Paradigm: Propositional Logic and Constraint Programmming

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
number of products Yes
atomic sets Yes

Empirical evaluation

Number of instances: 200 Available: No
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, batory06-cacm, benavides06-jisbd,
benavides06-splc, benavides07-vamos, trinidad08-splc

FaMa ext.:

Ideas:

Table A.38: Segura 2008 ASPL

44

http://www.isa.us.es/aspl08/?download=W5_P04_Segura_Automated_Analysis_of_Feature_Models_using_Atomic_Sets.pdf

Paper title: Automated Diagnosis of Product-line Configuration Errors in Fea-
ture Models.

Authors: J. White, D. Benavides, D. C. Schmidt, P. Trinidad and A. Ruiz-
Cortés

Publication: SPLC Year: 2008

Acronym: white08-splc Pages: 10

DOI/URL: 10.1109/SPLC.2008.16

Summary

White et al. [70] propose a method called CURE (Configuration Understanding and
REmedy). CURE allows detecting conflicts in a given configuration and propose
changes in the configuration in terms of features to be selected or deselected that
remedy the problem. Their technique is based on translating a feature model into a
CSP adding some extra variables in order to detect and explain the possible errors
after applying optimization operations. CURE also proposes some extensions the
method in order to make it more scalable. These extensions are based on the way
the optimization operations are performed. In one of the possible extensions they
propose adding cost attributes to features and proposing changes in the configuration
minimizing the total cost of the change. Finally, empirical results are presented
showing the scalability of the approach to feature model with over 5,000 features.

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

valid product valid configuration Yes
c. explanations configuration error diagnosis Yes

Empirical evaluation

Number of instances: Available: No
Type of problems: random Format:
Environment description: Yes

Internal statistics

45

http://dx.doi.org/10.1109/SPLC.2008.16

Self-citations: benavides05-caise, batory06-cacm, benavides07-vamos,
trinidad08-jss

FaMa ext.:

Ideas: Compare the performance of SAT solver implementing this oper-
ation

Table A.39: White et al. 2008 SPLC

46

Paper title: Filtered Cartesian Flattening: An Approximation Technique for
Optimally Selecting Features while Adhering to Resource Con-
straints

Authors: J. White and D. Schmidt

Publication: ASPL Year: 2008

Acronym: white08-aspl Pages: 8

DOI/URL: Personal web page

Summary

White et al. [69] propose a method called Filtered Cartesian Flattering to map the
problem of optimally selecting a set of features according to several constraints to a
Multi–dimensional Multi–choice Knapsack Problem and then they use several existing
algorithms to this problem that perform much faster while offering an aproximate
answer.

Analyses

Paradigm: MKKP, specific algorithms

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

optimization optimal feature selection Yes

Empirical evaluation

Number of instances: 18,500 Available:
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: include this method

Ideas: Apply the ideas of JA Parejo to the same problem and scenario

Table A.40: White et al. 2008 ASPL

47

http://www.dre.vanderbilt.edu/~jules/white-fmopt.pdf

Paper title: Automated error analysis for the agilization of feature modeling

Authors: P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés and M. Toro

Publication: JSS Year: 2008

Acronym: trinidad08-jss Pages: 14

DOI/URL: 10.1016/j.jss.2007.10.030

Summary

Trinidad et al. [55] focus on the detection and explanation of errors on feature models.
To this purpose, the authors propose a framework structured in three levels: a feature
model level in which the problem of error treatment is described, a diagnosis level,
where an abstract solution relying on Reiter’s theory of diagnosis [45] is proposed, and
an implementation layer, where the abstract solution is implemented using constraint
programming. Through the usage of this framework the authors provide support for
the detection of dead features and explanations (e.g. detailing the causes that make
a FM model to be void).

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

void FM Yes
dead features Yes
false optional full mandatory Yes
explanations Yes

Internal statistics

Self-citations: benavides05-caise, batory06-cacm, benavides07-vamos

FaMa ext.:

Ideas:

Table A.41: Trinidad et al. 2008 JSS

48

http://dx.doi.org/10.1016/j.jss.2007.10.030

Paper title: A BDD-Based Approach to Verifying Clone-Enabled Feature
Models’ Constraints and Customization

Authors: W. Zhang, H. Yan, H. Zhao and Z. Jin

Publication: ICSR Year: 2008

Acronym: zhang08-icsr Pages: 14

DOI/URL: 10.1007/978-3-540-68073-4 18

Summary

Zhang et al. [76] deal with the problem of analysis of cloned features when using
cardinality–based feature models. They propose using a BDD approach to analyse
feature models and they compare their proposal with respect to their previous work
[75] concluding that the BDD representation is more efficient.

Analyses

Paradigm: Propositional Logic

FM notation: Cardinality-based FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

void FM verification of FM constraints Yes
dead features Yes
false optional chance to be removed Yes

Empirical evaluation

Number of instances: 40 Available: No
Type of problems: Manual Format:
Environment description: Yes

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.42: Zhang et al. 2008 ICSR

49

http://dx.doi.org/10.1007/978-3-540-68073-4_18

A.9 2009

Paper title: Applying semantic web technology to feature modeling

Authors: L. Abo and F. Kleinermann and O. De Troyer

Publication: SAC Year: 2009

Acronym: abo09-sac Pages: 5

DOI/URL: 10.1145/1529282.1529563

Summary

In [1], Abo et al. propose using semantic web technologies for analysis of feature
models. They use OWL, SWRL for modelling and the Pellet for reasoning and tool
support.

