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Abstract. In previous work we have derived a magnitude termed 'Mean

Squared Sensitivity' (MSS) to predict the performance degradation of

a MLP a�ected by perturbations in di�erent parameters. The present

paper deals with the same problem in RBF networks to study the im-

plications when they are a�ected by input noise. We have obtained the

corresponding analytical expression for MSS in RBF networks and have

validated it experimentally, using two di�erent models for perturbations:

an additive and a multiplicative model. Thus, MSS is also proposed as a

quantitative measurement for evaluating the noise immunity of a RBFN

con�guration, giving even more generalization to our approach.

1 Introduction

Radial Basis Function Networks (RBFNs) [1] are neural paradigms that are cur-

rently receiving a great deal of interest and which can be considered universal

approximators [2]. Nevertheless, the algorithms used to train them provide so-

lutions that correspond to local optima in the space of parameter con�gurations

[2]. This means that di�erent network con�gurations may present a similar per-

formance to solve a problem (a similar MSE or a similar classi�cation error) but

the degradation of this performance is di�erent when perturbations a�ect its

parameters. To understand this fact, we must remember that the training algo-

rithms are based on searching for local minima of the mean squared error with

respect to the parameters of the network, but that there exist many possibilities

(as many as there are local minima) and that some of these minima are 
atter

than others [3].

The study of generalization (and also of fault tolerance and noise immunity)

has been examined extensively, considering MLPs [4, 5] as well as RBFNs [5{

7]. Unlike natural neural networks, the above properties are not inherent to

arti�cial neural networks but need to be quanti�ed [4, 8]. Furthermore, increasing

the number of neural units in a network only provides an increment of potential

fault tolerance but it is necessary to accomplish this in practice with an adequate

distribution of learning among these units to enhance the behaviour [8]. In this

way, if the structure of a network is �xed (�xing the number of layers and neurons

per layer) it is possible to �nd di�erent parameter con�gurations, some of which

present better performance against some kinds of perturbations than others. For



example, when the parameter con�guration is obtained via computer simulation

and the network must be translated into a real application where the inputs come

from electronic sensors such as termopars, microphones, etc, it is interesting to

take into account the e�ects of deviations in the simulated inputs and to choose

the parameter con�guration that presents the highest noise immunity among the

di�erent candidates.

A �rst approximation to distinguish between di�erent con�gurations is to

evaluate these properties correctly. Thus, in [5] the fault tolerance of a network

is measured considering stuck-at faults and using the worst case hypothesis,

nevertheless, as the authors remark, this heuristic method is not totally reliable

because the hypothesis may be wrong due to the di�erent combinations of faulty

units that are not considered. The same method has been applied to parametric

faults [7, 9], which are considered more realistic in practical VLSI implementa-

tions than stuck-at ones. Considering parametric faults, other approaches are

directed at estimating the error bounds of the performace of a network using a

Hessian approximation [6, 8].

In a second step, some authors have proposed new algorithms to enhance

the generalization ability, fault tolerance or noise immunity of neural networks.

There also exist di�erent approaches, some of which use strategies that are in-

dependent of the training algorithm, such as randomly perturbing the network

during the training process [5, 8]. Other authors have proposed new learning

rules to optimise these properties [4, 10], using a regularizer, for example [11].

In [4] a suitable approximation of the MSE degradation of a Multilayer Per-

ceptron (MLP) subject to perturbations, called Mean Squared Sensitivity (MSS),

was obtained. MSS measures the MSE degradation of the MLP in the presence

of deviations and its expression can be particularized to consider di�erent types

of weight or input perturbations. In this work it is considered that input devia-

tions a�ect a RBFN. We consider two kinds of parametric input perturbations:

additive and multiplicative, both models being frequently used in the literature

[4, 6, 8, 9, 11, 12]. Thus, we obtain the expression of MSS for such kinds of devia-

tions and show the validity of our approximations. Therefore, we propose the use

of MSS as a measurement of the performance degradation of a RBFN a�ected

by input noise, thus providing a useful criterion to distinguish between di�erent

RBFN con�gurations and select the one that maintains best performance against

these perturbations. Although the present work does not present an algorithm

to enhance noise immunity, the proposed measurement provides the necessary

information to design an explicit regularization scheme, as we did for MLPs in

[11].

