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Abstract. This paper describes GADISC, a high-level CORBA-based service
model for Distributed Genetic Algorithms frameworks. A CORBA service
administers all participating network nodes with multithreaded DGA objects,
each having its own population(s) and operators. A genetic algorithm problem
is assembled as a component pipeline made by composing filters [operators],
mappings [fitness functions] and totalizers [accumulators], coded as Java class
instances acting on population pairs. Problems are set up and monitored through
a web page, by selecting from a expandable database of basic encodings, high
level operators, accumulators, and fitness functions. Access, manipulation and
control are performed through a domain specific IDL. Each DGA can be
stopped, resumed, and run remotely, storing all results as XML data. A servlet
collects information and statistics, with a suitable user interface designed for
process control and visualization. All services are implemented using freely
available software, with such planned enhancements as MPI, JNI and a better
GUI.

1   Introduction

Early in the development of Genetic Algorithms [Gold89] as a proper body of
knowledge, there were already available source and binary implementations of GA
environments. Used to tackle more complex problems, they soon were made
inadequate by new genotype approaches (sharing), population strategies (niching) and
more genetic operators. To account for this evolution, parallel implementations of GA
started appearing in the optimization landscape, such as pGA [Liep90], GENITOR II
[Whit90], DGENESIS [Cant99] and GALOPPS [Good97]. Most used C or C++.

The advent of the Internet allowed a different strategy to deal with complex GA
problems, by redistributing populations on a network [Jose97] using niching
strategies, using the Island or Archipelago Model [Whit98]. The advent of Java also
brought Distributed Genetic Algorithms (DGA) implementations using multiple
threads and RMI [Smit98], with very few attempts at interoperability. A more recent
implementation uses XML-based communication protocols [Mere01].

The GADISC framework (Genetic Algorithms with DIstributed Software
Componetns) is a framework for modeling, setting up and running Distributed
Genetic Algorithms (DGA) components in a truly distributed, interoperable and
interactive fashion, based on the standards of the CORBA distributed objects model.
It is designed as an expandable and evolvable service, providing a platform for



different encodings, a class hierarchy of genetic operators, and an abstraction
mechanism for GA’s acting on distributed populations.

2   The CORBA Distributed Component Model

The Common Object Request Broker Architecture (CORBA) was created by the
Object Management Group (OMG) [OMG1999] with the objective of promoting
object-orientation in software engineering. This is accomplished by specifying a
common standard for the development of distributed applications, relying on the
reusability, portability, and interoperability of objects in heterogeneous environments.

The CORBA bus defines the components’ structure and manner of interaction,
allowing low-level communication by synchronized remote procedure calls or RPC’s
[OSF91]. CORBA also allows asynchronous interaction, so clients can continue
working after issuing requests without having to wait for an immediate result from the
server. CORBA allows classes to be implemented in several languages, executed on
different operating systems and platforms, and dispersed on a heterogeneous network.

To account for this, CORBA has centered on three concepts:

•  Separation between interface and implementation. All CORBA components are
specified by an Interface Definition Language (IDL), a purely declarative language
close to C++, without statements or control structures. It is implementation
independent, with existing bindings for C++, Java and others [LBS1998]. A
component can specify which classes it inherits from, method signatures, attributes,
throwable exceptions, input and output arguments, return values, and data types.

•  Localization Independence. The kernel of any CORBA implementation is the
Object Request Broker (ORB), a naming service that locates objects transparently.
It routes petitions in such a way so that objects can communicate among
themselves, whether on the same machine or across a network.

•  Vendor Interoperability and Systems Integration. The Internet Inter-Operability
Protocol (IIOP) specifies how to change the messages from General Inter-ORB
Protocol (GIOP) in TCP/IP networks, making the Internet a giant ORB. The IIOP
has the advantage of operating on the Secure Sockets Layer (SSL), which allows
secure  (encrypted) passage of data.

