
Title: Incremental Learning of Tree Augmented Naive Bayes Classifiers

Authors:

Josep Roure Alcobé
Departament d'Informàtica i Gestió
Escola Universitària Politècnica de Mataró,
Avda. Puig i Cadafalch 101-111,
08303 Mataró, Catalonia, Spain
roure@eupmt.es
tel: +34 93 757 44 04

Abstract:

Machine learning has focused a lot of attention at Bayesian classifiers in recent years. It
has seen that even Naive Bayes classifier performs well in many cases, it may be
improved by introducing some dependency relationships among variables (Augmented
Naive Bayes). Naive Bayes is incremental in nature but, up to now, there are no
incremental algorithms for learning Augmented classifiers.

When data is presented in short chunks of instances, there is an obvious need for
incrementally improving the performance of the classifiers as new data is available. It
would be too costly, in computing time and memory space, to use the batch algorithms
processing again the old data together with the new one.

We present in this paper an incremental algorithm for learning Tree Augmented Naive
classifiers. The algorithm rebuilds the network structure from the branch which is found to
be invalidated, in some sense, by data. We will experimentally demonstrate that the
heuristic is able to obtain almost optimal trees while saving computing time.

Keywords: Bayesian Classification, Augmented Naive Bayes, Incremental Learning

Topics: Classification, Bayesian Network Learning

Section: Paper Track

Incremental Learning of Tree Augmented Naive Bayes
Classifiers

Josep Roure Alcob´e

Departament d’Inform`atica i Gesti´o,
Escola Universit`aria Politècnica de Matar´o,

Avda. Puig i Cadafalch 101-111,
08303 Matar´o, Catalonia, Spain

roure@eupmt.es

Abstract. Machine learning has focused a lot of attention at Bayesian classifiers
in recent years. It has seen that even Naive Bayes classifier performs well in many
cases, it may be improved by introducing some dependency relationships among
variables (Augmented Naive Bayes). Naive Bayes is incremental in nature but, up
to now, there are no incremental algorithms for learning Augmented classifiers.
When data is presented in short chunks of instances, there is an obvious need
for incrementally improving the performance of the classifiers as new data is
available. It would be too costly, in computing time and memory space, to use the
batch algorithms processing again the old data together with the new one.
We present in this paper an incremental algorithm for learning Tree Augmented
Naive classifiers. The algorithm rebuilds the network structure from the branch
which is found to be invalidated, in some sense, by data. We will experimentally
demonstrate that the heuristic is able to obtain almost optimal trees while saving
computing time.

1 Introduction

Classification plays an important role in the field of machine learning, pattern recogni-
tion and data mining. Classification is the task to identify the class labels for instances
based on a set of features or attributes. The induction of Bayesian classifiers from data
have received a lot of attention within the Bayesian Network learning field [7, 3, 8].

The simplest Bayesian Classifier is the Naive Bayes [5, 11]. It assumes that at-
tributes are independent when the class label is known. Even it is a very strong assump-
tion and it does not hold in many real world data sets, the Naive Bayes classifier is seen
to outperform more sophisticated classifiers specially over data sets where the features
are not strongly correlated [11].

More recently, a lot of effort has focused on improving the Naive Bayes clas-
sifier by relaxing independence assumptions [7, 3]. Mainly, these methods infer re-
stricted networks among features from data. In this way, these methods combine some
of the Bayesian Networks ability to represent dependencies with the simplicity of Naive
Bayes. This sort of classifiers are usually called Augmented Naive Bayes.

Naive Bayes is an incremental classifier. That is, it is able to revise the classifier
when new data instances are available, with neither beginning from scratch nor pro-

cessing again old data instances. This sort of learning is useful when data instances are
presented in streams while the classifier still must work.