The paper is organized as follows: in Section 2, the concept of statistical sen-

sitivity is presented; in Sections 3 and 4 the particular expressions of statistical

sensitivity to additive and multiplicative perturbations are derived, respectively.

The relationship between statistical sensitivity and MSE degradation is pre-

sented in Section 5, where MSS is de�ned. Section 6 shows the experimental

results that enable us to demonstrate the validity of the expressions obtained

and, �nally, Section 7 draws some conclusions.



2 Concept of statistical sensitivity

Let us consider a neuronal unit that provides an output y whose inputs may be

altered from their nominal values. Statistical sensitivity [12] is de�ned by the

following expression:

S = lim
�!0

p
var(�y)

�
(1)

where � represents the standard deviation of the changes in the inputs, and

var(�y) is the variance of the deviation in the output for the present input

pattern (with respect to the output in the absence of perturbations) due to

these changes, which can be computed as: var(�y) = E[(�y)2]�(E[�y])2, with

E[�] being the expected value of [�].

Note that statistical sensitivity is completely di�erent from only sensitivity.

Sensitivity is a concept frequently used in the literature related to �rst derivatives

of the output y with respect to inputs and thus, it quanti�es the dependency of

the output with respect to the corresponding inputs. Statistical sensitivity, how-

ever, constitutes a statistical measurement of the magnitude of output changes

due to input changes within a range. In fact, statistical sensitivity is related to

second derivatives, as shown in [4]. For example, a low value of statistical sen-

sitivity indicates that the standard deviation of the output is small when the

corresponding inputs vary from their nominal values in a particular interval. A

low value of sensitivity, on the other hand, indicates that the actual inputs have

little in
uence on the corresponding output.

Without loss of generality, let us consider a RBF network consisting of n

inputs, a single output, and m neurons in the hidden layer. The output of this

network is then computed as the averaged sum of the outputs of the m neurons,

where each neuron is a radial function of the n inputs to the network:

y =

mX
i=1

wi�i =

mX
i=1

wi exp

0
BB@�

nP
k=1

(xk � cik)
2

r
2

i

1
CCA (2)

where xk (k=1,...,n) are the inputs to the network, and cik and ri are the centres

and radius of the RBF associated with neuron i, respectively.

If the inputs presented to the RBF are perturbed by noise, then the output

y of the network is changed with respect to its nominal output. As indicated

above, the statistical sensitivity, S, enables us to estimate in a quantitative way

the degradation of the expected output of a RBF neuron when the values of the

inputs change by a given amount.

If the deviations considered are small enough, then the corresponding devi-

ation in the output of the network can be approximated as:

�y �

nX
k=1

@y

@xk

�xk (3)



To compute expression (2), we need to assume a model for input deviations. We

have chosen parametric faults instead of stuck-at ones [7]. The selected model

satis�es the following assumptions:

1) Perturbations follow normal distributions with an average equal to zero

and a standard deviation equal to �.

2) Perturbations on di�erent inputs are not statistically correlated.

In Section 3 we consider additive perturbations while in Section 4, we consider

a multiplicative nature.

3 Statistical sensitivity against additive perturbations

The additive model of input perturbations is frequently used to study the e�ects

of input quanti�cation [4]. For example, in some practical implementations the

inputs are converted to digital, or in other cases the accuracy of the real inputs

is di�erent from the precision used via a computer simulation.

The additive model satis�es the following assumptions:

a) E[�xk ] = 0

b) E[(�xk�xl)] = �
2
Ækl

where Ækl is the Kronecker delta. This perturbation model implies that each

input xk may be modi�ed by a random additive variable with average equal

to zero and standard deviation equal to �. As stated above, perturbations on

di�erent inputs are assumed not to be statistically correlated.

Proposition 1: if E[�xk ] = 0 8k then E[�y] = 0.

