
A Real Time Learning Agent

Gabriela S�erban

Department of Computer Science

"Babe�s-Bolyai" University, Cluj-Napoca, Romania

gabis@cs.ubbcluj.ro

Abstract. It is well known that search has a long and distinguished

history in Arti�cial Intelligence, since all Arti�cial Intelligence problems

require some sort of searching [7]. Search algorithms are useful for prob-

lem solving by intelligent (single or multiple) agents. In this paper we

propose an original algorithm which extends the Learning Real-Time

A* (LRTA*) algorithm [1], used for solving path-�nding problems. This

algorithm preserves the characteristic of LRTA* (a real-time search al-

gorithm), providing a better exploration of the search space. Using this

algorithm, we design an Agent for solving a path-�nding problem (search-

ing a maze).

Keywords: Search, Agents, Learning.



1 Introduction

One class of problems addressed by search algorithms is the class of path-�nding
problems. Given a set of states (con�gurations), an initial state and a goal (�nal)
state, the objective in a path-�nding problem is to �nd a path (sequence of
moves) from an initial con�guration to a goal con�guration.

In single-agent problem solving, the question is [7] that an agent is assumed
to have limited rationality, so, the computational ability of an agent is usually
limited. Therefore, the agent must do a limited amount of computations using
only partial information on the problem.

The A* algorithm ([2]), a standard search algorithm, extends the wavefront
of explored states from the initial state and chooses the most promising state
within the whole wavefront. In this case, at each step, the global knowledge of the
problem is required, that is why the computational complexity is considerable.
So, the task is to solve the problem by accumulating local computations for
each node in the graph (the search problem). These local computations can be
executed concurrently (the execution order can be arbitrary), so, the problem
could be solved both by single and multiple agents.

2 Path-Finding Problem

A path-�nding problem consists of the following components [7]:

{ a set of nodes, each representing a state;
{ a set of directed links, each representing an operator available to a problem

solving agent (each link is weighted with a positive number representing the
cost of applying the operator - called distance);

{ a unique node called the start node;
{ a set of nodes, each of which represents a goal state.

We call the nodes that have directed links from node i neighbors of node i.
The problem is to �nd a path from the initial state to a goal state. In the

followings we will refer to the problem of �nding an optimal (shortest) path from
the initial state to a goal state (we call the shortest path the path having the
shortest distance to goal).

Notational conventions used in the followings are:

{ h(s) - the shortest distance from node s to goal nodes;
{ h'(s) - the estimated distance from node s to goal nodes;
{ k(s,s') - the distance (cost of the link) between s and s'.

3 Learning Real-Time A*

When only one agent is solving a path-�nding problem, it is not always possible
to perform local computations for all nodes (for example, autonomous robots



may not have enough time for planning and should interleave planning and
execution). That is why the agent must selectively execute the computations for
certain nodes. The problem is which node should choose the agent.

A way is to choose the current node were the agent is located. The agent
updates the h' value of the current node, and then moves to the best neighboring
node. This procedure is repeated until the agent reaches a goal state. The method
is called the Learning Real-Time A* algorithm [1].

The algorithm is described in Figure 1.

1. Calculate f(j) = k(i; j) + h0(j) for each neighbor j of the current node i

2. Update: Update the estimate of node i as follows:

h
0

(i) := minjf(j) (1)

3. Action selection: Move to the neighbor j that has the minimum f(j) value.

Fig. 1. The Learning Real-Time A* algorithm.

One characteristic of the algorithm is that the agent determines the next
action in a constant time. That is why this algorithm is called an on-line, real-
time search algorithm.

The function that gives the initial values of h0 is called a heuristic function.
A heuristic function is called admissible if it never overestimates (in the worst
case, the condition could be satis�ed by setting all estimates to 0).

In LRTA*, the updating procedures are performed only for the nodes that
the agent actually visits. The following characteristic is known [1]:

{ In a �nite number of nodes with positive link costs, in which there exists a
path from every node to a goal node, and starting with non-negative admis-
sible initial estimates, LRTA* is complete, i.e., it will eventually reach a goal
node.