The architecture allows the creation of simple objects that, when inheriting from
the proper services, may have transactional, secure, locked or persistent attributes.
These objects are able to interrelate and find themselves within the bus. CORBA
specifies an extensive service set for the creation, disposal, name access, storage and
retrieval of objects, and how to define relations among them [Orfali1996],
[Orfali1998].

All CORBA Services are implemented in IDL (Fig. 1). The ORB’s interface offers
the Stubs service, and dynamic invocation interfaces to CORBA objects. From the
client side, to invoke a remote object as local, it is first referenced, then the client is
linked with the IDL-defined Stub, which transforms the ORB’s requests into a real
implementation, inheriting the interface methods. On the server side for each interface
there is an implemented Skeleton. Its function is to transform the requests from the



ORB into invocation on the server object or real (remote) implementation. Stubs and
Skeletons are generated by the IDL’s compiler.

Fig. 1. The CORBA Service Architecture of the Object Management Group

3   The Component Pipeline Model

In a object computing model, several technologies must come into play: The first is a
platform defining object streams, whether they are simple messages or actual
sequential flows of structured data [Chang1995]. Object streams are directed flows of
objects of the same class (or kind) connecting two processes together. One acts as
emitter, and the other as receiver. Object streams correspond to signal flows, and the
applications correspond to composition filters and mappings operating on those object
streams [Aksit1994].

3.1   Composition Filters

A distributed application network is described as a directed graph, where at each node
there is a sequence of transformation components. Components at nodes are
connected using object streams (Fig. 2a)., and can then be expressed as the orderly
composition of transformations (filters, mappings, and totalizers) [Theo98b].

Each transformation T takes the form,
for each individual I Œ P do

if (I meets filter criterion) then apply operation to I

A filter (Fig. 2b) uses a query method to detect those objects that fit a certain
criterion. The output is an object stream of valid objects. !A pure filter  performs no
transformations. In the example, the gray blocks are filtered out.

A mapping (Fig. 2c) is applied sequentially to all objects of the input stream,
producing an transformed stream. A pure mapping has no criterion. In the example,
blocks are transformed into pentagons.



A totalizer (Fig. 2d) returns a signal after processing a whole stream. In the
example, it is counting the stream elements. A totalizer takes the form

initialize accumulator to some default value
for all (I that meets filter criterion) do

obtain some partial value from I and aggregate  it to accumulator
return value computed from accumulator

Fig. 2. Schematic component pipeline showing Filters, Mappings and Totalizers

All objects run concurrently, sequentially chained along the same object stream.
Each filter repeatedly obtains an item from the stream, process it, and then passes it
along to the next filter in the chain, in a pulsing manner akin to parallel digital signal
processing. All instance objects are derived from one class, called the STO (Secure
Threaded Object). Each object of this class is capable of locating, linking and secure
object streams with each other [Bena99].

4   Distributed Genetic Algorithms

DAG models exploit new spaces in parallel. Individuals may migrate from one
population to the next, even conforming new hybrid population nodes or islands.

The Island model is an abstraction used to represent connections between
populations. The problem population is subdivided in several subpopulations or
islands, with their own characteristics and operators, forming an archipelago (Fig. 3).
Every number of generations, hybridization through migration performs a population
exchange, exploiting differences among niches, a source of genetic diversity. Too
much or too little migration might affect algorithmic convergence.



Fig. 3. Archipelago model of hybridization between island migrations during a DGA run.

There are several migration policies for the island model:

•  Star policy: There is a master island, and the rest are slaves. All slave
subpopulations send their h1 best chromosomes (h1 >= 1) to the master population,
which correspondingly broadcasts its h2 best chromosomes (h2 > 1) to each slave
subpopulation.

•  
•  Ring policy: Each subpopulation sends its h3 best chromosomes (h3 > 1) to a

neighbor, in a one-way cyclic flow.
•  
•  Network policy: No hierarchy is specified among subpopulations, each sends its h4

best chromosomes (h4 > 1) to other population(s).