Analyses

Paradigm: Description Logic

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

dead features Yes
explanations Yes

Internal statistics

Self-citations: benavides05-caise,benavides06-cacm

FaMa ext.: Use this approach to detect dead features

Ideas: Compare computation of dead features with respect to SAT–based
analysis

Table A.43: Abo et al. 2009 SAC

50

http://doi.acm.org/10.1145/1529282.1529563

Paper title: Analysis of Feature Models using Generalised Feature Trees

Authors: P.van den Broek and I. Galvão

Publication: VaMoS Year: 2009

Acronym: broek09-vamos Pages: 7

DOI/URL: Workshop proceedings

Summary

Van den Broek et al. [58] propose enabling the analyses of feature model by trans-
forming these into generalised feature trees and computing some of their properties. A
generalised feature tree is a feature model in which cross-tree constraints are removed
and features can have multiple occurrences. Some algorithms and a executable spec-
ification in the functional programming language Miranda is provided. The strength
of their proposal lies in the efficiency of the analysis operation. However, the time
to construct a generalised feature tree is exponential in the number of cross-tree con-
straint being this the main limitation of the approach.

Analyses

Paradigm: Ad–hoc

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM existence of products Yes
all products list of products Yes
number of products Yes
filter product with certain features Yes
dead features Yes
explanations Yes

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Include GFT

Ideas:

Table A.44: Broek et al. 2009 VaMoS

51

http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

Paper title: Inferring Information from Feature Diagrams to Product Line
Economic Models

Authors: D. Fernandez-Amoros, R. Heradio and J. Cerrada

Publication: SPLC Year: 2009

Acronym: fernandez09-splc Pages: 10

DOI/URL: –

Summary

Fernandez et al. [23] propose an algorithm to compute the total number of products on
what they call Neutral Feature Trees, these trees allows complex cross-tree constraints.
Computing the total number of products they are able to calculate also homogeneity
of a feature tree as well as commonality of a given feature. They finally compare the
computational complexity of their approach with respect to previous work.

Analyses

Paradigm: ad-hoc algorithms

FM notation: Cardinality-based FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

number of products Yes
commonality Yes
homogeneity Yes

Internal statistics

Self-citations: benavides07-phd,trinidad08-splc

FaMa ext.: Include this algorithm in FaMa

Ideas:

Table A.45: Fernandez et al. 2009 SPLC

52

Paper title: SAT–based analysis of feature models is easy

Authors: M. Mendonca and A. Wasowski and K. Czarnecki

Publication: SPLC Year: 2009

Acronym: mendonca09-splc Pages: 10

DOI/URL: –

Summary

Mendoca et al. [38] present empirical evidences that some analysis of feature models
are easily tractable by state of the art SAT–solvers. They specially report the absence
of the phase transition phenomena in their experiments. For experiments and analysis
they use SAT4J solver.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

void FM FM consistency Yes
core features common feature Yes
dead features Yes
CTC representativeness cross–tree constraint ratio Yes

Empirical evaluation

Number of instances: 52,500 Available: Yes
Type of problems: random Format: XML,

gram-
mar

Environment description: Yes

Internal statistics

Self-citations: batory06-cacm,benavides07-phd,benavides07-vamos,benavides05-
caise,segura09-vamos,trinidad06-caise,trinidad08-splc,white08-
splc

FaMa ext.:

Ideas: Run the same type of experiments with CSP solvers

53

Table A.46: Mendonca et al. 2009 SPLC

54

Paper title: Using First Order Logic to Validate Feature Model

Authors: A. Osman, S. Phon-Amnuaisuk and C.K. Ho

Publication: VaMoS Year: 2009

Acronym: osman09-vamos Pages: 4

DOI/URL: Workshop proceedings

Summary

Osman et al. [42] extend the work presented in [41] with a new operations to pre-
vent inconsistencies. According to the authors, this basically decomposes complex
dependencies (e.g. many–to–many) into one–to–one requires/excludes constraints.
However, the proposed example present some inconsistencies and a formal proof is
missed. Some performance results are also presented.

Analyses

Paradigm: Ad–hoc

FM notation: Cardinality-based FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

dead features Yes
explanations Yes

Empirical evaluation

Number of instances: Available: No
Type of problems: random Format:
Environment description: No

Internal statistics

Self-citations: benavides05-caise

FaMa ext.:

Ideas:

Table A.47: Osman et al. 2009 VaMoS

55

http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

Paper title: VMWare: Tool Support for Automatic Verification of Structural
and Semantic Correctness in Product Line Models

Authors: C. Salinesi, C. Rolland and R. Mazo

Publication: VaMoS Year: 2009

Acronym: salinesi09-vamos Pages: 4

DOI/URL: Workshop proceedings

Summary

In [48], Salinesi et al. presents an approach for the automated verification of feature-
based product line models. As part of their proposal, the authors list a collection
of correctness criteria of feature models and present a prototype tool (i.e. VMWare)
implementing them using ad-hoc algorithms. Most criteria are related to structural
aspects checked at the metamodel level (e.g. root uniqueness).

Analyses

Paradigm: Ad–hoc

FM notation: Cardinality-based FMs (FORE) Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
dead features Yes

Internal statistics

Self-citations: batory06-cacm,trinidad08-splc

FaMa ext.:

Ideas:

Table A.48: Salinesi et al. 2009 VaMoS

56

http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

Paper title: Reasoning about Edits to Feature Models,

Authors: T. Thuem, D. Batory and C. Kaestner

Publication: ICSE Year: 2009

Acronym: thum09-icse Pages: 11

DOI/URL: FTP site

Summary

Thum et al. [53] present an automated support for clasifying feature model edits,
i.e. changes in an original feature model, according to a taxonomy. The operation of
analysis takes as input two feature models (the original one and the one after changes
on the model) and classifies the second feature model as a refactoring (no products
added, no products deleted), a generalization (some products added, no products
deleted), a specialization (no products added, some products deleted) or an arbitraty
edit (some products added and some products deleted). Their method is based on
propositonal logic algorithms.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

refactoring Yes
generalization Yes
specialization Yes
arbitrary edit Yes

Empirical evaluation

Number of instances: Available: Yes
Type of problems: Published and random Format: Grammar
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, benavides07-phd, benavides06-jisbd,
benavides06-splc, benavides05-seke, white08-splc

FaMa ext.: Yes

Ideas:

57

ftp://ftp.cs.utexas.edu/pub/predator/ICSE2009.pdf

Table A.49: Thum et al. 2009 ICSE

58

Paper title: Abductive Reasoning and Automated Analysis of Feature Models:
How are they connected?

