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Abstract. Non binary learning problems can be broken down into a redundant 
set of binary ones by means of RECOC schemes, namely a generalization of 
Dietterich’s ECOC learning models involving recursive error correcting codes. 
The use of recursive codes allows the modeling of distributed learning 
strategies by means Tanner graphs and general message passing algorithms on 
them. In this paper, RECOC learning based on Product Accumulated (PA) 
codes is analyzed.   

1   Introduction  

The ECOC [1][2] algorithm states a simple and nice association between learning 
and coding theory. Nevertheless, since ECOC codes construction is NP-hard [3], one 
should not expect further generalizations on ECOC learning theory by keeping the 
paradigm changeless. This fact can be observed in [4]. There, adaptive ECOC 
learning algorithms based on ad-hoc ECOC codes and conforming pseudo decoding 
algorithms were presented. It should be noted, however, that the important fact about 
ECOC learning is that is that well theoretically supported developments in coding 
theory could be directly mapped to the learning field. A first attempt in this line of 
research can be found in [5]. In addition, some key ideas on the design of error 
adaptive ECOC algorithms based of recursive codes [6], were established in [7][8]. 
As a result, RECOC learning algorithms were presented. Both recursive decoding and 
RECOC learning algorithms can be explained and designed by means of Pearl's belief 
propagation in Bayesian networks [9]. The main objective of graphical models, such 
as Bayesian Networks, is the powerful representation of complex problems in terms 
of simple ones so that recursive algorithmic solutions can be easily devised from 
them.  

In this paper, we present a RECOC instance based on Product Accumulated (PA) 
Codes [10], a simple but intelligent design of recursive codes based on Turbo [11] 
Product codes. The simplicity of PA codes confirms the power of binary learning for 
the design of non-binary classifiers when used under a RECOC learning approach.  



 The remainder of this paper is organized as follows. In section 2, we revisit 
RECOC learning models. In section 3, a RECOC instance based on PA codes is 
presented.  In section 4, experimental results are presented.  Finally, in Section 6 
conclusions and further work are presented. 

2   RECOC learning  

In its standard form, the ECOC algorithm is applicable to the supervised learning 
of target concepts c  belonging to a target class YXC →: , MY =|| , i.e. classification 
problems involving 2{M class labels. Let us consider how we can construct 
powerful non-binary learning algorithms from only binary and perhaps weak (in the 
PAC sense) ones. Let Θ→Y:E  be an output-encoding mapping involving 
Θ recursive-coding schemes.  Recursive Error Correcting Codes (RECC) can be 
modeled by means of Tanner graphs [12]. A Tanner graph is a bipartite graph 
involving two kinds of nodes, local checks modeling coding constraints and local bits 
modeling codeword bits. Edges are put between local checks and participating local 
bits. In Fig. 1 a simple RECC built from two simple parity check codes 2j1 S j ≤≤, , 
on codeword bits 6i1  ,ci ≤≤ , is shown. Each local check can be understood as a 
component subcode. Of course, the Single Parity Check1 (SPC) constraint is the 
simplest one that we can impose.  
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Fig. 1. A simple RECC from two component subcodes  

The significant fact about RECC is that they allow overall decoding by means of 
decoding algorithms on component subcodes and suitable message passing algorithm. 
Component subcodes are in general low complexity error correcting codes and hence 
are easy to decode. In this way, decoding complexity of a potential good but hard to 
decode error-correcting codes can be accomplished conveniently. Now, let us 
consider how Tanner graphs could be used for modeling distributed learning 
strategies of the ECOC type when an underlying RECC is used. Let us think about the 
class of ( )dkn ,, 2 binary linear block codes suitable for output encoding of non-

                                                           
1 Sum mod 2 of involved bits equals zero 
2 In standard coding notation, it refers to block codes with codeword length n , each codeword 

carrying  informative bits and Minimum Hamming Distance d  



binary output spaces involving kM 2=  classes. Without loss of generality, let us 
consider 162=M  so that block codes for 16=k  will suffice. Let us assume we could 
not find a good, in the standard ECOC sense, binary linear block codes for 16=k  but 
instead we found good ECOC binary linear block codes for 4' =k , i.e. for ECOC 
learning in output spaces involving only 164' 22 �=M  classes. For the sake of 
simplicity, let us assume such ECOC code be the ( )3,4',7' === dkn 3 Hamming 
code. A simple way for constructing a good ( )dkn ,16, =  block code from 
( )3,4',7' === dkn  Hamming subcodes is the product form [6]. Each block of 

16=k information bits must be first broken down into four pieces of information 
blocks, each of them carrying 4' =k  informative bits. Each of these informative 
blocks must be Hamming encoded horizontally and vertically as shown in Fig. 2. The 
resulting code is a ( )9,16,49 === dkn  block code and its minimum distance 