Proof 1:

E[�y] = E[
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@
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Proposition 2: the statistical sensitivity to additive input perturbations of a

RBF network can be expressed as:

S = 2
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r
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i
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(5)
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Substituting (6) in (1), Proposition 2 is proved.

2

4 Statistical sensitivity against multiplicative

perturbations

When the inputs of a network comes from electronic sensors, it is necessary to

take into account the analogue tolerance margin, i.e., the exact value of an ana-

logue electronic magnitude is unknown although we know the nominal value plus

the tolerance margin supplied by the manufacturer. The multiplicative model of

input perturbations is frequently used to study this situation [4, 7, 9].

The multiplicative model satis�es the following assumptions:

a) E[�xk ] = 0

b) E[(�xk�xl)] = �
2
xkxlÆkl

where Ækl is the Kronecker delta. Unlike the additive model previously con-

sidered, each input xk may be altered by a random variable, this alteration being

proportional to the nominal value of xk.

As assumption a) is the same as in the additive model, then Proposition 1 is

also valid.

Proposition 3: the statistical sensitivity to multiplicative input perturbations

of a RBF network can be expressed as:

S = 2

vuut nX
k=1
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Proof 3: The proof of Proposition 3 is similar to that corresponding to Propo-

sition 2, only varying assumption b).
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In sections 3 and 4 we obtained the mathematical expression of statistical

sensitivity, and so we can quantify the expected output change of a network

when a particular input pattern is randomly perturbed. Nevertheless, we are

interested in an overall quanti�cation for such changes, irrespective of particular

input patterns. The following section introduces such a measurement.

5 The Mean Squared Sensitivity

The learning performance of a RBF network is usually measured by means of

the Mean Squared Error (MSE). This error measurement is computed by the

sum of a set of input patterns whose desired output is known, and its expression

is the following:

MSE =
1

Np

NpX
p=1

"(p) =
1

2Np

NpX
p=1

(d(p)� y(p))2 (8)

where Np is the number of input patterns considered, and d(p) and y(p) are the

desired and obtained outputs, respectively, for the input pattern p.

If the inputs of the network su�er a deviation, the nominal output is altered,

as is the expected MSE. By developing expression (8) with a Taylor expansion

near the nominal MSE found after training, MSE0, it is obtained that:

MSE
0 =MSE0 �

1

Np

NpX
p=1

(d(p) � y(p))�y(p) +
1

2Np

NpX
p=1

(�y(p))2 + 0 (9)

Now, if the expected value of MSE
0 is computed, taking into account the

perturbation models adopted that E[�y] = 0, and that from (1) we deduce

E[(�y)2] ' �
2
S
2, the following expression is deduced:

E[MSE
0] =MSE0 +

�
2

2Np

NpX
p=1

(S(p))2 (10)

By analogy with the de�nition of MSE, we de�ne "Mean Squared Sensitivity"

(MSS) as:

MSS =
1

2Np

NpX
p=1

(S(p))2 (11)

MSS is evaluated from the statistical sensitivities for a set of input patterns,

as expression (11) shows, and from the nominal values of the network parameters.

By combining expressions (10) and (11), the expected degradation of the MSE,

E[MSE
0] can be expressed in a simpli�ed way as:

E[MSE
0] =MSE0 + �

2
MSS (12)



Thus, as MSE0 and MSS can be directly computed after training from

the nominal values of the parameters of the network and the same set of input

patterns, it is possible to predict the degradation of MSE when the inputs

of the network are deviated from their nominal values within a speci�c range.

The only di�erence between the additive and multiplicative models concerns the

particular expression of statistical sensitivity ((5) or (7) depending on the model)

but relation (12) is valid in any case. Moreover, as can be deduced from (12), a

lower value of MSS implies a lower degradation value of MSE. Note also that

the calculation of MSS is not dependent on the training algorithm used. Thus,

we propose using MSS as a suitable measure of the noise immunity of RBF

networks against deviations.