Authors: P. Trinidad and A. Ruiz–Cortés

Publication: VAMOS Year: 2009

Acronym: trinidad09-vamos Pages: 9

DOI/URL: Workshop web site

Summary

Trinidad et al. [57] present a calalog of operations based on previous work [8]. What
they add is a classification of the operations of analysis in terms of abductive and
deductive reasoning. Typical operations of analysis are classified as deductive op-
erations meanwhile, operations of so–called explanations are classified as abductive
operations. A complete catalogue of operations is presented and classified although
no automated support is explicitly proposed.

Analyses

Paradigm:

FM notation: Extended FM: Yes

Formalization:

Operations

Operation Alternative name Support

valid product No
void FM No
all products No
refactoring No
core features No
variant features No
number of products No
variability No
commonality No
filter No
optimization No
dead features No
explanations No
wrong cardinality No
false optional No
valid partial configuration No

Internal statistics

59

http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

Self-citations: benavides05-caise, benavides07-phd, benavides06-jisbd,
trindidad08-jss, trinidad08-splc, white08-splc

FaMa ext.:

Ideas:

Table A.50: Trinidad et al. 2009 VAMOS

60

Paper title: Selecting Highly Optimal Architectural Feature Sets with Filtered
Cartesian Flattening

Authors: J. White, B. Doughtery and D. Schmidt

Publication: JSS Year: 2009

Acronym: white09-jss Pages: 36

DOI/URL: DOI:10.1016/j.jss.2009.02.011

Summary

White et al. [67] present an extension to their previous work [69]. The same method
is presented but giving enough details to make it reproducible since some details were
missed in their previous work. The method is called Filtered Cartesian Flattering
which map the problem of optimally selecting a set of features according to several
constraints to a Multi–dimensional Multi–choice Knapsack Problem and then they use
several existing algorithms to this problem that perform much faster while offering
an aproximate answer. Some empirical evidences of the scalability of the method are
presented. In addtion, a method to generate large–scale feature selection problems
randomly is also reported.

Analyses

Paradigm: MKKP, specific algorithms

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

optimization optimal feature selection Yes

Empirical evaluation

Number of instances: 500,000 Available:
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, benavides07-vamos, white08-aspl

FaMa ext.: include this method

Ideas: Apply the ideas of JA Parejo to the same problem and scenario

61

http://dx.doi.org/10.1016/j.jss.2009.02.011

Table A.51: White et al. 2009 JSS

62

Paper title: Automated Reasoning for Multi-step Software Product-line Con-
figuration Problems

Authors: J. White, B. Doughtery, D. Schmidt and D. Benavides

Publication: SPLC Year: 2009

Acronym: white09-splc Pages: 10

DOI/URL: Personal web page

Summary

White et al. [68] propose an automated method to solve what they call multi–step
configuration problem. A mapping from this type of problems to CSP is provided.
The idea is to optimize the steps when configuring a feature model. From an original
configuration to another in a given number of steps, which is the path tha optimize a
given criteria.

Analyses

Paradigm: Constraint Programmming

FM notation: Basic FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

multi–step configuration Yes

Empirical evaluation

Number of instances: 1,000 Available: Yes
Type of problems: Random Format:
Environment description: Yes

Internal statistics

Self-citations: benavides05-caise, benavides07-vamos, white08-splc

FaMa ext.: include this operation

Ideas: Apply the ideas of JA Parejo to this optimization problem as well

Table A.52: White et al. 2009 SPLC

63

http://www.lsi.us.es/~dbc/dbc_archivos/pubs/white09-splc.pdf

Paper title: An Optimization Strategy to Feature Models’ Verification by
Eliminating Verification-Irrelevant Features and Constraints

Authors: H. Yan and W. Zhang and H. Zhao and H. Mei

Publication: ICSR Year: 2009

Acronym: yan09-icsr Pages: 11

DOI/URL: 10.1007/978-3-642-04211-9 7

Summary

In [72], Yan et al. propose a method to eliminate irrelevant features and constraints in
order to optimize feature model analysis. They provide experimental results showing
the benefits of the approach using a BDD–based tool.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Yes
dead features Yes

Empirical evaluation

Number of instances: - Available: No
Type of problems: random Format: -
Environment description: Yes

Internal statistics

Self-citations: segura08-splc,benavides08-splc

FaMa ext.: Use this approach to simplify feature models

Ideas: Compare computation when applying Sergio’s genetic algorithm

Table A.53: Yan et al. 2009 ICSR

64

http://dx.doi.org/10.1007/978-3-642-04211-9_7

A.10 Papers out of the scope

Paper title: Employing Fuzzy Logic in Feature Diagrams to Model Variability
in Software Product-Lines

Authors: S. Robak and A. Pieczynski

Publication: ECBS Year: 2003

Acronym: robak03-ecbs Pages: 7

DOI/URL: 10.1109/ECBS.2003.1194812

Summary

Robak et al. [46] propose using fuzzy logic to annotate with weights variant features in
feature models. According to the authors, this may result helpful to customize feature
models adapting them to the different profiles of the skateholders. The automated
analysis of feature models is out of the scope of the paper.

Analyses

Paradigm: Fuzzy logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.: Yes

Ideas: Analysis feature models using fuzzy logic

Table A.54: Robak et al. 2003 ECBS

65

http://doi.ieeecomputersociety.org/10.1109/ECBS.2003.1194812

Paper title: Staged Configuration Using Feature Models

Authors: K. Czarnecki and S. Helsen and U. Eisenecker

Publication: SPLC Year: 2004

Acronym: czarnecki04-splc Pages: 18

DOI/URL: 10.1007/b100081

Summary

Czarneki et al. [14] propose cardinality–based feature models and present a claimed
new concept called staged configurations which is equivalent to interactive config-
uration in the AI community. An UML metamodel for Cardinality-based FMs is
presented later changed in [15]. Typical operations of specialization of Cardinality-
based FMs are presented and discussed. From the perspective of automated analysis,
no operation is presented.

