
Population Studies for the Gate Matrix Layout Problem

Alexandre Mendes, Paulo França, Pablo Moscato and Vinícius Garcia

Departamento de Engenharia de Sistemas
Faculdade de Engenharia Elétrica e de Computação

Universidade Estadual de Campinas
C.P. 6101 - 13083-970 - Campinas - SP - Brazil

{smendes, franca, moscato, jacques}@densis.fee.unicamp.br

Abstract. This paper deals with a Very Large Scale Integrated (VLSI) design
problem that belongs to the NP-hard class. The Gate Matrix Layout problem
has strong applications on the chip-manufacturing industry. A Memetic Algo-
rithm is employed to solve a set of benchmark instances, present in previous
works in the literature. Beyond the results found for these instances, another
goal of this paper is to study how the performance of the algorithm is affected
by the use of multiple populations, together with different individual-
migration policies. This comparison has shown to be fruitful, sometimes pro-
ducing a strong performance improvement of the multiple populations ap-
proaches over the single population ones.

1 Introduction

The use of multiple populations in Evolutionary Algorithms (EAs) gained increased
momentum when computer networks, multi-processors computers and distributed
processing systems (such as workstations clusters) became widespread available.
Regarding the software issue, the introduction of PVM, and later MPI, as well as
web-enabled object-oriented languages like Java also had their role. As most EAs
are inherently parallel methods, the distribution of the tasks is relatively easy for
most applications. The workload can be distributed at an individual or a population
level; the final choice depends on how complex are the computations involved. In
this work we do not use parallel computers, or networks of workstations. The pro-
gram runs in a sequential way on a single processor, but populations evolve sepa-
rately, simulating the behavior of a parallel environment. With several populations
evolving in parallel, larger portions of the search space can be sampled, and any
important information found can be communicated among them through migration
of individuals. This makes the parallel search much more powerful than when a
single population is employed.

2 A VLSI optimization problem: Gate Matrix Layout

The Gate Matrix Layout problem is a NP-hard problem [3] that arises in the context
of physical layout of Very Large Scale Integration (VLSI). It can be stated as: sup-
pose that there are g gates and n nets on a gate matrix layout circuit. Gates can be
described as vertical wires holding transistors at specific positions with nets inter-
connecting all the distinct gates that share transistors at the same position. An in-
stance can be represented as a 0-1 matrix, with g columns and n rows. A number one
in the position (i, j) means a transistor must be implemented at gate i and net j.
Moreover, all transistors in the same net must be interconnected. This superposition
of interconnections defines the number of tracks needed to build the circuit. The
objective is to find a permutation of the g columns so that the superposition of inter-
connections is minimal, thus minimizing the number of tracks. The figure below
shows a possible solution for a given instance, and how to go from the 0/1 repre-
sentation to the circuit itself.

Fig. 1. The translation from a given instance’s solution into the real circuit.

In the example, the permutation of the columns was <2-4-3-1-5-7-6>. After the
interconnection of all transistors, represented by the horizontal lines, we calculate
the number of tracks needed to build each gate. This number is the sum of positions
used in each column and the number of tracks needed to build the circuit is its
maximum. More detailed information on this problem can be found in [4].

3 Memetic Algorithms

Since the publication of John Holland’s book, “Adaptation in Natural and Artificial
Systems”, the field of Genetic Algorithms, and the larger field of Evolutionary Com-
putation, was clearly established as new research areas. However, other pioneer
works would also be cited, but since Holland’s work they became increasingly con-
spicuous in many engineering fields and in Artificial Intelligence problems. In the
mid 80's, a new class of knowledge-augmented GAs, also called hybrid GAs, started

to appear in the computer science literature. The main idea supporting these meth-
ods is that of making use of other forms of “knowledge”, i.e. other solution methods
already available for the problem at hand. As a consequence, the resulting algo-
rithms had little resemblance with biological evolution analogies. Recognizing im-
portant differences and similarities with other population-based approaches, some of
them were categorized as Memetic Algorithms (MAs) in 1989 [7][9].

3.1 Population structure

It is illustrative to show how some MAs resemble more the cooperative problem
solving techniques that can be found in some organizations. For instance, in our
approach we use a hierarchically structured population based on a complete ternary
tree. In contrast with a non-structured population, the complete ternary tree can also
be understood as a set of overlapping sub-populations (that we will call clusters).

In Figure 2, we can see that each cluster consists of one single leader and three
supporter individuals. Any leader individual in an intermediate layer has both leader
and supporter roles. The leader individual always contains the best solution – con-
sidering the number of tracks it requires – of all individuals in the cluster. The num-
ber of individuals in the population is equal to the number of nodes in the ternary
tree, i.e., we need 13 individuals to make a ternary tree with 3 levels and 40 indi-
viduals to have 4 levels.