Since LRTA* never overestimates [7], it learns the optimal solution through
repeated trials. In this case, the values learned by LRTA* will eventually converge

to their actual distances along every optimal path to the goal node.

4 A Real-Time Learning Algorithm (RTL)

In fact, the behavior of the agent in the given environment can be seen as a
Markov decision process. Regarding LRTA* there are two problems:

1. in order to avoid recursion in cyclic graphs, it should be retained the nodes
that have been already visited (with the corresponding values of h'). There-



fore, the space complexity grows with the total number of states in the search
space;

2. what happens in some plateau situations - states in which, let us say, exists

more successor (neighbor) states with the same minimum value for h' (the
choice of the next action is nondeterministic).

In the followings, we propose an algorithm (RTL) which is an extension of
the LRTA* algorithm, having some alternatives of solving the above presented
problems. We mention that the algorithm preserves the completeness of LRTA*.

The proposed solutions for the problems (1) and (2) are:

1. we keep a track of the visited nodes, but we do not retain the values of h'
for each node;

2. in order to choose the next action in a given state, the agent determines
the set of states S (which were not visited by the agent) having a minimum
value for h'. If S is empty, the training fails, otherwise, the agent chooses a
random state from S as a successor state (this allows a better exploration of
the search space).

The idea of the algorithm (based on LRTA*) is the following:

{ through repeated trials (training episodes), the agent tries some paths (pos-
sible optimal) to a goal state, and retains the shortest one;

{ the number of trials is selected by the user;
{ after a training trial there are two possibilities:

� the agent reaches a goal state; in this case the agent retains the path
and it's cost;

� the learning process fails (the agent does not reach the �nal state, be-
cause it was blocked).

{ for avoiding cycles in the search space, the agent will not choose a state that
was visited before, only if it has a single alternative (it was blocked) and it
must return to the formerly visited state.

We make the following notations and assumptions:

{ S = fs1; � � � ; sng - the set of states;
{ si 2 S - the initial state;
{ G - the set of goal states;
{ A = fa1; � � � ; amg - the set of actions that could be executed by the agent;
{ we assume that the state transitions are deterministic - a given action in a

given state transitions to a single successor state (the Markov Model is not
hidden [8]);

{ with the former assumption, the transitions between states (and their costs')
could be retained as a function env : SxAxN ! S - if s; s0 2 S, a 2 A and
c 2 N so that if the agent takes the action a in the state s he reaches the
state s0 with the cost c, then s0 = env(s; a; c);

{ we will say that the state s0 is the neighbor of the state s i� 9a 2 A and
c 2 N so that s0 = env(s; a; c);



{ h'(s) - the estimated distance from state s to a goal node;

{ we will say that the cost of the path s1
a1

! s2
a2

! � � �
ak�1

! sk is C =
P

k�1

i=1
ci,

where si+1 = env(si; ai; ci) for all i = 1; � � � ; k � 1.

The algorithm

The algorithm consists in a repeated update of the estimated values of the

states, until the agent reaches a goal state (in fact a training sequence). The
training is repeated for a given number of trials.

The algorithm is shown in Figure 2.

Repeat until the number of trials was exceeded or until the correct solution was found

{ Training:

1. Initialization:

� sc (the current state):= si (the initial state)

� calculate the estimation of the current state h0(sc)

2. Iteration:

Repeat until (sc 2 G) or (the agent was blocked) or (the number of visited

states exceeds a maximum value)

(a) Update:

� for each state s0 neighbor of sc the agent calculates the estimation of

the shortest distance from s0 to a goal state

f(s
0

) = c+ h
0

(s
0

); s
0

= env(s; a; c) (2)

� the agent determines the set of states M = fs"1; � � � s
"

kg so that for all

j = 1; � � � ; k

s
"

j = argmin
s
0 ff(s

0

) j 9a 2 A; c 2 N so that s
0

= env(s; a; c)g (3)

(b) Action selection:

� if k = 1 (the agent has a single alternative to continue) then the agent

moves in the state s"1;

� otherwise the agent determines from the set M a subset M 0 of states

that were not visited in the current training sequence and chooses

randomly a state from M 0.

