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1   Introduction 

Blind Source Separation  (BSS) consists in recovering unobserved signals from a 
known set of mixtures. The separation of independent sources from mixed observed 
data is a fundamental and challenging signal-processing problem [2], [6], [7], [14]. In 
many practical situations, one or more desired signals need to be recovered from the 
mixtures only. A typical example is speech recordings made in an acoustic environ-
ment in the presence of background noise and/or competing speakers. This general 
case is known as the Cocktail Party Effect, in reference to human’s brain faculty of 
focusing in one single voice and ignoring other voices/sounds, which are produced 
simultaneously with similar amplitude in a noisy environment. Spatial differences 
between the sources highly increase this capacity. The source separation problem has 
been successfully studied for linear instantaneous mixtures [1], [4], [12], [14] and 
more recently, since 1990, for linear convolutive mixtures. References [10., [17], [19] 
clearly explain the nature of the problem, previous work, purpose, and contribution of 
the paper. The nonlinear separation of sources has been addressed in [3], [8], [13]. 

 In the framework of independent component analysis, ICA, many kinds of ap-
proaches have been presented concerning the blind separation of sources, with appli-
cations to real problems in areas such as communications, feature extraction, pattern 
recognition, data visualization,  speech processing and biomedical signal analysis 



(EEG, MEG, fMRI,  etc), considering the hypothesis that the medium where the 
sources have been mixed is linear, convolutive or non-linear. ICA is a linear trans-
formation that seeks to minimise the mutual information of the transformed data, x(t), 
the fundamental assumption being that individual components of the source vector, 
s(t), are mutually independent and have, at most, one Gaussian distribution. The ‘In-
fomax’ algorithm of Bell and Sejnowski [2] is an unsupervised neural network learn-
ing algorithm that can perform blind separation of input data into the linear sum of 
time-varying modulations of maximally independent component maps, providing a 
powerful method for exploratory analysis of functional magnetic resonance imaging 
(fMRI) data. Also using the maximization of the negentropy, ICA ‘Infomax’ algo-
rithm is used for unsupervised exploratory data analysis and for general linear ICA 
applied to electroencephalograph (EEG) monitor output. Many solutions for blind 
separation of sources are based on estimating a separation matrix with algorithms, 
adaptive or not, that use higher-order statistics, including minimization or cancella-
tion of independence criteria by means of cost functions or a set of equations, in order 
to find a separation matrix [10]. ICA is a promising tool for the exploratory analysis 
of biomedical data. In this context, a generalized algorithm modified by a kernel-
based density estimation procedure has been studied to separate EEG signals from 
tumour patients into spatially independent source signals, the algorithm allowing 
artifactual signals to be removed from the EEG by isolating brain-related signals into 
single ICA components. Using an adaptive geometry-dependent ICA algorithm, Pun-
tonet et al. [14] demonstrated the possibility of separating biomedical sources, such as 
EEG signals, after analyzing only the observed mixing space, due to the almost sym-
metric probability distribution of the mixtures. The general case of a nonlinear mix-
ture of sources is shown in the following figure: 
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Fig. 1. Nonlinear mixing and demixing model. 



2    Hybridation of Competitive Learning and Simulated Annealing 

2.1 Algorithm Description 

 
Fig. 1 shows that the mixing system is divided into two different phases: first a linear 
mixing and then, for each channel i, a nonlinear transfer part. The unmixing system is 
the inverse, first we need to approximate the inverse of the nonlinear function in each 
channel gi, and then unmix the linear mixing by applying W to the output of the gi 
nonlinear function. 

 

∑
=

=
n

j
jjiji txgwty

1
))(()(  (1) 

 
In different approaches, the inverse function gj is approximated by a sigmoidal 

transfer function, but because of certain situations where the human expert does not 
give the a priori knowledge about the mixing model, a more flexible nonlinear trans-
fer function based on odd polynomial of P-th order is used: 

 

12

1
)( −

=
∑= k

j

P

k
jkjj xgxg  (2) 

 
where [ ]jPjj ggg ,...,1=  is a parameter vector to be determined. In this way, the out-

put sources are calculated as: 
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Nevertheless, computation of the parameter vector jg is not easy, as it presents a 

problem with numerous local minima. Thus we require an algorithm that is capable of 
avoiding entrapment in such a minimum. As a solution to this first unmixing stage, 
we propose the hybridization of genetic algorithms. We have just used new meta-
heuristics, as simulated annealing and genetic algorithms for the linear case [5], [15], 
[16], but in this paper we will focus in a more difficult problem as is the nonlinear 
BSS.We propose an original method for independent component analysis and blind 
separation of sources that combines adaptive processing with a simulated annealing 
technique, and which is applied by normalizing the observed space, x(t), in a set of 
concentric p-spheres in order to adaptively compute the slopes corresponding to the 
independent axes of the mixture distributions by means of an array of symmetrically 
distributed  neurons in each dimension. A preprocessing stage to normalize the ob-
served space is followed by the processing or learning of the neurons, which estimate 