Fig. 2. Diagram of the population structure.

Previous tests comparing the tree-based population with the non-structured ap-
proach are present in 1. They show that the ternary-tree approach leads to better
results, and with the use of a smaller number of individuals. In this work, we could
not address this issue again due to space limitations.

3.2 Representation and crossover

The representation chosen for the VLSI problem is quite intuitive. A solution is
represented as a “chromosome”. The alleles assume different integer values in the
[1, n] interval, where n is the number of columns of the associated matrix. The
crossover tested is a variant of the well-known Order Crossover (OX), called Block
Order Crossover (BOX). After choosing two parents, several fragments of the

chromosome from one of them are randomly selected and copied into the offspring.
In the second phase, the offspring's empty positions are sequentially filled according
to the chromosome of the other parent. The procedure tends to perpetuate the rela-
tive order of the columns, although some alterations might appear.

Fig. 3. Block Order Crossover (BOX) example.

In Figure 3, Parent A contributes with two pieces of its chromosome to the off-
spring. These parts are thus copied to the same position they occupy in the parent.
The blank spaces are then filled with the information of Parent B, going from left to
right. Numbers in Parent B already present in the offspring are skipped; being cop-
ied only the new ones. The contribution percentage of each parent is set to be 50%.
This means that the offspring will be created from information inherited in equal
proportion from both parents.

The number of new individuals created every generation is two times the number
of individuals present in the population. This crossover rate, apparently high, is due
to the offspring acceptance policy. The acceptance rule makes several new individu-
als be discarded. Thus after several tests, with values from 0.5 to 2.5 we decided to
use 2.0. The insertion of new solutions in the population will be later discussed (see
section 3.6).

3.3 Mutation

A traditional mutation strategy based on swapping of columns was implemented.
Two positions are selected uniformly at random and their values are swapped. This
mutation procedure is applied to 10% of all new individuals every generation.

We also implemented a heavy mutation procedure. It executes the job swap move
10.n times in each individual – where n is the number of gates - except the best one.
This procedure is executed every time the population diversity is considered to be
low, i.e., it has converged to individuals that are too similar (see section 3.6).

3.4 Local Search

Local search algorithms for combinatorial optimization problems generally rely on a
neighborhood definition that establishes a relationship between solutions in the
configuration space. In this work, two neighborhood definitions were chosen. The
first one was the all-pairs. It consists of swapping pairs of columns from a given

solution. A hill-climbing algorithm can be defined by reference to this neighbor-
hood; i.e., starting with an initial permutation of all columns, every time a proposed
swap reduces the number of tracks utilized, it is confirmed and another cycle of
swaps takes place, until no further improvement is achieved. As the complexity to
evaluate each swap is considerably high, we used a reduced neighborhood, where all
columns are tested for a swap, but only with the closer ones. Following this, we try
swapping all columns only with their 10 nearest neighbors. This number is not so
critical, but we noticed a strong degradation in performance when values around 5
or lower were utilized.

The second neighborhood implemented was the insertion one. It consists of re-
moving a column from one position and inserting it in another place. The hill-
climbing iterative procedure is the same regardless the neighborhood definition. In
this case, we also utilized a reduced neighborhood. Each column was tested for
insertion only in the 10 nearest positions.

Given the large size of the all-pairs and insertion neighborhoods, and the compu-
tational complexity required to calculate the objective function for each solution, we
found it convenient to apply the local search only into the best individual, located at
the top node of the ternary tree, just before migration occurs.

3.5 Selection for recombination

The recombination of solutions in the hierarchically structured population can only
be made between a leader and one of its supporters within the same cluster. The
recombination procedure selects any leader uniformly at random and then it chooses
– also uniformly at random – one of the three supporters.

3.6 Offspring insertion into the population

After the recombination, mutation and local search phases have finished, the accep-
tance of the new offspring will follow two rules:
• The offspring is inserted into the population replacing the supporter that took

part in the recombination that generated it.
• The replacement occurs only if the fitness of the new individual is better than

the supporter.

If during the recombination phase no individual was accepted for insertion, we
conclude that the population has converged and apply the heavy mutation proce-
dure. Finally, after the recombination phase, the population is restructured. The
hierarchy states that the fitness of the leader of a cluster must be lower than the
fitness of the leader of the cluster just above it. The adjustment is done comparing
the supporters of each cluster with the leader. If any supporter turns out to be better
than its respective leader, they swap their places. Considering the problem addressed
in this work, the higher is the position that an individual occupies in the tree, the
fewer is the number of tracks it utilizes.

4 Migration policies

For the study with multiple populations, we had to define how individuals migrate
from one population to another. There are three population migration policies:

• 0-Migrate: No migration is used and all populations evolve in parallel without
any kind of communication or solutions exchange.