4.1 The Distributed Genetic Algorithm with Multiple Populations.

A general DGA is aptly described [Theo98a] by the following definitions:

A = Chromosome encoding (i.e. {0, 1}, real, string).
n = Number of alleles in a chromosome.
NP = Number of subpopulations.
Op = The set of genetic operators.
Pi = Population i.
Osi = Offspring of Population i.
PT = { P1, .., PNP }, The whole population set.
G% = Generation Replacement rate.
K% = Mortality Rate.
C = Convergence or Stop Criterion.
Fx = Fitness Funtion.
AFV = Average Fitness Value

The Operator Set Op:
Ox = Any Ordering (Ranking) operator
RRx = Reproduction Ranking operator
KRx = Ranking Removal operator
Sx = Selection operator
Xx = Crossover operator or Recombination.



Mx = Mutation operator
Kx = Culling operator
Jx = Join operator to merge populations.
Ix = Migration operator.

Algorithm
1.  Generate PT with NP populations, having L individuals.
2.  Repeat for each Pi in PT

2.1.  Apply Fx to compute fitness for each individual of Pi
3.  While AFV(PT) does not satisfy Convergence Criterion C do

3.1.  Repeat for each Pi  fromPT
3.1.1.  Apply Sx to Pi, selecting G% individuals from Pi with RRx
3.1.2.  Apply Xx to Pi, producing new individuals in Osi
3.1.3.  Apply Mx to each individual in Pi
3.1.4.  Apply Fx to calculate fitness values for Osi
3.1.5.  Apply Jx to join populations Pi and Osi in Pi
3.1.6.  Apply Ix to migrate individuals from population Pi to Pk, for some k
3.1.7.  Apply Kx to Pi to remove K% of individuals from Pi with KRx

4.2   A Pipeline of Genetic Operators

A Genetic Operator is defined as some transformation acting on the individuals of a
population. They are designed as Composition-Filter objects for this implementation,
having two streams instead of one (two input channels and two output channels).

T:P2 ––> P2 (1)

Using the same notation shown above, a DGA can be expressed in Composition-
Filters form as follows:

1.  Generate PT with NP populations, having L individuals.
2.  For each Pi in PT do

2.1.  Apply Fx to {Pi, empty} to calculate individuals fitness values
3.  While AFV({Pi, empty}) does not satisfy Convergence Criterion C do

3.1.  For each Pi  in PT do
3.1.1. For each operator Tk  in Op do

3.1.1.1. Apply Tk to channel pair {Vpi, Wpj}, where Vpi, and Wpj are
channels for some Pi‘s and/or Osi‘s

4.  Obtain best individuals from each  Pi

Although it seems logical that one population channel would suffice for a GA
implementation, certain GA operators, such as Culling and Migration, require two
separate channels [Cast01], one for objects that pass on to the next operator, and
another for those that don’t. Since all operators usually require access to the
population as a whole, it is better to stream this population in its own channel, so no
need arises for later global references. Operators are connected in a sequential
pipeline by joining one-to-one the first’s output channels to the second’s input
channels.

Only population sets of individuals flow at each channel. An operator pipeline
results from the sequential composition of transformations on population pairs, as
shown in Fig. 4



Fig. 4. Operator composition showing how to connect filters to implement the steps of a GA

The DGA is then expressed as a two-channel pipeline, in which component
operators are plugged in and out, obtaining a test bed for whole classes of DGA’s.
Ordering and ranking transformations can also be expressed as Composition Filters,
in effect establishing a design pattern for the whole family of Genetic Algorithms. As
a lark, it is possible to design a DGA that mutates individuals before reproduction.

Fig. 5. Filter Composition showing sequential operator application

A typical assembly for a standard DGA setup run is shown in Fig. 5. Each
algorithmic step is shown as the application of some operator.  The first channel is
usually the whole population set at that thread, and the second channel is usually the
result of the transformation. The complete channel setup is shown on Table 1, and the
UML class diagram of the GADISC implementation shown on Fig. 6.