Fig. 2. The Real-Time Learning (RTL) algorithm.

We have to mention that:

{ we considered that if the agent �nds in several trials the same optimal so-
lution, then it is very probable that the solution is the correct one, and the
training process stops;

{ the training process during one trial is a linear one;
{ the agent determines the next action in a real-time;



{ the space complexity is reduced (there are retained only the states from the
optimal path).

As in the LRTA* algorithm, if the heuristic function (the initial values of h')
is admissible (never overestimates the true value -h0(s) <= h(s) for all s 2 S-),
then we can easily prove that the RTL algorithm is complete, i.e, it will eventually
reach the goal [4] and h0(s) will eventually converge to the true value h(s) [6].

5 An Agent for Searching a Maze

5.1 General Presentation

The application is written in Borland C and implements the behavior of an
Intelligent Agent (a robotic agent), whose purpose is coming out from a maze
on a shortest path, using the algorithm described in the previous section (RTL).

We assume that:

{ the maze has a rectangular form; in some positions there are obstacles; the
agent starts in a given state and it tries to reach a �nal (goal) state, avoiding
the obstacles;

{ in a certain position on the maze the agent could move in four directions:
north, south, east, west (there are four possible actions);

{ the cost of executing an action (move in one direction) is 1;
{ as a heuristic function (initial values for h0(s)) we have chosen the Manhattan

distance to the goal (it is obvious that this heuristic function is admissible),
which assures the completeness of the algorithm.

In fact it is a kind of semi-supervised learning, because the agent starts with
an initial knowledge (the heuristic function) , so it has an informed behavior).
In the worst case, if the values of the heuristic function are 0, then the learning
is unsupervised, but the behavior of the agent becomes uninformed.

5.2 The Agent's Design

For implementing the algorithm, we will represent the following structures:

{ a State from the environment;
{ the Environment (as a linked list of States);
{ a Node from the optimal path (the current State and the estimation h' of

the current state);
{ the optimal path from a training sequence (as a linked list of Nodes).

The basis classes used for implementing the agent's behavior are the follow-
ings:

{ IElement: de�nes an interface for an element. This is an abstract class
having two pure virtual methods:



� for converting the member data of an element into a string;
� a destructor for the member data.

{ CNode: de�nes the structure of a Node from the optimal path. This class
implements (inherits) the interface IElement, having (besides the methods
from the interface) it's own methods for:
� setting components (the current state, the estimation of the current
state);

� accessing components.
{ CState: de�nes the structure of a State from the environment. This class

implements (inherits) the interface IElement, having (besides the methods
from the interface) it's own methods for:
� setting components (the current position on the maze, the value of a
state);

� accessing components;
� calculating the estimation h' of the state;
� verifying if the state is accessible (contains or not an obstacle).

{ CList: de�nes the structure of a linked list, with a generic element (a pointer
to IElement) as information of the nodes. The main methods of the class are
for:
� adding elements;
� accessing elements;
� updating elements.

{ CEnvironment: de�nes the structure of the agent's environment (it de-
pends on the concrete problem - in our example the environment is a rect-
angular maze). The private member data of this class are:

� m: the environment, represented as a linked list (CList) of states (CState);
� si: the initial state of the agent (is a CState);
� sf: the �nal state from the environment (is a CState);
� l, c: the dimensions of the environment (number of rows and columns).

The main methods of the class are for:
� reading the environment from an input stream;
� setting and accessing components;
� verifying the neighborhood of two states in the environment.

