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Abstract. Convolution is a very important operation within artificial vision. It 
can be characterized as being computationally intensive, so it is hard to imple-
ment real-time convolution. One reason for this is the vast amount of data that 
requires processing (more than nine million pixels per second for typical image 
sources). This paper introduces a new architecture along with its optimizations 
for implementing convolution operations in FPGAs. The proposed architecture 
uses techniques of parallelism with some improvements. The system is based 
on the HOT2-XL PCI board, and we have developed a Visual C++ application 
to validate our hardware designs. This environment is based on a library of 
hardware modules implementing the most common operations in image proc-
essing. In this paper we focus on the convolution modules. The found results il-
lustrate the effectiveness of our improvements allowing real-time processing, a 
minimum resource use and a high operation frequency. 

1   Introduction 

Convolution is a popular operation in the field of image processing, and it has been 
used in a great number of applications [1], [2], [3]. Among these applications, its use 
for artificial vision highlights. The main challenge is that the artificial vision systems 
are usually used in real-time applications (30 images/second). For this reason, at 
present, the implementation of convolution by means of reconfigurable hardware is 
being investigated [4]. Some proposals even use techniques like Simulated Annealing 
and Genetic Programming in order to find the best implementation for convolution 
[5]. 

Reconfigurable computing systems [6], [7] are very flexible, allowing that new op-
erations can be implemented in the existent hardware, and they offer enough speed 
for the execution in real time, which is not attainable by software many times. What 
is more, the price/performance ratio of these systems makes them a broadly competi-
tive alternative to ASICs [8]. 

Very diverse FPGA-based boards are appearing in the market for reconfigurable 
computing. These boards have very different communication interfaces with the host: 
parallel port, serial port, USB, Ethernet,... But in general, the boards devoted to image 
processing in real time have a PCI (Peripheral Component Interconnect) interface. 
The main reason is that it gives them the necessary speed to work as coprocessors. 



Also, PCI bus has a growing popularity for image processing due to its: high band-
width, independence of the CPU, plug-n-play, configurability and expandability, 
standardization, and master-slave behaviour [9], [10]. 

In conclusion, FPGAs [11], [12] in these boards have 32-bit buses for communi-
cating with the external world, either for their communication through the PCI bus or 
for accessing to the RAM memory that usually comes integrated in the boards. There-
fore, the images to be processed by the FPGA will arrive to it through a bus of 32 
bits, and this has a great influence on the hardware architecture for implementing the 
convolution. An example of this type of boards is the HOT2-XL board [13], [14] of 
VCC [15] that has been used to carry out our experiments. 

This work is organized as follows. In section 2 the convolution operation is de-
scribed shortly. The following section presents the proposed architecture for imple-
menting the convolution using FPGAs. Section 4 explains some improvements per-
formed. Then, in section 5, we show and analyze the implementation results. Finally, 
the conclusions are presented. 

2   Convolution Operation 

Convolution is an operation of linear spatial filtering. Figure 1 illustrates the convolu-
tion concept using a 3x3 mask. The shading window will go moving through the 
whole image I to produce the corresponding pixels of the image O, keeping in mind 
that each localization of the window will generate only one pixel in the image O. 

 
           
           
           
           
           
           
           
           

Fig. 1. Convolution concept based on a 3x3 kernel 

For this operation, to apply the mask on a given position means to multiply each 
weight of the mask by the pixel of the image on which is, and to add the resulting 
products. This sum is used as the value of the pixel for the output image. Therefore, 
the convolution of an image I with a square mask w of width n=2k+1 will generate an 
image O that could be defined by means of the weighted average of figure 2. Gener-
ally, n=3 (k=1) is taken. Furthermore, according to the results of Manseur and Wilson 
[16], any other mask can be decomposed in a chain of masks of dimensions 3x3. The 
mask weights determine the action of spatial filtering to carry out, being able to be a 
low-pass, high-pass, gradient, laplacian,... filter. 
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Fig. 2. Definition of convolution and example of 3x3 mask 