the high density regions in a way similar, but not identical to that of self organizing 
maps. A simulated annealing method provides a fast initial movement of the weights 
towards the independent components by generating random values of the weights and 
minimizing an energy function, this being a way of improving the performance by 
speeding up the convergence of the algorithm. The main process for competitive 
learning when a neuron approaches the density region, in a p-sphere ρ(k) at time t, is 
given by: 
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with α(t) being a decreasing learning rate. Note that a variety of suitable functions, α 
() and f(), can be used. In particular, a learning procedure that activates all the neu-
rons at once is enabled by means of a factor, K(t), that modulates competitive learn-
ing as in self-organizing systems, i.e., 
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Simulated annealing is a stochastic algorithm that represents a fast solution to 

some combinatorial optimization problems. As an alternative to the competitive 
learning method described above, we first propose the use of stochastic learning, such 
as simulated annealing, in order to find a fast convergence of the weights around the 
maximum density points in the observation space x(t). This technique is effective if 
the chosen energy, or cost function,  Ei j , for the global system is appropriate. The 
procedure of simulated annealing is well known [16]. It is first necessary to generate 
random values of the weights and, secondly, to compute the associated energy of the 
system. This energy vanishes when the weights achieve a global minimum, the 
method thus allowing escape from local minima. For the problem of blind separation 
of sources we define an energy, E, related to the four-order statistics of the original p 
sources, due to the necessary hypothesis of statistical independence between them, as 
follows: 
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where cum22 (si (t), sj (t)) is the 2x2 fourth-order cumulant of si (t) and sj (t), and 
<x(t)> represents the expectation of x (t). In spite of the fact that the technique pre-
sented in Section 2.2 is fast, the greater accuracy achieved by means of the competi-
tive learning shown in Section 2.1 led us to consider a new approach. An alternative 
method for the adaptive computation of the Wρk matrix concerns the simultaneous 
use of the two methods, competitive learning and simulated annealing. Now, a pro-
posed adaptive rule of the weights is the following:    
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2.2   Simulation Results 

In Figure 2, we show the first simulation, that corresponds to the synthetic non-
linear mixture presented by Lin and  Cowan [9], for sharply peaked distributions, the 
original sources being digital 32-bit signals. 
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Fig. 2. Non-linear mixture of p=2 sources. 
 
As shown in Figure 3, good estimation of the density distribution is obtained with 

20000 samples, and using n=4 p-spheres (p=2). 
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Fig. 3. Network Estimation with SA and CL. 

3   Genetic Algorithms 

3.1   Algorithm Description 

Genetic Algorithms (GAs) are nowadays one of the most popular stochastic optimiza-
tion techniques. They are inspired by the natural genetics and biological evolutionary 
process. The GA evaluates a population and generates a new one iteratively, with 



each successive population referred to as a generation. Given the current generation 
at iteration t, G(t), the GA generates a new generation, G(t+1), based on the previous 
generation, applying a set of genetic operations. The GA uses three basic operators to 
manipulate the genetic composition of a population: reproduction, crossover and 
mutation [5]. Reproduction consists in copying chromosomes according to their ob-
jective function (strings with higher evaluations will have more chances to survive). 
The crossover operator mixes the genes of two chromosomes selected in the phase of 
reproduction, in order to combine the features, especially the positive ones of them. 
Mutation is occasional; it produces with low probability, an alteration of some gene 
values in a chromosome (for example, in binary representation a 1 is changed into a 0 
or vice versa). To perform the GA, first is very important to define the fitness func-
tion (or contrast function in BSS context). This fitness function is constructed having 
in mind that the output sources must be independent from their nonlinear mixtures. 
For this purpose, we must utilize a measure of independence between random vari-
ables. Here, the mutual information is chosen as the measure of independence. 
Evaluation functions of many forms can be used in a GA, subject to the minimal 
requirement that the function can map the population into a partially ordered set. As 
stated, the evaluation function is independent of the GA (i.e., stochastic decision 
rules). Unfortunately, regarding the separation of a nonlinear mixture, independence 
only is not sufficient to perform blind recovery of the original signals. Some knowl-
edge of the moments of the sources, in addition to the independence, is required. A 
similar index as proposed in [16] and [18], is used for the fitness function that ap-
proximates mutual information: 
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Values near to zero of mutual information (8) between the yi  imply independence 

between those variables, being statically independent if I(y)=0. In the above expres-
sion, the calculation of H(yi) needs to approximate each marginal pdf of the output 
source vector y, which are unknown. One useful method is the application of the 
Gram-Charlier expansion, which only needs some moments of yi as suggested by 
Amari et al. [1] to express each marginal pdf of y as: 
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The approximation of entropy (9) is only valid for uncorrelated random variables, 

being necessary to preprocess the mixed signals (prewhitening) before estimating its 
mutual information. Whitening or sphering of a mixture of signals consists in filtering 
the signals so that their covariances are zero (uncorrelatedness), their means are zero, 
and their variances equal unity. The evaluation function that we compute will be the 
inverse of mutual information in (8), so that the objective of the GA will be maximiz-
ing the following function in order to increase statistical independence between vari-
ables: 
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There is a synergy between Genetic Algorithms and Natural Gradient descent. 