{ Agent: the main class of the application, which implements the agent's
behavior and the learning algorithm.
The private member data of this class are:

� m: the agent's environment (is a CEnvironment);
� l: the list of Nodes used for retaining the optimal path in the current
training sequence (is a CList);

The public methods of the agent are the followings:

� readEnvironment: reads the information about the environment from
an input stream ;

� writeEnvironment: writes the information about the environment in
an output stream ;

� learning: is the main method of the agent; implements the RTL algo-
rithm.



Besides the public methods, the agent has some private methods used in the
method learning.

We notice that all the representations of data structures are linked, which
means that there are no limitations for the structures' length (number of states).

5.3 Experimental Results

For our experiment, we considered the environment shown in Figure 3. The state
marked with 1 represents the initial state of the agent, the state marked with
2 represents the �nal state and the states �lled with black contains obstacles
(which the agent should avoid).

We repeat the experiment four times, because of the random character of
the action selection mechanism. The results after the experiments are shown in
Table 1, 2, 3, 4 (in a solution the agent determines the moving direction from
the current state).

We notice that, in average, after 8 episodes, the agent �nds the optimal path
to the �nal state.

The graphical representation of the training during the four experiments is
shown in Figure 4.

Table 1. First experiment

Number of episodes 8

The optimal solution East North North East North North East East East North

Episode Number of steps until the �nal state was reached

1 10

2 16

3 10

4 10

5 18

6 12

7 14

8 10

6 Conclusions and Further Work

The algorithm described in this paper is very general, could be applied in any
problem which goal is to �nd an optimal solution in a search space (a path-
�nding problem).

On the other hand, the application is designed in a way which allows us to
model (with a few modi�cations) any environment and any behavior of an agent.

Further work is planned to be done in the following directions:



Fig. 3. The agent's environment

Table 2. Second experiment

Number of episodes 6

The optimal solution East North North East North North East East East North

Episode Number of steps until the �nal state was reached

1 16

2 10

3 14

4 10

5 10

6 10



Table 3. Third experiment

Number of episodes 14

The optimal solution East North North East North North East East East North

Episode Number of steps until the �nal state was reached

1 18

2 10

3 12

4 10

5 16

6 10

7 12

8 14

9 16

10 28

11 14

12 16

13 14

14 10

Fig. 4. The number of steps/episode during the training processes



Table 4. Fourth experiment

Number of episodes 5

The optimal solution East East East North East East North North North North

Episode Number of steps until the �nal state was reached

1 12

2 10

3 12

4 10

5 10

{ to analyze what happens if the transitions between states are nondetermin-
istic (the environment is a Hidden Markov Model [8]);

{ to use probabilistic action selection mechanisms (�-Greedy, SoftMax [5]);
{ to combine the RTL algorithm with other classical path-�nding algorithms

(RTA*);
{ in which way the agent could deduce the heuristic function from the inter-

action with it's environment (a kind of reinforcement learning);
{ to develop the algorithm for solving path-�nding problems with multiple

agents.

References

1. Korf, R., E.: Real-time heuristic search. Arti�cial Intelligence (1990)

2. Korf, R., E.: Search. Encyclopedia of Arti�cial Intelligence, Wiley-Interscience

Publication, New York (1992)

3. Russell, S.J., Norvig, P.: Arti�cial intelligence. A modern approach. Prentice-

Hall International (1995)

4. Ishida, T., Korf, R., E.: A moving target search. A real-time search for changing

goals. IEEE Transaction on Pattern Analysis and Machine Intelligence (1995)

5. Sutton, R., Barto, A., G.: Reinforcement learning. The MIT Press, Cambridge,

England (1998)

6. Shimbo, M., Ishida T.: On the convergence of real-time search. Journal of

Japanese Society for Arti�cial Intelligence (1998)

7. Weiss, G.: Multiagent systems - A Modern Approach to Distributed Arti�cial

Intelligence, The MIT Press, Cambridge, Massachusetts, London (1999)

8. Serban, G.: Training Hidden Markov Models - a Method for Training Intelli-

gent Agents, Proceedings of the Second International Workshop of Central and

Eastern Europe on Multi-Agent Systems, Krakow, Poland (2001) 267{276