When Naive Bayes classifier is augmented, it looses the incremental property as
most of the algorithms for inferring Bayesian Networks are batch [2]. In this paper,
we use an incremental algorithm for learning tree-shaped Bayesian Networks to obtain
an incremental Tree Augmented Naive Bayes classifier. We will show, in this paper,
that the incremental version obtains most of times the same accuracy than the batch
classifier while saving computational time.

Incremental learning attempts to update current Bayesian Networks in response to
newly observed data instances. Langley [10] stated that an algorithm is incremental if
(1) it inputs one training experience at a time, (2) does not reprocess any previous data
instances, and (3) retains only one knowledge structure in memory.

Each of these three constraints aims at clear objectives. The first wants incremental
algorithms to be able to output a Bayesian Network at any moment of the learning
process. The second keeps low and constant the time required to process each data
instance over all the data set. And finally, the third constraint wants learning algorithms
not to do unreasonable memory demands.

2 Bayesian Network Classifiers

Bayesian classifiers have proven to be competitive with other approaches like nearest
neighbor, decision trees or neural networks [7]. Bayesian classifiers learn from pre-
classified data instances the probability of each attributeX i given the class labelC,
P (XijC). Then the Bayes rule is used to compute the probability that an example
e =< x1; : : : ; xn > belongs to a classCi, P (Cijx1; : : : ; xn). In this way, the class
with highest posterior probability is calculated. The independence assumptions among
attributes or variables distinguish the different Bayesian classifiers.

2.1 Naive Bayes

The Naive Bayes as discussed by Duda and Hart [5] assume that all attributes are inde-
pendent given the class label. This classifier can be represented by a simple Bayesian
Network where the class variable is the parent of all attributes.

Given the independence assumptions, the posterior probability is formulated as

P (Cijx1; : : : ; xn) / P (Ci)
Y
k

P (xk jCi)

This simple expression can very efficiently be calculated and it is only needed to es-
timateP (Ci) andP (xkjCi) from data. To do so, we only need to keep a counter for
the number of training instances, a counter for each class label, and a counter for each
attribute value and class label pair.

Note that to incrementally learn the Naive Bayes classifier we only need to increase
the counters as new instances are precessed. See also that the network structure is not
learnt from data but fixed before hand. So, we could use the incremental approach
proposed by Spiegelhalter et. al [13] in order to incrementally update the conditional
probabilities of the classifier.

2.2 Tree Augmented Naive Bayes

The Tree Augmented Naive Bayes (TAN) classifier was introduced [7] in order to im-
prove the performance of the Naive Bayes. The TAN classifier relaxes the independence
assumptions having a dependence treeT among the attributesx 1; : : : ; xn and maintain-
ing the class variable as a parent of each attribute.

In order to learn the TAN classifier, first it is learned the tree among the attributes
and afterwards an arch is added from the class variable to each attribute. To learn the
tree structure, it is used the algorithm proposed by Chow and Liu [4].

Given the independence assumptions in the treeT , the posterior probability is

P (Cijx1; : : : ; xn) / P (Ci)
Y
k

P (xk jxj(k); Ci)

wherexj(k) stands for the parent of variablexk in the treeT , andx0 for the null
variable.

Friedman et al. [7] showed that TAN outperforms Naive Bayes while maintaining
the computational simplicity on learning and classifying. We now need to keep a counter
for the number of training instances, a counter for each class label, and a counter for
each attribute value, parent value and class label triplet.

Note that Chow and Liu’s proposal is a batch learning algorithm. In the next section
we will explain the Chow and Liu batch algorithm and our incremental approach.

3 Tree-Shaped Bayesian Network Learning

The Chow and Liu’s algorithm , CL algorithm from now on, estimates the underlying n-
dimensional discrete probability distribution from a set of samples. The algorithm yields
as an estimation a distribution ofn�1 first order dependence relationships among then

variables, forming a tree dependence structure. It builds a maximal cost tree introducing
branches into the tree in decreasing cost order.