Given a combination of weights obtained by the genetic algorithms for the nonlinear 
functions expressed as G= [g1, ..., gn], where the parameter vector that defines each 
function gj is expressed by                     , it is necessary to learn the elements of the 
linear unmixing matrix W to obtain the output sources yj. For this task, we use the 
natural gradient descent method to derive the learning equation for W as proposed in 
[18]: 
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and denotes the Hadamard product of two vectors. The typical genetic operators are 
crossover and mutation, that will be used for the manipulation of the current popula-
tion in each iteration of the GA.  The crossover operator is “Simple One-point Cross-
over”. The mutation operator is “Non-Uniform Mutation” [11]. This operator presents 
the advantage when compared to the classical uniform mutation operator, of perform-
ing less significant changes to the genes of the chromosome as the number of genera-
tions grows. This property makes the exploration-exploitation trade-off be more fa-
vorable to exploration in the early stages of the algorithm, while exploitation takes 
more importance when the solution given by the GA is closer to the optimal solution.  

3.2   Simulation Results 

To provide an experimental demonstration of the validity of GABSS, we will use a 
system of three sources. Two of the sources are sinusoidal, while the third is a ran-
dom signal, uniformly distributed in [-1, 1] (uniform noise). The independent sources 
and the 3x3 mixture matrix are:  
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The nonlinear distortion are selected as: 

1: f1 (x)= Tanh(x),   2: f2(x) = Tanh(0.8x),  3: f3(x) = Tanh(0.5x) 
 

1,...,j j jPg g g =  



The goal of the simulation was to analyse the behaviour of the GA and observe 
whether the fitness function thus achieved is optimised; with this aim, therefore, we 
studied the mixing matrix obtained by the algorithm and the inverse function. When 
the number of generations reached a maximum value, the best individual from the 
population was selected and the estimated signals u were extracted, using the mixing 
matrix W, and the inverse function. Figure 4 represents the 1000 samples from the 
original signals. Figure 5, on the left, represents the mixed signals, and on the right 
shows the separated signals obtained with the proposed algorithm. As it can be seen 
signals are very similar to the original ones, up to possible scaling factors and permu-
tations of the sources. Figure 6, on the left, compares the approximation of  the func-
tions gi to the inverse of fi  and Figure 6, on the right, shows the joint representation of 
the original, mixed and obtained signals. In this practical application, the population 
size was populationsize= 20 and the number of generations was generationnumber = 40. 
Regarding genetic operators parameters, crossover probability per chromosome was 
pc= 0.8 and mutation probability per gene was pm= 0.01. As an special parameter for 
the non-uniform mutation operator b=5.   

 
Fig. 4. Original signals 

     
Fig. 5. Mixed signals (left) and separated signals (right). 



4   Conclusion 

We have shown a new, powerful adaptive-geometric method based on competitive 
unsupervised learning and simulated annealing, which finds the distribution axes of 
the observed signals or independent components by means of a piecewise lineariza-
tion in the mixture space, the use of simulated annealing in the optimization of a four-
order statistical criterion being an experimental advance. The algorithm, in its current 
form, presents some drawbacks concerning the application of simulated annealing to 
a high number, p, of signals, and the complexity of the procedure O(2pp2 n) for the 
separation of nonlinear mixtures, that also depends on the number, n,  of p-spheres. In 
spite of these questions that remain open, the time convergence of the network is fast, 
even for more than two subgaussian or supergaussian signals, mainly due to the initial 
simulated annealing process that provides a good starting point with a low computa-
tion cost, and the accuracy of the network is adequate for the separation task, the 
competitive learning being very precise, as several experiments have corroborated. 
Besides the study of noise, future work will concern the application of this method to 
independent component analysis with linear and nonlinear mixtures of biomedical 
signals, such as in Electroencephalograph and functional Magnetic Resonance Imag-
ing, where the number of signals increases sharply, making simulated annealing suit-
able in a quantized high-dimensional space. Despite the diversity of the approaches to 
blind separation of sources, the fundamental idea of the source signals being statisti-
cally independent remains the single most important assumption in most of these 
schemes. The neural network approach has the drawback that it may be trapped into local 
minima and therefore it does not always guarantee optimal system performance.  

 
This article discusses, also, a satisfactory application of genetic algorithms to the 

complex problem of the blind separation of sources. It is widely believed that the 
specific potential of genetic or evolutionary algorithms originates from their parallel 
search by means of entire populations. In particular, the ability of escaping from local 
optima is an ability very unlikely to be observed in steepest-descent methods. Al-
though to date, and to the best of the authors' knowledge, there is no mention in the 
literature of this synergy between GAs and BSS in nonlinear mixtures, the article 
shows how GAs provide a tool that is perfectly valid as an approach to this problem. 

 

          

Fig. 6. Comparison of the unknown fi
-1 and its approximation by gi.(left), and rep-

resentation of  the original (S), mixed (X), and obtained (Y) signals (right). 
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