3   Proposed Architecture 

As the data bus for communicating the FPGA with the external world is a 32-bit bus, 
in each read/write operation four pixels of an image (supposing 8-bit pixels) are ob-
tained/sent. To gain benefit from this situation the proposed hardware architecture 
replicates the functional units in order to apply the convolution operation simultane-
ously on four pixel neighbourhoods. In this way, it takes advantage of the inherent 
neighbourhood parallelism in the convolution. A first approach for the simultaneous 
computation of these four output pixels would be the one shown in figure 3. The 
images are divided in pixels (each square) grouped in words of 32 bits (4 pixels of 8 
bits). For more clarity each application of the mask has been represented with a dif-
ferent texture. 
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Fig. 3. First approach to compute four pixels simultaneously in the resulting image 

However, this approach is not good since it implies nine read operations to obtain 
the nine necessary words of the input image. In order to reduce the number of read 
operations, and therefore increasing the performance of the convolution operation, the 
approach of figure 3 has been modified as it is illustrated in figure 4. 

As we see, this approach only forces to read six words of the input image. How-
ever, pipelining this approach in a pipeline with two stages it is possible to get an 
operation outline that writes four pixels in the output image in each clock cycle, only 
reading three words of the input image by cycle (see figure 5). 

I(x,y) refers to the input image, and O(x,y) to the output image. Each Filter circuit 
computes the associate resulting pixel (P1, P2, P3 or P4) after applying the corre-
sponding convolution operation. In each clock cycle, three words of the input image 
are read (the three necessary rows), and a new word with four resulting pixels is writ-
ten. The computation of these four pixels is carried out in two stages (pipelining), 
also marked in figure 5. In stage 1 the resulting pixels P1, P2 and P3 are computed, 

Convolution Mask w 
 -1 0 1 ← i 

-1 A B C  
0 D E F  
1 G H I  
↑ 
j     

∑∑
−= −=

⋅++=
k

ki

k

kj
jiwjyixIyxO ),(),(),(  

I(x,y) O(x,y)



storing them in registers that will be used in stage 2. In stage 1 the columns used to 
compute the pixel P4 in stage 2 are also stored in registers. Finally, in stage 2, the 
word (with its four pixels Pi) is written in the output image. 
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Fig. 4. Approach followed to compute four pixels simultaneously in the resulting image 

Thanks to the pipelining both stages operate at the same time, improving their per-
formance. While stage 1 computes the pixels P1, P2 and P3 according to the three 
words read in the current clock cycle, stage 2 computes P4 and writes the resulting 
word (P1, P2, P3 and P4) associated with the three words read in the previous cycle. 

 
Fig. 5. Pipelining of the approach presented in figure 4 

4   Optimizations on each Filter Circuit 

On each Filter circuit (figure 5) we have carried out two important improvements. On 
the one hand, the multipliers have been optimized to use less resources. And on the 
other hand, the datapaths have been optimized to use less bits in each operation and 
connection. Therefore, the system performance is improved and the required re-
sources are reduced. Furthermore, all this leads to a more regular architecture that 
will allow us to reuse resources. 
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As an example to explain the optimizations carried out we study which would be 
the resulting circuit to implement a laplacian filter, whose more popular mask is in 
figure 6. 
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Fig. 6. Mask habitually used for a laplacian filter 

In this case each Filter circuit of figure 5 could be implemented like it is shown in 
figure 7 [17]. In this figure we observe the necessary nine multipliers and the sum-
ming network (with eight adders). A circuit to control the range of the resulting pixel 
could be added, that is, to make sure that the resulting pixel has a value between 0 
and 255. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Possible implementation of each Filter circuit of figure 5 

The optimization of the multipliers in figure 7 is based on the use of constant mul-
tiplication weights, which is habitual in artificial vision. This optimization can reduce 
significantly the required resources, and increase the performance of an implementa-
tion. Let us consider the implementation of the operation “y = W·x”. If the weight W 
is constant we can decompose it in an adder tree according to its binary representa-
tion. Figure 8(a) shows the result of applying this technique to the previous product 
with W=59 (111011 in binary code). The products that are power of two can be im-
plemented by means of shifts, or even more, by means of the use of connections with 
zeros (direct connections to ground). 