Our incremental approach revises an already learnt tree-shaped Bayesian Network
without processing the old data instances. Roughly speaking, we state that new data in-
validates the old tree-shaped structure when the branches are not anymore in decreasing
cost order. Then, the tree is rebuilt from the first branch found in a bad position into the
order. In this way, our algorithm, can both detect the need of updating and update the
current network. We will call our proposal ACO heuristic (Arches in Correct Order).

3.1 Chow and Liu’s batch algorithm

The Chow and Liu’s algorithm uses the mutual information as closeness measure be-
tweenP (X) andP� (X), whereP (X) is the probability distribution from a set of sam-
ples, andP� (X) is the tree dependence distribution. It is an optimization algorithm that
gives the tree distribution closest to the distribution from the samples. Let us give some
notation in order to explain the Chow and Liu’s measure and algorithm.

Let (m1; � � � ;mn) be a permutation of integers1; 2; � � � ; n, let j(i) be a mapping
with 0 � j(i) � i, let T = (X; E) be a tree whereX(T) = fXmi

j1; 2; � � � ; ng is the

set of nodes,E(T) = f(Xmi
; Xmj(i)

)j1; 2; � � � ; ng is the set of branches, and where
X0 is thenull node. If we now assign the mutual information between two variables,
I(Xmi

;Xmj(i)
), as a cost to every dependence tree branch, the maximum-cost depen-

dence tree is defined as the treeT such that for allT 0 in Tn,
Pn

i=1 I(Xmi
;Xmj(i)

)�Pn

i=1 I(Xmi
;Xmj0(i)

). WhereTn stands for the set of trees withn variables.
Chow and Liu used the Kruskal algorithm for the construction of trees of maximum

total cost whereI(Xmi
;Xmj(i)

) may represent the distance cost from nodeXmi
to

nodeXmj(i)
. An undirected graph is formed by starting with a graph without branches

and adding a branch between two nodes with the highest mutual information. Next, a
branch is added which has maximal mutual information associated and does not in-
troduce a cycle in the graph. This process is repeated until the(n � 1) branches with
maximum mutual information associated are added as seen in Algorithm 1.

In this paper, we give a direction to all the branches of the tree. We take as the root of
the tree one of the nodes of the first branch and the direction of the branches introduced
afterwards goes from the node already into the structure to the one recently introduced.

Algorithm 1 CL
Require: a databaseD onX = fXm1 ; � � � ; Xmng variables
Ensure: T be a dependence tree structure

CalculateSUFFD(T)

T = (V; E) the empty tree whereV(T) = f;g and
E(T) = f;g
Calculate costs for every pairI(Xmi

;Xmj
)

Select the maximum cost pair(Xmi
; Xmj

)

V(T) = fXmi
; Xmj

g; E(T) = f(Xmi
; Xmj

)g
repeat
B(T) = f(Xmi

; Xmj
) j ((Xmi

; Xmk
) 2 E(T) _ (Xmk

; Xmi
) 2 E(T)) ^ Xmj

62
V(T)g
Select the max cost pair(Xmi

; Xmj
) fromB(T)

V(T) = V(T) [fXmj
g

E(T) = E(T) [f(Xmi
; Xmj

)g
until (V = X)

3.2 Incremental algorithm

We introduce some notation before the explanation of our algorithm. LetN D
X (x) be the

number of instances inD whereX = x. Let bND
X be the vector of numbersND

X (x)

for all values ofX . We call the vectorbND
X the sufficient statistics of the variableX ,

suffD(X). In the same way, thesufficient statistics of the treeT , suffD(T), are defined
as the set of vectorsbNXmi

;Xmj(i)
8i : 0 � i � n.

To find the maximal cost tree we need the vector numbersbND
Xmi

;Xmj (i)
for all the

pairs of variables inX(T), we will call this set of numbersSUFFD(T). Note that

SUFFD[D0(T) can be calculated asbND
X
� bND0

X
, where� stands for the addition of

vector components.
We divide our algorithm into two steps. In the first step, the algorithm calculates

thesufficient statistics for both oldD and newD 0 data instances, and in the second, it
revises the tree structure according to the newsufficient statistics.