Analyses

Paradigm:

FM notation: Cardinality-based FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas: Master thesis: use a FM of a web framework, e.g. struts or spring,
and provide a generator for different scenarios: MVC applications,
AOP stuff and so on.

Table A.55: Czarnecki et al. 2004 SPLC

66

http://dx.doi.org/10.1007/b100081

Paper title: Features with fuzzy probability

Authors: A. Pieczyriski, S. Robak and A. Walaszek-Babiszewska

Publication: ECBS Year: 2004

Acronym: pieczynski04-ecbs Pages: 6

DOI/URL: 10.1109/ECBS.2004.1316715

Summary

In [44], Pieczynski et al. extend their previous works [46, 47] dealing with the use of
fuzzy logic and feature diagrams. As a novel contribution, the authors show how their
approach can be used to study markets and make predictions. The implementation
of an expert system is detailed but not in the context of the automated analysis of
feature models.

Analyses

Paradigm: Fuzzy logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.56: Pieczynski et al. 2004 ECBS

67

http://dx.doi.org/10.1109/ECBS.2004.1316715

Paper title: Application of Fuzzy Weighted Feature Diagrams to Model Vari-
ability in Software Families

Authors: S. Robak and A. Pieczynski

Publication: ICAISC Year: 2004

Acronym: robak04-icaisc Pages: 6

DOI/URL: 10.1007/b98109

Summary

In [47] Robak et al. summarize the work presented in [46]. The automated analysis
of feature models is out of the scope of the paper.

Analyses

Paradigm: Fuzzy logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.: Yes

Ideas: Analysis feature models using fuzzy logic

Table A.57: Robak et al. 2004 ICAISC

68

http://dx.doi.org/10.1007/b98109

Paper title: Grammatically Interpreting Feature Compositions

Authors: W. Zhao, B. Bryant, F. Cao, R. Raje, M. Auguston, C. Burt and
A. Olson

Publication: SEKE Year: 2004

Acronym: zhao04-seke Pages: 7

DOI/URL: Personal web page

Summary

Zhao et al. [77] present a meta–language to specify feature models. For that pur-
pose, they use two levels grammars. No explicit operations of analysis description is
provided.

Analyses

Paradigm: Two Level Grammar

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.58: Zhao et al. 2004 SEKE

69

http://www.cis.uab.edu/zhaow/papers/sk04-zhao.pdf

Paper title: Formalizing cardinality-based feature models and their specializa-
tion

Authors: K. Czarnecki, S. Helsen and U. Eisenecker

Publication: SPIP Year: 2005

Acronym: czarnecki05b-spip Pages: 24

DOI/URL: 10.1002/spip.213

Summary

Czarneki et al. [15] formalize cardinality–based feature models and define the dif-
ference between a specialization and a configuration. They provide some typical
specialization steps. A mapping of Cardinality-based FMsto context–free grammars
is provided. In terms of analysis this paper do not provide any explicit method or
operation of analysis.

Analyses

Paradigm:

FM notation: Cardinality-based FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.59: Czarnecki et al. 2005 SPIP

70

http://dx.doi.org/10.1002/spip.213

Paper title: Staged configuration through specialization and multilevel config-
uration of feature models

Authors: K. Czarnecki, S. Helsen and U. Eisenecker

Publication: SPIP Year: 2005

Acronym: czarnecki05b-spip Pages: 27

DOI/URL: 10.1002/spip.225

Summary

Czarneki et al. [15] present again cardinality–based feature models and define the dif-
ference between staged configuration using stepwise specialization of a feature model
where only one feature model is involved or using what they call multi–level config-
uration where more than one stake holder can be part of the process and more than
feature model is configured. The UML metamodel of Cardinality-based FMs pre-
sented in [14] is revisited. From the point of view of FM analysis, no operation is
provided.

Analyses

Paradigm:

FM notation: Cardinality-based FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.60: Czarnecki et al. 2005 SPIP (II)

71

http://dx.doi.org/10.1002/spip.225

Paper title: Ontology-Based Feature Modeling and Application-Oriented Tai-
loring

Authors: X. Peng, W. Zhao, Y. Xue and Y. Wu

Publication: ICSR Year: 2006

Acronym: peng06-icsr Pages: 14

DOI/URL: 10.1007/11763864 7

Summary

In [43], Peng et al. present an ontology–based feature model meta–model. They
specify such a meta–model using OWL 3. Using the Jena API for description logic and
semantic web, they propose several rules for syntactic validation of feature models.
Validation of a feature model based on their meta–model is proposed. This paper
is not on the scope of feature models because what they do is analysis on different
artifacts and data of the SPL, for instance, they consider binding times in their
analysis.

Analyses

Paradigm: TBD

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.61: Peng et al. 2006 ICSR

3http://www.w3.org/TR/2003/PR-owl-ref-20031215/

72

http://dx.doi.org/10.1007/11763864_7

Paper title: A Process-Centric Approach for Coordinating Product Configu-
ration Decisions

Authors: M. Mendonça, D. Cowan and T. Oliveira

Publication: HICSS Year: 2007

Acronym: mendonca07-hicss Pages: 10

DOI/URL: 10.1109/HICSS.2007.27

Summary

Mendoca et al. [35] present an approach for the support of collaborative product
condiguration. The analysis of feture models is not part of the approach.

Analyses

Paradigm:

FM notation: Cardinality-based FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.62: Mendonça et al. 2007 HICSS

73

http://doi.ieeecomputersociety.org/10.1109/HICSS.2007.27

Paper title: Disambiguating the Documentation of Variability in Software
Product Lines: A Separation of Concerns, Formalization and Au-
tomated Analysis

Authors: A. Metzger, K. Pohl, P. Heymans, P. Schobbens and G. Saval

Publication: RE Year: 2007

Acronym: metzger07-re Pages: 11

DOI/URL: 10.1109/RE.2007.61

Summary

Metzger et al. [40] propose using OVM models to document product line variabil-
ity and feature models to document software variability (i.e. ability of the reusable
artifact to be customized). A formalization of both types of models and their relation-
ships is provided. Then, some reasoning operations to check the consistency between
both models are proposed. The analyses of feature model is not directly addressed in
this work because all the operations proposed are about the analysis of both models
and their relationships at a time.