Table 1. Common Operators families and their channels

Operator 1st. Input 2nd. Input 1st. Output 2nd. Output Result
S Selection Pop * PopSelected * -
X Crossover Pop * PopOffsrpg * -
M Mutation Pop * PopMutated * -
K Culling Pop * PopLive PopKilled -
F Fitness Eval. Pop * Pop * -
I Migration Pop * PopRemain PopMigrant -
Avg. Func. Value Pop * Pop * AFV
J Joiner Pop1 Pop2 PopJoined * -



Fig. 6. UML Class Diagram of the operator class hierarchy of the GADISC System

5  Setting up and running a DGA problem in GADISC

The GADISC environment has been assembled from freely available software
running on commodity hardware



5.1   Implemented with Free and Open Source Code

All specific programming was done in the Java‰  language [Bros01]. The RedHat‰
Linux‰ platform was chosen because of its network centric services. CORBA‰ was
implemented using the freeware Java IDL JacORB ORB, at     http://www.inf.fu-   
berlin.de/~brose/jacorb    . All web interaction is handled from a web server running
Java servlets under RESIN‰ (    http://        www.caucho.com      ) to dynamically manage all
setup and running of a DGA problem solving session from a JSP webpage. Operator
classes are stored at a special directory, and their URI’s stored in a Postgres‰ SQL
database, freely accessible by JDBC‰ calls. Display of current DGA behavior is done
by the free Java package JFreeChart‰ (    http://www.jrefinery.com)    .

5.2   Interaction and Presentation

A webpage launches the Java front end for the GADISC system. The following
screenshot (Fig. 7) shows all the functionality available to the practitioner in six
different windows. At the top left window, all available genetic operators in the
database are shown; At top right, their applying sequence and channel setup. At
middle left, current best solutions from the population as a whole. At middle right, all
CORBA nodes hosting DGA services. All services are multithreaded, so several
populations may be evolving at the same node.  At bottom left, a chart showing
current fitness values and convergence. At bottom right, setup parameters and their
current settings.

Any DGA can be started and stopped at will from the servlet. The current web session
may be disconnected, leaving the CORBA services in the network to solve the
problem, and connect later to see results. There is a notification service that alerts
when a run has converged. All intermediate values and final are stored as XML
encodings, and easily exported for further analysis.

Each problem must provide its own implementation of the Fitness Evaluation method,
and its own encoder/decoder of genotype information. A XML specification for a
genetic algorithms formulation has not been devised yet.
All results are stored by a software component implementing a log database, which
can be turned on and off. It queues up all events generated at each operator. Stored
information records have population ID, DGA ID, generation number, operator type,
affected chromosome, fitness function ID and fitness.

5.3  Example Problem #1

The first run was made by using the following Fitness Function.
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It has two global maxima at (0,-1) and (0,1). It was implemented with real encoding.
In 25 evolutions, half of the distributed island problems had converged to (0,-1) and
the rest to (0,1). Further evolutions only caused random switches between the two
groups. Since it was implemented in Java, speed was not a factor, although this
problem was solved in less than a minute.



5.3  Example Problem #2

The second run was made by using the following Fitness Function, subjected to a
restriction.
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This is an optimization problem, with an unique minimum at (0.5, -0.5). A penalty
function was incorporated to the fitness function. On average, it took around 250
evolutions to obtain this result, incrementing the penalty function every ten
evolutions.

Fig. 7. UML Class Diagram of the operator class hierarchy of the GADISC System

6   Conclusion

The GADISC framework provides a versatile platform for setting up and running
multithreaded Distributed Genetic Algorithms. The deployment cost is very low,
since it was implemented with available free and open source code, or otherwise no



cost licensing. Derived genetic perators are created easily by subclassifying a similar
operator class, added to the operator’s database, and made available to the framework.

Future enhancements will include a measure of parallelization in multiprocessor
machines using OpenMP, faster C++ implementation of operators (using the Standard
Template Library, STL), better GUI and interaction for setting up encodings, and a
generic fitness function parser linked via Java Native Interface (JNI). A plan to
migrate to SOAP (XML based communications) has been proposed as an natural
improvement for the openness and versatility of this framework.

The web site for GADISC is at     http://www.ldc.usb.ve/~vtheok/GADISC     .
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