In the first step of the algorithm, we assume thatsufficient statistics of the old data
setD are stored. Thus, in order to recover thesufficient statistics, SUFFD[D0(T), of
the whole set of data instances the algorithm does not need to go through the old ones.

The second step uses a heuristic which decides to update the structure only when
the arches are not in correct order. When the tree is built for the very first time using the
CL algorithm, arches are introduced into the tree structure in decreasing cost order. This
orderO is stored. When new data instancesD 0 are presented, the costI(Xmi

;Xmj(i)
)

for each branch is calculated again using the newsufficient statistics SUFFD[D0(T),
and only when the orderO does not hold anymore the structure is updated.

Algorithm 2 ACO heuristic
Require: a databaseD0 onX = fXm1 ; � � � ; Xmng variables a tree structureT , an orderO of

branches andSUFFD(T)

Ensure: T 0 be a dependence tree structure
CalculateSUFFD[D0(T)

T 0
= (V; E) the empty tree whereV(T 0

) = E(T 0
) = f;g

LetXmh
be the root ofT

B(T) = f(Xmh
; Xmj

) j (Xmh
; Xmj

) 2 E(T)g
continue=false; k=0
if ((Xmi

; Xmj
)O(1) = arg max(Xmr ;Xms)2B(T)\E(T)I(Xmr ; Xms)) then

V(T 0
) = fXmh

; Xmj
g; E(T 0

) = f(Xmh
; Xmj

)g
continue=true; k=2 be the number of branches added (+ 1)

end if
while (continue) and (k � jE(T)j) do
B(TO(k)) = f(Xmi

; Xmj
) j ((Xmi

; Xmk
) 2 E(TO(k))_ (Xmk

; Xmi
) 2 E(TO(k)))^

Xmj
62 V(TO(k))g

if ((Xmi
; Xmj

)O(k) = arg max(Xmr ;Xms)2B(T
O(k))\E(T)I(Xmr ; Xms)) then

V(T 0
) = V(T 0

) [fXmj
g

E(T 0
) = E(T 0

) [f(Xmi
; Xmj

)g; k++
else

continue=false
end if

end while
if (k � jV (X)j) then

Continue buildingT 0 using the original CL algorithm
end if

More precisely our algorithm, see Algorithm 2, inspects the arches in the orderO
they were added into the tree. When an arch(Xmi

; Xmj(i)
)O(k) at thek-th position inO

has not the highest cost among all candidate arches present into the former structure, the

tree is rebuilt from that arch using the original CL algorithm. Formally, when the arch at
thek-th position(Xmi

; Xmj(i)
)O(k) 6= arg max(Xmk

;Xml
)2B(TO(k))\E(T)I(Xmk

; Xml
).

WhereTO(k) stands for the tree built only with the firstk � 1 arches of the orderO
andB(TO(k)) stands for the set of arches that do not introduce any cycle inTO(k),
B(TO(k)) = f(Xmi

; Xmj
) j ((Xmi

; Xmk
) 2 E(TO(k))_ (Xmk

; Xmi
) 2 E(TO(k)))^

Xj 62 V(TO(k))g.
Note, it may happen that(Xmi

; Xmk
) has the maximum cost among the arches in

B(TO(k)) \ E(T) and not among the ones inB(TO(k)). In such situation, the ACO
heuristic and the CL algorithm would not recover the same tree structure.

4 Experiments

We conducted several experiments in order to compare the repeated use of the batch
CL algorithm against our incremental ACO heuristic. We presented data instances to
both algorithms in chunks of 100. Then we compared the Bayesian Network structures
and the classifiers accuracy during all the learning process. We used five well-known
datasets from the UCI machine learning repository [12]: Adult (13 attributes, 48.842
instances and 2 classes), Nursery (8 attributes, 12.960 instances and 5 classes), Mush-
room (22 attributes, 8.124 instances and 2 classes), DNA (60 attributes, 3.190 instances
and 3 classes) and finally Car (6 attributes, 1.738 instances and 4 classes).