Analyses

Paradigm: Propositional Logic

FM notation: VFD Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

realizability Yes
indentical combinations Yes
commonality Yes
dead variant features Yes

Internal statistics

Self-citations: benavides05-caise,benavides06-jisbd

FaMa ext.: handle with multiple models

Ideas:

Table A.63: Metzger et al. 2007 RE

74

http://doi.ieeecomputersociety.org/10.1109/RE.2007.61

Paper title: Reasoning about Feature Models in Higher-Order Logic

Authors: M. Janota and J. Kiniry

Publication: SPLC Year: 2007

Acronym: janota07-splc Pages: 10

DOI/URL: 10.1109/SPLINE.2007.36

Summary

Janota et al. [30] formalize using high order logic a generic and configurable feature
model meta–model. This meta–model can be instantiated using different specific
feature model dialects (e.g basic and cardinality–based feature models). Using the
theorem prover PVS, they allow some reasoning but at the meta–model level.

Analyses

Paradigm: High order logic

FM notation: Cardinality-based FMs Extended FM: No

Formalization: Yes

Operations

Operation Alternative name Support

Internal statistics

Self-citations: benavides05-caise

FaMa ext.:

Ideas:

Table A.64: Janota et al. 2007 SPLC

75

http://doi.ieeecomputersociety.org/10.1109/SPLINE.2007.36

Paper title: Feature Diagrams and Logics: There and Back Again

Authors: K. Czarnecki and A. Wasowski

Publication: SPLC Year: 2007

Acronym: czarnecki07-splc Pages: 10

DOI/URL: 10.1109/SPLINE.2007.4339252

Summary

Czarneki et al. [18] present some techniques and algorithms to restore a feature model
from a set of propositional formulas. The process is semi–automatic. Although they
mention some operations of analysis, these are out of the scope of the paper.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

void FM Existence of configurations No
dead features Yes

Internal statistics

Self-citations: benavides05-caise, benavides06-jisbd

FaMa ext.:

Ideas:

Table A.65: Czarnecki et al 2007 SPLC

76

http://dx.doi.org/10.1109/SPLINE.2007.4339252

Paper title: Quality aware software product line engineering

Authors: L. Etxeberria, G. Sagardui and L. Belategi

Publication: JBCS Year: 2008

Acronym: etxeberria08-jbcs Pages: 13

DOI/URL: 10.1590/S0104-65002008000100006

Summary

Etxeberria et al. [] present a survey of existing approaches considering quality re-
quirements in software product lines. The automated reasoning on feature attributes
is mentioned as a desirable feature but it is not explicitly addressed in the paper.

Analyses

Paradigm:

FM notation: Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations: benavides05-caise, benavides06-splc

FaMa ext.:

Ideas:

Table A.66: Etxeberria et al. 2008 JBCS

77

http://dx.doi.org/10.1590/S0104-65002008000100006

Paper title: Sample Spaces and Feature Models: There and Back Again

Authors: K. Czarnecki, S. She and A. Wasowski

Publication: SPLC Year: 2008

Acronym: czarnecki08-splc Pages: 10

DOI/URL: 10.1109/SPLC.2008.49

Summary

We do not consider this paper because the feature model notation and semantics used
change all the operations catalog Czarneki et al. [17] propose what they call proba-
bilistic feature models (PFMs) which are formalized as a set of formulas in a certain
probabilistic logic. PFMs extend feature model with soft constraints, constraints that
are probabilistic. Later, the concept of feature model mining is introduced. Feature
model mining aims to retrieve models from a set of products for reverse engineering
purposes. In terms of analysis the only operation mention and discussed. This con-
tribution is novel in terms of analysis since this is the first time that analysis using
probabilistic logig is introduced. We do not consider this paper because the feature
model notation and semantics used change all the operations catalog

Analyses

Paradigm: prbabilistic logic

FM notation: Probabilistic FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

probabilistic consistency consistency of PFM Yes

Internal statistics

Self-citations: batory06-cacm

FaMa ext.: Include a PFM reasoner

Ideas: Apply PPL to SOA group, Usar http://jopt.sourceforge.net/ en
FaMa, proyecto de Master

Table A.67: Czarnecki et al 2008 SPLC

78

http://dx.doi.org/10.1109/SPLC.2008.49

Paper title: Do SAT Solvers Make Good Configurators?

Authors: M. Janota

Publication: ASPL Year: 2008

Acronym: janota08-aspl Pages: 5

DOI/URL: Workshop Web site

Summary

Janota [29] tackles the problem of configuration of feature models. The author sug-
gest using SAT solvers for this purpose and present some novel algorithms to enable
interactive configuration guaranteeing backtrack-freeness.

Analyses

Paradigm: Propositional Logic

FM notation: Extended FM:

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations: benavides05-caise

FaMa ext.: Implement a FaMa configurator

Ideas:

Table A.68: Janota 2008 ASPL

79

http://www.isa.us.es/aspl08/?download=W5_P02_Janota_Do_SAT_Solvers_Make_Good_Configurators.pdf

Paper title: Semantic Annotations of Feature Models for Dynamic Product
Configuration in Ubiquitous Environments

Authors: N. Kaviani, B. Mohabbati, D. Gasevic and M. Finke

Publication: SWESE Year: 2008

Acronym: kaviani08-swese Pages: 15

DOI/URL: Workshop Web site

Summary

Koviani et al. [] propose using ontologies to annotate feature models with non-
functional requirements. This ontologies are used to check the consistency between
the capabilities provided by external services and the requirements of the product
line. The authors suggest using description logic reasoners to automate the process.
The analysis of feature model is not addressed in the paper. Rather, the analyses
focus on configuration issues and realizability checkings.