• 1-Migrate: Populations are arranged in a ring structure. Migration occurs in all
populations and the best individual of each one migrates to the population right
next to it, replacing a randomly chosen individual – except the best one. Every
population receives only one new individual.

• 2-Migrate: Populations are also arranged in a ring structure. Migration also
occurs in all populations, but the best individual of each one migrates to both
populations connected to it, replacing randomly chosen individuals – except the
best ones. Every population receives two new individuals.

Fig. 4. Diagrams of the two migration policies.

5 Computational tests

The population tests were executed in two different ways. The first one was to test
the influence of the number of populations on the performance. For this evaluation
the number of populations varied from one up to five. The second test evaluated the
influence of migration on the algorithm’s performance. For each number of popula-
tions we tested the three migration policies, totaling 15 configurations. The tests are
divided into instances, i.e., for each instance we tested the whole set of configura-
tions, ten times each one. Five instances were tested. The stop criterion was a time
limit, fixed as follows: 30 seconds for W2, V4470 and X0; 90 seconds for W3 and
10 min for W4. The difference of maximum CPU times is due to the dimension of
the instances and takes into account the average time to find high quality solutions.
If larger CPU times were utilized, most configurations would return excellent re-
sults, weakening any possible comparison among them.

In Table 1 we show some information on the instances we utilized in this work.
We have one small, three medium and a large instance. In the literature it is difficult
to find hard instances. In ref. [4], we found the most extensive computational tests,
with 25 instances in total. However, most of them were too small and easy to solve
with our algorithm. Considering the instances’ sizes, only V4470, X0, W2, W3 and
W4 had more than 30 gates and for this reason we centered our studies on them.

Table 1. Information on the instances.

Instance Gates Nets Best known
solution

W2 33 48 14
V4470 47 37 9

X0 48 40 11
W3 70 84 18
W4 141 202 27

Next we show the results of the MA implemented. Four numbers are utilized do
describe the results for each configuration (see Figure 5). In clockwise order we
have: In boldface, the best solution found for the number of tracks for that instance.
Next in the sequence we display the number of times this solution was found in ten
tries. Below it, there is the worst value found for the configuration, and finally, in
the lower-left part of the cell, is the average value found for the number of tracks.

Fig. 5. Data fields for each configuration.

All tests were executed in a PENTIUM 366 MHz Celeron computer, using Sun
JDK 2.0 Java language under Windows environment.

Table 2. Results for the W2 instance.

W2 Number of populations
1 2 3 4 5

0-Migrate 14 9 14 10 14 8 14 9 14 5
14.1 15 14.0 14 14.2 15 14.1 15 14.5 15

1-Migrate 14 10 14 9 14 8 14 5
14.0 14 14.1 15 14.2 15 14.5 15

2-Migrate 14 9 14 5 14 6 14 4
14.1 15 14.5 15 14.4 15 14.6 15

Table 3. Results for the V4470 instance.

V4470 Number of populations
1 2 3 4 5

0-Migrate 9 2 9 1 9 2 10 10 10 9
10.1 11 10.0 10 10.0 11 10.0 10 10.1 11

1-Migrate 9 2 9 1 9 2 10 8
10.1 11 10.0 11 9.9 11 10.2 11

2-Migrate 9 2 9 1 9 1 10 6
9.9 11 10.2 11 10.1 11 10.4 11

Table 4. Results for the X0 instance.

X0 Number of populations
1 2 3 4 5

0-Migrate 11 7 11 6 11 7 11 7 11 3
11.4 13 11.4 12 11.3 12 11.5 13 11.7 12

1-Migrate 11 6 11 6 11 6 11 3
11.5 13 11.6 13 11.4 12 11.9 13

2-Migrate 11 7 11 4 11 3 11 5
11.5 13 12.0 13 11.9 13 11.8 14

Table 5. Results for the W3 instance.

W3 Number of populations
1 2 3 4 5

0-Migrate 18 1 18 2 18 1 19 1 19 2
21.1 26 20.1 23 20.1 22 20.3 22 20.8 22

1-Migrate 18 3 18 1 18 2 18 2
20.0 23 20.1 23 20.2 22 20.0 22

2-Migrate 18 1 18 2 18 1 18 1
20.2 23 21.1 25 20.3 23 21.3 23

Table 6. Results for the W4 instance.

W4 Number of populations
1 2 3 4 5

0-Migrate 29 3 29 2 29 2 30 4 32 1
31.5 36 31.1 33 31.4 35 32.1 36 33.7 35

1-Migrate 28 2 28 1 28 2 29 3
31.4 34 31.2 35 30.6 35 31.9 36

2-Migrate 29 2 29 3 29 1 31 1
32.5 36 31.7 35 33.4 35 35.1 38

First, we should explain two aspects of randomized search algorithms: exploita-
tion and exploration. Exploitation is the property of the algorithm to thoroughly
explore a specific region of the search space, looking for any small improvement in
the current best available solution(s). Exploration is the property to explore wide
portions of the search space, looking for promising regions.