We presented the instances to the algorithms in three different kind of orders. Namely,
an order where similar instances are consecutive, another where dissimilar instances are
consecutive, and finally a random order. We used five different orders of each kind to
run both algorithms, and all numbers presented in the tables of this section are the mean
and the standard deviation of the quantity being analyzed.

We used these three different kind of orders because it is widely reported in the lit-
erature that incremental algorithms may yield different results when the same instances
are presented in different orders [10].

4.1 Computational time gain

The main objective of the incremental algorithm proposed was to reduce the time spent
in learning a new tree structure when the system already learned one from past data. In
Table 1, we compare the operations done by the batch and the incremental algorithms.

At the first two columns, we show the number ofI(X ;Y) calculations, which is the
most time consuming function of the learning algorithm. In our implementation, both
batch and incremental algorithms calculate theI(X ;Y) amounts once, when it is firstly
needed, and store them in an array. At the third and fourth columns, we show the number
of times theI(X ;Y) is recalled. This gives an idea of the number of comparisons the
algorithms perform in order to find the arch with highestI(X ;Y).

We can see that the number ofI(X ;Y) calculations and recalls are much higher
for the batch algorithm. Note that the number ofI(X ;Y) calculations and recalls are
the same for all runs of the batch algorithm as it always builds the tree structure from
scratch, while they are different for the incremental algorithm as it builds the tree struc-
ture from the arch found in an incorrect order.

We also note from Table 1 that the more attributes data sets have the greater the
gain is. Compare Adult against Nursery and Car results. And also, we can see that the
gain grows with the number of data instances (see Adult results). This last point is due
to the fact than when many data instances have already been processed, the new data
instances slightly modify the probability distribution of the database and therefore the
network structure does not need to be updated.

Another cause which may influence the time spent is the order in which the instances
are presented. Usually, when similar instances are presented consecutively, the network
structures learned from data are not good models of the probability distribution of the
entire database. Thereof, the incremental algorithm spends more time as it must update
the network structure. We see, at Table 1, that the number ofI(X ;Y) calculations and
recalls are usually higher when similar instances are ordered together.

Table 1. CPU clock ticks and operations spent in learning

I(X;Y) Calculations I(X;Y) Recalls
Batch Incremental Batch Incremental

Rand 4801.00 (445.57) 28830.20 (1234.17)
Adult Sim 253504468.40 (564.36) 11440024727.20 (2826.10)

Diss 4243.00 (153.88) 19744.60 (5114.83)

Rand 1155.40 (271.08) 3305.60 (903.06)
NurserySim 2408 1216.80 (359.76) 6622 3411.20 (798.36)

Diss 1092.80 (246.21) 3304.60 (411.21)

Rand 5702.20 (3085.10) 43269.40 (18451.79)
Mush- Sim 1247410947.80 (1383.95)94500 73106.80 (9536.44)
room Diss 8490.40 (1839.75) 56983.20 (12287.89)

Rand 35827.60 (3042.28) 692008.60 (70438.44)
DNA Sim 3717034847.60 (970.70) 754551652884.80 (51460.44)

Diss 33489.80 (6154.39) 647897.00 (144846.32)

Rand 87.60 (49.51) 171.60 (100.51)
Car Sim 165 106.40 (16.53) 330 218.80 (53.65)

Diss 77.80 (24.10) 154.00 (74.14)

4.2 Quality of the recovered structures

In Figure 1, we show the behavior of our heuristic along the learning process where
the algorithm is fed with chunks of 100 data instances, and using a random data order.
We compare the structures obtained with our incremental proposal against the ones
obtained with the CL batch algorithm.