In order to treat the negative weights, the convolution mask is broken down in a 
positive mask (with the positive weights) and a negative one; A similar division is 
followed by Lisa [18]. Each of these masks is processed in parallel, and finally the 
output values are subtracted (see figure 8(b) for the laplacian case). In this case both 
masks only have weights that are power of two, so their implementation is immediate. 
Figure 9 illustrates the resulting Filter circuit after this optimization (the number of 
bits in each adder and connection is also indicated). 
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Fig. 8. (a) Example of decomposition of a multiplication in an adder tree. (b) Decomposition of 
the mask of figure 6 into two masks 

However, in our final architecture the multipliers have not only been optimized, 
but the datapaths have also been optimized with the purpose of using less bits in each 
operation and connection, and therefore, to improve the system performance and to 
reduce the necessary resources; as well as obtaining a more regular architecture. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Implementation of a laplacian filter after applying the optimization of the multipliers 

Figure 10 shows the resulting circuit for the laplacian filter, after optimizing the 
datapaths in the circuit of figure 9. In this figure the operations and connections that 
have been reduced in the number of necessary bits after applying the optimization 
appear in shady color. Evidently, both optimizations (multipliers and datapaths) will 
be of more importance when the convolution to implement is more complex. 

Thanks to the great gotten regularity, it is still possible to apply a new optimiza-
tion, reusing the intermediate results obtained in the adder tree of the different Filter 
circuits. As we have explained, the final circuit would have a total of four Filter cir-
cuits, operating in parallel, with an architecture like the one shown in figure 10. How-
ever, as these four circuits have many common inputs (of the nine pixels implied in a 
3x3 convolution up to six are the same in two different Filter circuits), it is possible to 
reuse many partial sums, therefore, saving a great quantity of adders. Figure 11 illus-
trates this last optimization. 
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Fig. 10. Implementation of a laplacian filter after applying the datapath optimization 

In this figure the four Filter circuits are shown together, sharing resources. P1, P2, 
P3 and P4 are the four pixels to obtain in each clock cycle according to the execution 
outline explained in figures 4 and 5, so that P1, P2 and P3 should be stored temporar-
ily in registers to get the pipelining of the convolution. Figure 12 illustrates the dia-
gram for anyone of the four final circuits of figure 11 used to obtain each pixel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Convolution with a laplacian filter, reusing resources in the four Filter circuits 

Each input Coli makes reference to the sum of a column (keeping in mind that in 
the central column, Col2, only the inferior and superior pixels are added) and PixCen-
tre is the pixel on which the convolution mask is placed. Analyzing figure 11 we 
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conclude that 8 adders are only necessary to compute the sums for columns (Coli). If 
we had repeated the diagram of figure 10 four times, a total of 20 adders would have 
been needed to carry out these same sums for columns; therefore, this optimization 
has lead to an important saving of 12 adders (of eight or more bits). Even more, ac-
cording to figure 5 it is necessary the use of a great quantity of registers to store 6 
pixels of the image, which are required to compute P4 and P1. Figure 11 also shows 
that those 6 registers can decrease to 4, storing the results of the partial sums among 
them instead of the 6 individual pixels. 

 
 
 
 
 
 
 
 
 

Fig. 12. Internal diagram for anyone of the four final circuits of figure 11 

5   Experimental Results 

We have implemented diverse convolution filters following the proposed architecture 
and the presented optimizations. All of them have been implemented on the 
XC4062XLA-09HQ240C FPGA [19] included in the HOT2-XL PCI board. This 
board has been placed in a PCI slot of a PC, creating a CCM [20]. The experiments 
have been carried out by means of a Windows Visual C++ application. This applica-
tion manages the system and reconfigures the HOT2 board (its FPGA) with different 
hardware modules as it is necessary. Table 1 shows the results obtained for the differ-
ent convolution filters. 