With no migration, we observed more instability in the answers, expressed by
worst solutions and averages found for the instances W3 and W4. On the other
hand, the 1-Migrate appeared to better balance exploitation and exploration, with
good average and worst-solution values. The 2-Migrate policy did not perform so
well, with a clear degradation of these two parameters. A too strong exploitation, in
detriment of the exploration shall have caused this. Thus we concluded that migra-
tion should be set at medium levels, represented by the 1-Migrate.

The second aspect to be analyzed is the number of populations. Although it is not
clear what configuration was the best, the use of only one is surely not the best
choice since several multi-population configurations returned better values.

All the values previously found in the literature, presented in Table 1, were
reached by the MA, except the W4. An increase in the CPU time to 60 minutes to
check if the 27 tracks value did also not work out. That time limit was determined
after we verified that the best results for W4, presented in [5], took several hours to
be achieved even using an equipment which performance was comparable to ours.

As even with a long CPU time the algorithm did not succeed, we decided to en-
large the local search neighborhood, increasing from the number of positions to be
tested from 10 to 20 (see section 3.4). With this change the algorithm finally suc-
ceeded to find the best solution three times in ten.

Table 7. Results for instance W4 with a 60-minutes CPU time limit and the augmented local
search neighborhood.

Test # Best solution
found

CPU time required to
reach the solution

1 27 2141.0
2 28 1791.9
3 29 855.7
4 29 532.4
5 27 1788.7
6 29 560.8
7 28 1791.0
8 31 2908.1
9 27 3002.5
10 28 600.9

6 Conclusions

This work presented a study on multiple-population approaches to solve the gate
matrix layout problem. We used a Memetic Algorithm as the search engine. The
results were very encouraging and the best multi-population configuration found
was four populations evolving in parallel and exchanging individuals at a medium
rate. The five instances utilized were taken from real-world VLSI circuit layout
problems and the solutions rivaled with those previously found in the literature.
Another strong point is that the method utilized is included in a framework for gen-

eral optimization called NP-Opt [6]. That means a general purpose MA was success-
ful in solving a very complex optimization problem, competing head-to-head with
specific methods especially tailored for this problem. Future works should include
the use of parallel techniques to distribute the populations and/or individuals
through a computer network and the extension of this study to other NP problems to
verify if the results hold as well.

Acknowledgements

This work was supported by “Fundação de Amparo à Pesquisa do Estado de São
Paulo” (FAPESP – Brazil) and “Conselho Nacional de Desenvolvimento Científico
e Tecnológico” (CNPq – Brazil). The authors also thank Alexandre Linhares, for his
relevant remarks and comments, and for providing us with the VLSI instances.

References

1. França, P. M., Mendes, A. S. and Moscato, P.: A memetic algorithm for the total tardi-
ness Single Machine Scheduling problem. European Journal of Operational Research, v.
132, n. 1 (2001) 224-242

2. Hu, Y. H. and Chen, S. J.: GM_Plan: A gate matrix layout algorithm based on artificial
intelligence planning techniques. IEEE Transactions on Computer-Aided Design, v. 9
(1990) 836-845

3. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley & Sons,
New York (1990)

4. Linhares, A.: Synthesizing a Predatory Search Strategy for VLSI Layouts, IEEE Transac-
tions on Evolutionary Computation, v. 3, n. 2 (1999) 147-152

5. Linhares, A., Yanasse, H. and Torreão, J.: Linear Gate Assignment: a Fast Statistical
Mechanics Approach. IEEE Transactions on Computer-Aided Design on Integrated Cir-
cuits and Systems, v. 18, n. 12 (1999) 1750-1758

6. Mendes, A. S., França, P. M. and Moscato, P.: NP-Opt: An Optimization Framework for
NP Problems. Proceedings of POM2001 - International Conference of the Production and
Operations Management Society (2001) 82-89

7. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms. Caltech Concurrent Computation Program, C3P Report
826. (1989)

8. Nakatani, K., Fujii, T., Kikuno, T. and Yoshida, N.: A heuristic algorithm for gate matrix
layout. Proceedings of International Conference of Computer-Aided Design (1986) 324-
327

9. Moscato, P. and Norman, M. G.: A ‘Memetic’ Approach for the Traveling Salesman
Problem. Implementation of a Computational Ecology for Combinatorial Optimization on
Message-Passing Systems, Parallel Computing and Transputer Applications, edited by M.
Valero, E. Onate, M. Jane, J.L. Larriba and B. Suarez, Ed. IOS Press, Amsterdam (1992)
187-194