6 Results

In order to validate the expressions presented, we compared the results experi-

mentally obtained for E[MSE
0] when the inputs of the network were a�ected by

additive or multiplicative deviations with the predicted value obtained by using

(12).

Three problems were considered: a predictor of the Mackey-Glass temporal

series[13], an approximator of the f8 function proposed by Cherkassky et al.

[14] and a predictor of the Box-Jenkins gas furnace [15]. The structures of these

networks are described in Table 1.

Table 1. Description of the RBFNs

Problem No.inputs No.RBFs No.training patterns No.test patterns

Mackey-Glass 4 14 500 500

f8 function 2 16 400 400

Gas-furnace 2 10 291 267

Table 2 shows the values of MSE0 and MSS obtained after training using

a set of test patterns di�erent from those used for training.

Table 2. MSE0 and MSS obtained after training

Problem MSE0 MSS additive MSS multiplicative

Mackey-Glass 6.65 10�5 1.074 1.095

f8 function 8.41 10�4 9.861 5.126

Gas-furnace 0.164 1.275 583.057

The inputs of the networks were randomly deviated from their nominal values

considering di�erent values of � and the corresponding model of deviation. Each



value of E[MSE
0] was experimentally computed over 50 tests. In each test, all the

components of each input pattern p of the network xk(p) were perturbed taking

a value equal to xk(p) + Æk(p) for the additive model, or xk(p)(1 + Æk(p)) when

the multiplicative model was considered, with Æk(p) being a random variable

that follows a gaussian distribution with average equal to zero and standard

deviation equal to �.

Figures 1 and 2 represent the experimental and predicted values of E[MSE
0]

for the Mackey-Glass problem using an additive or a multiplicative model, re-

spectively, for deviations. The experimental values are plotted with their respec-

tive con�dence levels at 95%. It can be observed that the values predicted by

expression (12) accurately �t those obtained experimentally until the degrada-

tion of MSE becomes large. For example, we deduce from Figure 1 that MSE

for � equal to 0.10 is 157 times larger thanMSE0!; this means that in a real im-

plementation the actual parameter con�guration should be discarded if noise is

high.In any case, the validity of the approximation is demonstrated and, accord-

ing to (12), this means that the lower the MSS the lower the MSE degradation

in the presence of noise. Thus, among RBF network con�gurations that present

a similar MSE0, the one with the lowest MSS provides the most stable output

when its inputs are perturbed.
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Fig. 1. Experimental and predicted E[MSE0] for the Mackey-Glass temporal series in

the presence of additive perturbations

It is interesting to note that the value for MSS may be very di�erent when

considering additive or multiplicative deviations. For example the values ofMSS

for the approximator of the f8 function are 9.861 and 5.126, respectively, while

in the case of the gas-furnace problem the corresponding values are 1.275 and
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Fig. 2. Experimental and predicted E[MSE0] for the Mackey-Glass temporal series in

the presence of multiplicative perturbations

583.057. This means that it is possible to have a network con�guration with a low

value of MSS against additive perturbations but that this does not necessarily

imply a low value against multiplicative ones, and viceversa. Thus, good stability

against additive perturbations does not guarantee similar performance when the

perturbations have a di�erent nature. This result is similar to that discussed in

the case of MLPs in [4].

7 Conclusions

We have derived and validated a quantitative measure of noise immunity against

input perturbations of RBF networks. This measure, which we termMean Squared

Sensitivity (MSS), is explicitly related to MSE degradation in the presence of

input deviations. This relationship shows that a lower value of MSS implies

a lower degradation of MSE. Thus, we have introduced a useful criterion for

selecting between di�erent network con�gurations that present a similar MSE

to solve a particular problem: the one that maintains its performance in the

presence of input noise.

We have used two di�erent models for perturbation, an additive and a mul-

tiplicative one, obtaining the expression to compute the corresponding value of

MSS for such kinds of perturbations.

Moreover, the analytical expression ofMSS can be used as a regularizer dur-

ing the training process in order to improve the �nal performance of the network

with respect to noise immunity in the same way as was done for MLPs in [11].
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