Analyses

Paradigm: Description Logic

FM notation: Basic FMs Extended FM: Yes

Formalization: Yes

Operations

Operation Alternative name Support

Internal statistics

Self-citations: benavides05-caise

FaMa ext.:

Ideas:

Table A.69: Kaviani et al. 2008 SWESE

80

http://www.abdn.ac.uk/~r01srt7/swese2008/pdf/swese2008_submission_18.pdf

Paper title: Decision-making coordination in collaborative product configura-
tion

Authors: M. Mendonça, T.T. Bartolomei and D. Cowan

Publication: SAC Year: 2008

Acronym: mendonca08-sac Pages: 6

DOI/URL: 10.1145/1363686.1363715

Summary

Mendonça et al. [36] present an approach to collaborative product configuration
supporting teamwork decision-making in the context of product configuration. Some
hypergraph-baed reasoning techniques are used to deal with dependency analysis dur-
ing the configuration process. The analysis of feature models is not addressed.

Analyses

Paradigm:

FM notation: Cardinality-based FMs Extended FM: No

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations:

FaMa ext.:

Ideas:

Table A.70: Mendonca et al. 08 SAC

81

http://doi.acm.org/10.1145/1363686.1363715

Paper title: An OWL- Based Approach for Integration in Collaborative Fea-
ture Modelling

Authors: L.A. Zaid, G. Houben, O. Troyer and F. Kleinermann

Publication: SWESE Year: 2008

Acronym: swese08-swese Pages: 8

DOI/URL: Workshop Web site

Summary

Zaid et al. [73] propose an OWL-based approach for enabling the merging of feature
models in the context of collaboration work. A mechanism to resolve merge conflict
automatically is also provided. The anlaysis of feature models is out of the scope of
the approach.

Analyses

Paradigm: Description Logic (OWL)

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations: benavides05-caise, batory06-sacm

FaMa ext.:

Ideas:

Table A.71: Zaid et al. 2008 SWESE

82

http://www.abdn.ac.uk/~r01srt7/swese2008/pdf/swese2008_submission_1.pdf

Paper title: Towards Tool Support for the Configuration of Non-Functional
Properties in SPLs

Authors: j. Sincero and W. Schröder-Preikschat and O. Spinczyk

Publication: HICSS Year: 2007

Acronym: sincero09-hicss Pages: 7

DOI/URL: 10.1109/HICSS.2009.472

Summary

In [28], Sincero et al. present an approach to consider non–functional properties in
feature model configurations. They use the Linux Kernel Configurator tool and claim
the usage of BDD–based support for analysis. We discard this work from the survey
because they do not make explicit reference to any analysis operation on their tool.

Analyses

Paradigm: Propositional Logic

FM notation: Basic FMs Extended FM: Yes

Formalization: No

Operations

Operation Alternative name Support

Internal statistics

Self-citations: benavides05-caise,benavides06-splc,benavides07-vamos

FaMa ext.:

Ideas: Using the kernel configurator to model feature models

Table A.72: Sincero et al. 2009 HICSS

83

http://dx.doi.org/10.1109/HICSS.2009.472

Bibliography

[1] L. Abo, F. Kleinermann, and O. De Troyer. Applying semantic web tech-
nology to feature modeling. In SAC, pages 1252–1256, 2009.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena.
Refactoring product lines. In GPCE ’06: Proceedings of the 5th interna-
tional conference on Generative programming and component engineering,
pages 201–210, New York, NY, USA, 2006. ACM Press.

[3] R. Bachmeyer and H. Delugach. A conceptual graph approach to feature
modeling. In ICCS, pages 179–191, 2007.

[4] D. Batory. Feature models, grammars, and propositional formulas. In Soft-
ware Product Lines Conference, volume 3714 of Lecture Notes in Computer
Sciences, pages 7–20. Springer–Verlag, 2005.

[5] D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis
of feature models: Challenges ahead. Communications of the ACM,
December:45–47, 2006.

[6] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on
feature models. In Advanced Information Systems Engineering: 17th Inter-
national Conference, CAiSE 2005, volume 3520 of Lecture Notes in Com-
puter Sciences, pages 491–503. Springer–Verlag, 2005.

[7] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Using constraint program-
ming to reason on feature models. In The Seventeenth International Con-
ference on Software Engineering and Knowledge Engineering, SEKE 2005,
pages 677–682, 2005.

[8] D. Benavides, A. Ruiz-Cortés, P. Trinidad, and S. Segura. A survey on
the automated analyses of feture models. In Jornadas de Ingenieŕıa del
Software y Bases de Datos (JISBD), 2006.

[9] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step
towards a framework for the automated analysis of feature models. In
Managing Variability for Software Product Lines: Working With Variability
Mechanisms, 2006.

84

[10] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Using java
csp solvers in the automated analyses of feature models. Lecture Notes in
Computer Science, 4143:389–398, 2006.

[11] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA: Tooling
a framework for the automated analysis of feature models. In Proceeding
of the First International Workshop on Variability Modelling of Software-
intensive Systems (VAMOS), pages 129–134, 2007.

[12] F. Cao, B. Bryant, C. Burt, Z. Huang, R. Raje, A. Olson, and M. Auguston.
Automating feature-oriented domain analysis. In International Conference
on Software Engineering Research and Practice (SERP’03), pages 944–949,
June 2003.

[13] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods,
Techniques, and Applications. Addison–Wesley, may 2000. ISBN 0–201–
30977–7.

[14] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using fea-
ture models. In Proceedings of the Third Software Product Line Conference
2004, volume 3154 of Lecture Notes in Computer Sciences, pages 266–282.
Springer–Verlag, 2004.

[15] K. Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software Pro-
cess: Improvement and Practice, 10(1):7–29, 2005.

[16] K. Czarnecki and P. Kim. Cardinality-based feature modeling and con-
straints: A progress report. In Proceedings of the International Workshop
on Software Factories At OOPSLA 2005, 2005.

[17] K. Czarnecki, S. She, and A. Wasowski. Sample spaces and feature mod-
els: There and back again. In proceedings of the Software Product Line
Conference (SPLC), pages 22–31, 2008.