Graphics present three curves. The first, shows the first arch which is not in de-
creasing cost order. When the number shown coincides with the number of attributes, it
means that all arches are in decreasing cost order and consequently the structure is not
updated. This curve gives an idea of when ACO detects that the structure must be up-
dated. The second, shows the number of different arches between the structures learnt
by the batch algorithm and the ones learnt by our incremental proposal. This curve
gives us an idea of how well ACO approximates the best solution. Finally, the third
curve, shows the number of arches that are different between the former and the current

tree structure learnt with the batch algorithm. This curve gives an idea of the degree in
which the new 100 data instances make the current structure to change.

Looking at the figure, we discover that our incremental algorithm approximates very
well the best solution. It is able to detect when the structure should be updated and is
updated correctly. The third curve shows that, at the early stages of the learning process,
when few data instances have already been processed, the structure changes quite a lot
and that the number of changed arches tend to decrease as more data is processed. This
is very well seen at the graphic of the DNA dataset. Even in this case the incremental
algorithm learns structures very close to the best one. If we look back to Table 1, we
can see that the incremental algorithm saves, in this case, little time as it must trigger
the CL algorithm very often at firsts arches, building almost the entire tree.

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Num of data

(a) Mushroom

Batch-Increm.
Batch: prev.-curr.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

30

Num of data

(a) Mushroom

Unordered arch

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000

Num of data

(b) DNA

Batch-Incremental
Batch: Previous-current

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

Num of data

(b) DNA

Unordered arch

Fig. 1. Quality of recovered structures. Each graphic presents three curves; the first (Unordered
arch), shows the first arch which is not in decreasing cost order. When the number shown co-
incides with the number of attributes, it means that all arches are in decreasing cost order. The
second (Batch-Incremental) shows the number of different arches between the trees learnt by the
batch algorithm and the ones learnt with the ACO heuristic. The third curve (Batch: Previous-
current), shows the number of different arches between the former and the current trees learnt by
the batch algorithm. Note that the y axis of the first curve is on the right while the y axis of the
second and third curves is on the left.

4.3 Accuracy curves

In this section, we compare the accuracy curves of the batch and the incremental al-
gorithms when data is presented in the three different orders we explained above. In
our experiments, we used two thirds of the data instances to train the classifier and the
remainder for testing. In all data orders the test instances were randomly sampled.

In Figure 2, we can see the evolution of the accuracy for the DNA data set. The
graphic on the left corresponds to the repeated use of the batch algorithm and the one
on the right corresponds to the incremental algorithm.

Note that the shape of both graphics is almost the same. That is, our incremental
classifier behaves as well as the batch one. We expected this result as the tree structures
yielded by both algorithms are, most of the times, the same as shown in Figure 1.

If we compare the accuracy curves of the three different orders, we can see that
the accuracy is best when data is randomly presented, while it is worse when similar
instances are presented consecutively. That is due to the fact that when similar instances
come together, the classifier is, at the beginning, trained with instances from one single
class, and though it is not able to correctly classify instances from other classes. Lately,
when new instances from other classes are used to train the classifier its accuracy is
improved. Note also that the accuracy of the last learnt classifier is almost the same for
the three orders.

We can see at Figure 2 that the classifier accuracy dramatically drops around the
600th instance when similar instances are presented together. That is due to overfitting,
that is, the classifier is too specialized to recognize the training instances and it is not
able to correctly classify the test ones.

Fig. 2. Accuracy curves. DNA data set.

0.45
0.5

0.55
0.6
0.65
0.7

0.75
0.8
0.85
0.9

0.95
1

0 500 1000 1500 2000

Num of data instances

Batch ale
Batch sim
Batch dim

0.45
0.5

0.55
0.6
0.65
0.7

0.75
0.8
0.85
0.9

0.95
1

0 500 1000 1500 2000

Num of data instances

Incr ale
Incr sim
Incr dim

5 Discussion and Final Conclusions

Previous work on incremental learning of Bayesian Networks have focused on learning
general network structures, namely, directed acyclic graphs (DAGs) [1, 6, 9]. The au-
thors assume that the size of thesufficient statistics necessary to recover any possible
DAG is very large and thereof it is not feasible to store them in main memory.