9=d can be derived using graph theory based arguments.  
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Fig. 2. Product codeword (49, 16, 9) from 77 × component Hamming (7,4,3) codes 

 
The use of this (49, 16, 9) product code in our learning ECOC setting would imply 

the learning of an 162=M valued target concept by means of 77 ×  Hamming 
subcodes, one for each horizontal and vertical block data to be Hamming encoded. 
Therefore, learning complexity in the 162=M output space has been reduced to 
exactly 77 × ECOC learning instances in 4' 2=M output spaces i.e. Recursive ECOC 
(RECOC) learning has been achieved. The Tanner graph for this simple product code 
could be devised directly recalling that for any Θ  binary linear block code with 
generator matrix G  and associated parity check matrix H , 0=⋅ THθ  holds 
whenever θ  is a codeword belonging to Θ . Thus, the parity check matrix H  itself is 
the coding constraint we need to introduce on codewords bits.  

Generally speaking, we can think about product codes of the type 
),,( 212121 ddkknn ⋅⋅⋅ involving a set of 1n  Hamming ( )222 ,, dkn subcodes and 

another set of 2n  Hamming ( )111 ,, dkn subcodes, as shown in Fig. 3.  
 
 

                                                           
3 ( )3,12,12 =−−=−= drkn rr  
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Fig. 3. Tanner graph for a product RECC ),,( 212121 ddkknn ⋅⋅⋅  

Now, let us rethink the Tanner graph shown in Fig. 3 in recursive learning terms 
i.e. with local variables representing transmitted binary concepts and local checks 
being ECOC coding constraints. RECOC learning algorithms arise when observing 
that in the ECOC prediction stage only noisy versions of the binary concepts are 
available and that learning noisy is due to the transmission of binary concepts over a 
Discrete Memoryless Channel with channel statistics defined at the ECOC training 
stage. Therefore, the ECOC prediction stage can be associated to a decoding 
algorithm over a noisy codeword defined by the set of 21 nn ×  binary weak 
predictions. In their seminal work about ECOC coding, Dietterich and Bakiri 
recognized that the use of almost random error correcting codes was an essential 
feature in the construction of good ECOC algorithms. It should be noted, however, 
that for the purpose of ECOC learning, product codes of the type above do not 
resemble random coding at all and hence they should be discarded for use in ECOC 
expansions. Nevertheless, despite of their lack of ECOC randomness, product codes 
exhibit a low complexity design potentially valuable in the design of RECOC learning 
algorithms. Following this line of research, we have found the class of Product 
Accumulated Codes (PA) proposed by Lin et al as a good alternative for the design of 
RECOC algorithms based on product codes.  

3   RECOC learning based on Product Accumulated Codes 

Product Accumulated codes are a class of good, simple, soft decodable, high rate 
codes ( 5.0≥= n

kr ) based on the design of Single Parity Check (SPC) Turbo Product 
codes. Because Turbo Product codes based on SPC codes are not good recursive 
codes in the sense of exhibiting a clear pseudorandom coding behavior, they are 
enhanced by serial concatenation with a rate one inner code through an interleaver 
(which performs a random permutation on input bits). Because, these codes are 



iterative soft-decodable, they can be used for the design of good, low complexity, 
high rate, error adaptive ECOC algorithms i.e. for constructing good RECOC learning 
algorithms.  Let us analyze PA codes (see Fig. 4) design issues in our learning setting. 
As shown in [10], information data to be encoded must be first arranged into a matrix 
of p  rows and t columns so that tpk ×= . In learning terms, it means that 
classification problems involving tpM ×≤ 2 classes could be considered. Thereafter, a 
first standard SPC encoding is performed over the tpk ×=  input bits. Following the 
Turbo approach, the same block of input bits is passed through an interleaver so that a 
second SPC encoding stage is performed. Parallel concatenation of block data 
(systematic bits) together with the two columns of parity check bits defines a SPC 
Turbo Product Code with codeword length ( )2+×= tpn . Afterwards, resulting 
codewords bits are passed through an interleaver. Finally, the scrambled codewords 
bits are differentially encoded i.e. a serial concatenation with a rate one inner code is 
performed.  

Fig. 4. PA coder 

Resulting codewords have channel rate 
2+

=
t

tr . Because the minimum t value is 

two, it follows that PA codes allow only 5.0≥r . Recalling those higher channel rates 
than the minimum one ( 5.0=r  for 2=t ) would require stronger binary learners for 
good generalization, 2=t  should be picked out so that RECOC learning based on PA 
codes will work at 5.0=r . From a strictly learning point of view, the introduction of 
interleaving stages gives Single Parity Check product codes the required degree of 
randomness so that they become suitable candidates for the design of good RECOC 
learning algorithms. In addition, because of their simplicity, PA codes permit a clear 
explanation of iterative decoding concepts on their associated Tanner graphs.   For the 
sake of brevity we refer the interested reader to [10] and references therein for 
implementation details of iterative decoding of PA codes. For the purpose of RECOC 
learning implementation based on PA codes, we only need to characterize the 
Discrete Memoryless (learning) Channel at the end of which, binary weak learners 

,10 −≤≤ ni  ,WLi  make the predictions. Such predictions are assumed additive 
contaminated by learning noise. Under these assumptions, binary training errors 

,10 −≤≤ ni  ,pi are a good approximation for the true probabilities of bit error at bit 
positions 10 −≤≤ ni .  