[18] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics:
There and back again. In Software Product Lines, 11th International Con-
ference, SPLC, Proceedings, pages 23–34. IEEE Computer Society, 2007.

[19] M. Dean and G. Schreiber. OWL web ontology language reference. W3C
recommendation, W3C, February 2004.

[20] Various developers. SMV system , www.cs.cmu.edu/∼modelcheck. pub-
lished on line.

[21] O. Djebbi, C. Salinesi, and D. Diaz. Deriving product line requirements: the
red-pl guidance approach. Asia-Pacific Software Engineering Conference,
0:494–501, 2007.

85

[22] S. Fan and N. Zhang. Feature model based on description logics. In
Knowledge-Based Intelligent Information and Engineering Systems, 2006.

[23] D. Fernandez-Amoros, R. Heradio, and J. Cerrada. Inferring information
from feature diagrams to product line economic models. In Proceedings of
the Sofware Product Line Conference, 2009.

[24] R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy.
In Proceedings of the ACM SIGSOFY First Alloy Workshop, pages 71–80,
Portland, United States, nov 2006.

[25] R. Gheyi, T. Massoni, and P. Borba. Algebraic laws for feature models.
Journal of Universal Computer Science, 14(21):3573–3591, 2008.

[26] Adithya Hemakumar. Finding contradictions in feature models. In First
International Workshop on Analyses of Software Product Lines (ASPL’08),
pages 183–190, 2008.

[27] P. Heymans, P.Y. Schobbens, J.C. Trigaux, Y. Bontemps, R. Matulevicius,
and A. Classen. Evaluating formal properties of feature diagram languages.
Software IET, 2(3):281–302, 2008.

[28] j. Sincero, W. Schröder-Preikschat, and O. Spinczyk. Towards tool support
for the configuration of non-functional properties in spls. In HICSS, pages
1–7, 2009.

[29] M. Janota. Do sat solvers make good configurators? In First International
Workshop on Analyses of Software Product Lines (ASPL’08), pages 191–
195, 2008.

[30] Mikolás Janota and Joseph Kiniry. Reasoning about feature models in
higher-order logic. In Software Product Lines, 11th International Confer-
ence, SPLC, Proceedings, pages 13–22, 2007.

[31] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, Carnegie Mellon University,
November 1990.

[32] P. Klint. A meta-environment for generating programming environments.
ACM Trans. Softw. Eng. Methodol., 2(2):176–201, April 1993.

[33] M. Mannion. Using first-order logic for product line model validation.
In Proceedings of the Second Software Product Line Conference (SPLC2),
LNCS 2379, pages 176–187, San Diego, CA, 2002. Springer.

[34] M. Mannion and J. Camara. Theorem proving for product line model
verification. In Software Product-Family Engineering (PFE), volume 3014
of Lecture Notes in Computer Science, pages 211–224. Springer Berlin /
Heidelberg, 2003.

86

[35] M. Mendonca, D. Cowan, and T. Oliveira. A process-centric approach for
coordinating product configuration decisions. In Proceedings of the 40th
Annual Hawaii International Conference on System Sciences (HICSS ’07),
page 283a, Washington, DC, USA, 2007. IEEE Computer Society.

[36] M. Mendonça, T.T. Bartolomei, and D. Cowan. Decision-making coordi-
nation in collaborative product configuration. In Proceedings of the 2008
ACM symposium on Applied computing (SAC ’08), pages 108–113, New
York, NY, USA, 2008. ACM.

[37] M. Mendonça, D.D. Cowan, W. Malyk, and T. Oliveira. Collaborative
product configuration: Formalization and efficient algorithms for depen-
dency analysis. Journal of Software, 3(2):69–82, 2008.

[38] M. Mendonça, A. Wasowski, and K. Czarnecki. SAT–based analysis of fea-
ture models is easy. In Proceedings of the Sofware Product Line Conference,
2009.

[39] Marćılio Mendonça, Andrzej Wasowski, Krzysztof Czarnecki, and Don-
ald D. Cowan. Efficient compilation techniques for large scale feature mod-
els. In Generative Programming and Component Engineering, 7th Interna-
tional Conference, GPCE , Proceedings, pages 13–22, 2008.

[40] A. Metzger, K. Pohl, P. Heymans, P. Schobbens, and G. Saval. Disam-
biguating the documentation of variability in software product lines: A
separation of concerns, formalization and automated analysis. In Require-
ments Engineering Conference, 2007. RE ’07. 15th IEEE International,
pages 243–253, 2007.

[41] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Knowledge based method
to validate feature models. In First International Workshop on Analyses
of Software Product Lines, pages 217–225, 2008.

[42] A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first order logic to
validate feature model. In Third International Workshop on Variability
Modelling in Software-intensive Systems (VaMoS), pages 169–172, 2009.

[43] X. Peng, W. Zhao, Y. Xue, and Y. Wu. Ontology-based feature modeling
and application-oriented tailoring. In ICSR, pages 87–100, 2006.

[44] A. Pieczyriski, S. Robak, and A. Walaszek-Babiszewska. Features with
fuzzy probability. In Proceedings of the 11th IEEE Engineering of
Computer-Based Systems, pages 323–328, May 2004.

[45] R Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

[46] S. Robak and A. Pieczynski. Employing fuzzy logic in feature diagrams
to model variability in software product-lines. In 10th IEEE International
Conference and Workshop on the Engineering of Computer-Based Systems,
volume 0, page 305, Los Alamitos, CA, USA, 2003. IEEE Computer Society.

87

[47] S. Robak and A. Pieczyski. Application of fuzzy weighted feature diagrams
to model variability in software families. In Artificial Intelligence and Soft
Computing - ICAISC 2004, volume 3070 of Lecture Notes in Computer
Science, pages 370–375. Springer Berlin / Heidelberg, 2004.

[48] C. Salinesi, C. Rolland, and R. Mazo. Vmware: Tool support for automatic
verification of structural and semantic correctness in product line mod-
els. In Third International Workshop on Variability Modelling of Software-
intensive Systems, pages 173–176, 2009.