We presented in this paper an extension of the CL algorithm in order to incremen-
tally learn tree-shaped Bayesian Networks. We used our algorithm to incrementally
learn Tree Augmented Naive Bayes classifiers. We obtained in this way a TAN classi-
fier which is incremental like Naive Bayes.

We claim that our algorithm is very reactive, that is, it is able to quickly detect
changes in new data and to correctly update the structure. In Figure 1, we could see

that the heuristic is sound in the sense that it triggers the updating process only when
changes are actually needed. We could also see in Figure 2 that the accuracy of the
incremental classifier is as good as the accuracy of the batch one.

The major benefit of our incremental proposition is that it saves computing time.
Even when the tree must be updated the number of calculations and the number of
comparisons required is very much reduced each time a branch is checked as correctly
ordered. The number of comparisons the CL algorithm must perform to order the arches
is (n2) +

Pn

i=2 i(n � i), while in our proposition when the first branch is checked as
correct the number of comparisons is reduced by(n2) and the number of calculations
of mutual information is reduced from(2n) to a maximum of(n�1

2). And when thek-th
branch is checked as correct, being1 < k < n, the number of comparisons is reduced
by k(n� k) and the number of tests is reduced from(n�k2) to a maximum of(n�k�1

2).

References

[1] W. Buntine. Theory refinement on Bayesian networks. In B.D. D’Ambrosio, P. Smets, and
P.P. Bonisone, editors,Proceedings of the Seventh Conference on Uncertainty in Artificial
Intelligence, pages 52–60, 1991.

[2] W. Buntine. A guide to the literature on learning probabilistic networks from data.IEEE
Trans. On Knowledge And Data Engineering, 8:195–210, 1996.

[3] Jie Cheng and Russell Greiner. Learning bayesian belief network classifiers: Algorithms
and system. InProceedings of the Canadian Conference on AI, pages 141–151, 2001.

[4] C.K. Chow and C.N. Liu. Approximating discrete probability distributions with depen-
dence trees.IEEE Transactions on Information Teory, 14:462–467, 1968.

[5] R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley & Sons,
New York, 1973.

[6] N. Friedman and M. Goldszmidt. Sequential update of Bayesian network structure. In
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997.

[7] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers.Machine
Learning, 29(2-3):131–163, 1997.

[8] E. Keogh and M. Pazzani. Learning augmented bayesian classifiers: A comparison of
distribution-based and classification-based approaches. In FL Ft. Lauderdale, editor,Pro-
ceedings of the seventh International Workshop on Artificial Intelligence and Statistics,
pages 225–230, 1999.

[9] W. Lam and F. Bacchus. Using new data to refine Bayesian networks. In R. L´opez de Man-
taras and D. Poole, editors,Proceedings of the Tenth Conference on Uncertainty in Artifi-
cial Intelligence, pages 383–390, 1994.

[10] P. Langley. Order effects in incremental learning. In P. Reimann and H. Spada, editors,
Learning in humans and machines: Towards an Interdisciplinary Learning Science. Perga-
mon, 1995.

[11] Pat Langley and Stephanie Sage. Induction of selective bayesian classifiers. In R. L´opez
de Mantaras and D. Poole, editors,Proceedings of the tenth Conference on Uncertainty in
Artificial Intelligence (UAI’94), pages 399–406. San Francisco, CA: Morgan Kaufmann.

[12] P.M. Murphy and D.W. Aha. UCI repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html., 1994. Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science.

[13] D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on
directed graphical structures.Networks, 20:579–605, 1990.