Table 1. Experimental results for different convolution filters 

Operation Aver. Exec. 
Time (ms) 

Resource Use 
(CLBs) 

Max. Freq. 
(MHz) 

Minimum 
Period (ns) 

Vertical Gradient Filter 581.016 65 (2.82%) 31.426 31.821 
Horizontal Gradient Filter 718.125 105 (4.56%) 32.633 30.644 
Diagonal Gradient Filter 717.734 109 (4.73%) 32.449 30.818 

High-Pass Filter 868.516 322 (13.98%) 32.853 30.439 
Low-Pass Filter 867.734 238 (10.33%) 30.000 33.333 
Laplacian Filter 867.344 290 (12.59%) 33.638 29.728 

The second column shows the average execution time in ms for each operation on 
30 images of 640x480 pixels with 256 gray levels. With a 16-MHz clock, in the 
HOT2-XL board, the time to process 30 images ranges from 581.016 to 868.516 ms, 
according to the operation. In these times, the reconfiguration time of the board 
(FPGA) is included. The board has an average reconfiguration time of 440 ms. Notice 
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you that if we use the same operation repeatedly, the board would only be configured 
the first time. Furthermore, the clock could be changed to higher frequencies, inside 
the limit indicated in the fourth column, if it was necessary to obtain a larger per-
formance. 

The overload due to the reconfiguration time also has great importance. Our sys-
tem uses the Configuration Cache included in the HOT2-XL to alleviate this over-
load, using a LRU (Least Recently Used) replacement policy. If a hardware module 
was already loaded in the Configuration Cache the average reconfiguration time 
would decrease to 270 ms. Therefore, the most recent operations would have a sig-
nificantly lower average execution time to the one shown in the table. We can ob-
serve that all the developed hardware modules allow real-time processing, 30 images 
per second. 

In the third column of table 1 we show the resource use of the XC4062XLA-
09HQ240C FPGA for our hardware modules. This use is expressed by number of 
CLBs (Configurable Logic Blocks), knowing that the XC4062XLA FPGA has a total 
of 2304 CLBs. The percentage of CLBs used of those 2304 is also indicated. The 
quantities presented in this column and the following ones have been obtained from 
the reports generated by the Xilinx Foundation Series tools [21] after the synthesis of 
each hardware module. Therefore, they are real measurements on implementations 
already carried out, and not estimations. 

It should be kept in mind that each module has its functional units replicated four 
times to take advantage of the HOT2-XL board architecture [13]. This fact multiplies 
the use of resources by four. Even more, each module also includes the necessary 
circuitry for the internal management of the on-board memory. As we see, the de-
signed hardware modules present an efficient use of the FPGA resources, requiring in 
the worst case a number of CLBs lesser than 14%. 

The fourth column of table 1 presents the maximum frequency admitted by each 
hardware module. To facilitate the data interpretation, the minimum clock period is 
also offered. From the table we conclude that all the hardware modules admit a maxi-
mum clock frequency about 33 MHz, coinciding with the PCI bus specifications for a 
32 bit/33 MHz system, and therefore, a 132 Mbytes/sec. bandwidth [9]. 

6   Conclusions 

To configure the HOT2-XL PCI board we are developing a library devoted to image 
processing. At present, the library consists of 16 hardware modules of very diverse 
types: point, histogram, convolution, mathematical morphology,... operations [22]. In 
this work we have realized a study of the architecture and optimizations proposed for 
implementing in an FPGA the convolution operations. 

The practical results illustrate the effectiveness of the presented architecture and 
improvements: use of parallelism techniques like replication and pipelining, optimiza-
tion of the multipliers by means of adder trees, optimization of the datapaths, search 
for a high regularity, reutilization of common resources (adders), etc. Everything has 
allowed us to get real-time processing, a minimum use of resources and a high fre-
quency of operation. 
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