[49] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Feature Dia-
grams: A Survey and A Formal Semantics. In Proceedings of the 14th IEEE
International Requirements Engineering Conference (RE’06), Minneapolis,
Minnesota, USA, September 2006.

[50] P. Schobbens, J.C. Trigaux P. Heymans, and Y. Bontemps. Generic seman-
tics of feature diagrams. Computer Networks, 51(2):456–479, Feb 2007.

[51] S. Segura. Automated analysis of feature models using atomic sets. In First
Workshop on Analyses of Software Product Lines (ASPL 2008). SPLC’08,
pages 201–207, Limerick, Ireland, September 2008.

[52] J. Sun, H. Zhang, Y.F. Li, and H. Wang. Formal semantics and verification
for feature modeling. In Proceedings of the 10th IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS), 2005.

[53] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to feature
models. In International Conference on Software Engineering, pages 254–
264, 2009.

[54] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Au-
tomated error analysis for the agilization of feature modeling. Journal of
Systems and Software, 81(6):883–896, 2008.

[55] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Au-
tomated error analysis for the agilization of feature modeling. Journal of
Systems and Software, 81(6):883–896, 2008.

[56] P. Trinidad, D. Benavides, and A. Ruiz-Cortés. A first step detecting
inconsistencies in feature models. In CAiSE Short Paper Proceedings, 2006.

[57] Pablo Trinidad and Antonio Ruiz Cortés. Abductive reasoning and auto-
mated analysis of feature models: How are they connected? In Third Inter-
national Workshop on Variability Modelling of Software-Intensive Systems.
Proceedings, pages 145–153, 2009.

[58] P. van den Broek and I. Galvao. Analysis of feature models using generalised
feature trees. In Third International Workshop on Variability Modelling of
Software-intensive Systems, number 29 in ICB-Research Report, pages 29–
35, Essen, Germany, January 2009. Universität Duisburg-Essen.

88

[59] T. van der Storm. Variability and component composition. In Software
Reuse: Methods, Techniques and Tools: 8th International Conference,
ICSR 2004. Proceedings, volume 3107 of Lecutre Notes in Computer Sci-
ences, pages 157–166. Springer, July 2004.

[60] Tijs van der Storm. Generic feature-based software composition. In Soft-
ware Composition, volume 4829 of LNCS, pages 66–80. Springer, 2007.

[61] A. van Deursen and P. Klint. Domain–specific language design requires
feature descriptions. Journal of Computing and Information Technology,
10(1):1–17, 2002.

[62] T. von der Massen and H. Lichter. Requiline: A requirements engineering
tool for software product lines. In F. van der Linden, editor, Proceedings of
the Fifth International Workshop on Product Family Engineering (PFE),
LNCS 3014, Siena, Italy, 2003. Springer Verlag.

[63] T. von der Massen and H. Lichter. Deficiencies in feature models. In
Tomi Mannisto and Jan Bosch, editors, Workshop on Software Variability
Management for Product Derivation - Towards Tool Support, 2004.

[64] T. von der Massen and H. Litcher. Determining the variation degree of
feature models. In Software Product Lines Conference, LNCS 3714, pages
82–88, 2005.

[65] H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. A semantic web approach to
feature modeling and verification. In Workshop on Semantic Web Enabled
Software Engineering (SWESE’05), November 2005.

[66] H. Wang, Y.F. Li, J. un, H. Zhang, and J. Pan. Verifying Feature Models
using OWL. Journal of Web Semantics, 5:117–129, June 2007.

[67] J. White, B. Doughtery, and D. Schmidt. Selecting highly optimal archi-
tectural feature sets with filtered cartesian flattening. Journal of Systems
and Software, 82(8):1268–1284, 2009.

[68] J. White, B. Doughtery, D. Schmidt, and D. Benavides. Automated rea-
soning for multi-step software product-line configuration problems. In Pro-
ceedings of the Sofware Product Line Conference, pages 11–20, 2009.

[69] J. White and D. Schmidt. Filtered cartesian flattening: An approximation
technique for optimally selecting features while adhering to resource con-
straints. In First International Workshop on Analyses of Software Product
Lines (ASPL), pages 209–216, 2008.

[70] J. White, D. Schmidt, D. Benavides P. Trinidad, and A. Ruiz-Cortes. Au-
tomated diagnosis of product-line configuration errors in feature models.
In Proceedings of the Sofware Product Line Conference, 2008.

89

[71] J. Wookcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice–Hal, 1996.

[72] H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization strategy to
feature models’ verification by eliminating verification-irrelevant features
and constraints. In ICSR, pages 65–75, 2009.

[73] L.A. Zaid, G. Houben, O. Troyer , and F. Kleinermann. An owl- based
approach for integration in collaborative feature modelling. In 4th Inter-
national Workshop on Semantic Web Enabled Software Engineering, Pro-
ceedings, 2008.

[74] W. Zhang, H. Mei, and H. Zhao. Feature-driven requirement depen-
dency analysis and high-level software design. Requirements Engineering,
11(3):205–220, June 2006.

[75] W. Zhang, H. Zhao, and H. Mei. A propositional logic-based method for
verification of feature models. In J. Davies, editor, ICFEM 2004, volume
3308, pages 115–130. Springer–Verlag, 2004.

[76] Wei Zhang, Hua Yan, Haiyan Zhao, and Zhi Jin. A bdd–based approach
to verifying clone-enabled feature models’ constraints and customization.
In High Confidence Software Reuse in Large Systems, 10th International
Conference on Software Reuse, ICSR, Proceedings, LNCS, pages 186–199.
Springer, 2008.

[77] W. Zhao, B. Bryant, F. Cao, R. Raje, M. Auguston, C. Burt, and A. Olson.
Grammatically interpreting feature compositions. In Proceedings of the
Sixteenth International Conference on Software Engineering & Knowledge
Engineering (SEKE’2004), 2004.

90