 

RECOC_PA Algorithm

Input

{ } k
M YBSpan 1,0: → , k bits per input label in { }kMY 2,...,1 ≤=

PA code 2=t , tpk ×= , ( )2+×= tpn

Training Sample S , Sm  S = , Binary Weak Learner WL

Number of iterations I for BP and T for inner boosting

Processing

RECOC_PA ( S , PA ,T , 0WL ,.., 1−nWL , 0p ,..., 1−np )

Output
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The RECOC_PA procedure performs the standard ECOC encoding-training stage 

based on PA codes with the additional computation of training error responses 
10, −≤≤ ni pi . Binary learners could be improved with T inner AdaBoost [13] 

boosting steps. A prediction on an unseen feature vector x  uses this set of 
probabilities as input for the Belief Propagation (BP) algorithm. Therefore, at most I 
iterative decoding steps on the Tanner graph structure defining the PA code are 
performed. Noisy codeword bits are given by the binary noisy (possibly boosted) 
predictions 10, −≤≤ ni WLi on the set of input features x . In addition, the required 
channel statistics are given by the training error responses 10, −≤≤ ni pi . Afterwards, 
a set of k  informative binary target concepts is estimated. Finally, a concluding 
hypothesis is obtained by application of the inverse 1−

MBSpan .  

4   Experimental Results 

Learning algorithms were developed using public domain Java WEKA library 
[14]. Therefore, AdaBoost and Decision Stump (DS) implementation details can be 
fully determined from WEKA documentation. PA coding and decoding routines were 
implemented based on [10]. For questions of stability of iterative decoding 
algorithms, a threshold value of 0.04 was assumed for all binary-training errors. We 
tested RECOC PA learning on eight representative UCI datasets (see Table 1.). 
Performance was measured by the observed 10-fold crossvalidation error at I=1, 10, 



20, 30 and T=1, 10, 50, 100. With the exception of the Segment and Anneal datasets, 
in all cases stable results were obtained after the first iterative decoding step (I=1), 
showing a strong probability concentration effect.  

Table 1.. RECOC PA 10-fold crossvalidation error on UCI datasets after the fist iterative 
decoding step and T=1, 10, 50, 100  inner AdaBoost boosting steps 

RECOC PA (DS learners, I=1) Dataset Size Attri
butes 

M 

T=1 T=10 T=50 T=100 

Audiology 226 69 24 0.4911 0.45575 0.3982 0.3938 

Primary 
Tumor 

339 17 22 0.8289 0.7227 0.7168 0.7168 

Soybean 683 35 19 0.7408 0.3953 0.1698 0.1537 

Vowel 990 14 11 0.8838 0.8222 0.7686 0.7636 

Glass 214 10 7 0.6542 0.4672 0.4532 0.4252 

Segment 2310 19 7 0.5597 0.2740 0.1203 0.0948 

Anneal 798 38 6 0.1559 0.0601 0.0267 0.0200 

Lymph 148 18 4 0.3108 0.2297 0.1891 0.1891 
  
Obtained results confirm that learning complexity can be tackled by means of a 

recursive learning approach. Under this setting, a non-binary learning problem is 
analyzed in terms of simpler versions and a general message-passing algorithm.

5   Conclusions and Further Work   

The main contribution of this paper has been the introduction of RECOC models 
based on Product Codes. We showed that although product codes themselves are not 
good codes in the ECOC sense, they could be promoted to such category under a 
Turbo design. The simplest expression of this strategy is the design of PA codes. 
RECOC expansions based on PA codes has been shown effective even at low 
dimensional output spaces, where expected test error responses of RECOC 
expansions based on standard Turbo codes might be deteriorated because of the short 
interleaver lengths involved. The relative high channel rates involved in PA codes 
together with their simple design, remarkably improve computational efficiency of 
resulting RECOC learning algorithms with respect to those based on standard 
recursive coding designs such as standard LDPC [7] or Turbo [8] codes.  

Regarding further work, RECOC_PA learning models emerge as an important line 
of research for the development of low complexity learning algorithms for 
classification problems like those arising in Functional Genomics [15], where learning 
is constrained by a high dimensional, hierarchical, multilabel output space, together 
with vast datasets. All these complexity constraints could be tackled by a diversity 



learning approach supported on distributed learning algorithms similar to 
RECOC_PA ones. 
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