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Abstract. This paper presents a proposal for wide-coverage Named En-

tity Extraction for Spanish. Correct identi�cation of Named Entities
appearing in a text provides very useful knowledge for many Natural

Language Processing tasks and applications. The extraction of named

entities is treated using robust Machine Learning techniques (AdaBoost)
and simple attributes requiring non tagged corpora complemented with

external information sources (a list of trigger words and a gazetteer). A

thorough evaluation of the task on real corpora is presented in order to
validate the appropriateness of the approach.

1 Introduction

There is a wide consensus about that Named Entity Extraction is a Natural

Language Processing (NLP) task which provides important knowledge not only

for anaphora and correference resolution, but also to improve the performance

of many applications, such as Information Extraction, Information Retrieval,

Machine Translation, Query Answering, Topic detection and tracking, etc.

From 1987 to 1999, the Message Understanding Conferences (MUC), devoted

to Information Extraction, included a Named Entity Recognition task, which de

facto determined what we usually refer to with the term Named Entity, and

established standard measures for the accuracy of a system performing this task.

In MUC, the Named Entity Recognition task is divided into three subtasks:

the Name Extraction (ENAMEX), the Time Extraction (TIMEX), and the Num-

ber Extraction (NUMEX) tasks. The �rst consists of recognizing and classifying

the names for persons, locations and organizations. The second refers to the

extraction of temporal expressions (dates, times), and the last one deals with

monetary and percentage quantities.

The techniques used in systems addressing this task cover a wide spectrum

of approaches and algorithms traditionally used in NLP and AI. Some systems
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rely on heavily data-driven approaches [3, 1], while others use only hand{coded

knowledge, [4, 2, 13, 8]. Finally, there are also hybrid systems combining corpus

evidence and hand-coded knowledge, or external information sources [14,5, 9].

It is remarkable that most research is performed on English, and that |to our

knowledge| there is no work referring to Spanish.

We approach the task excluding the equivalent to the NUMEX and TIMEX

tasks in MUC (i.e., we do not consider time or numerical expressions, which

being frequent and easy to detect and classify, have the e�ect of raising the

�nal accuracy �gures). In addition, the task we approach is somewhat more

di�cult than MUC ENAMEX since we consider not only person, location,

and organization classes, but also a fourth category others which includes

named entities such as documents, measures and taxes, titles of art works |

cinema, music, literature, painting, etc.| and others.

The system uses Machine Learning (ML) components for the recognition and

classi�cation of simple entities. The ML modules use a large set of extremely sim-

ple contextual and orthographic information, which do not require any previous

linguistic processing. Some experimental evaluation is presented con�rming the

validity of the approach proposed. We also test whether the NE classi�cation per-

formance signi�cantly improves when using external knowledge sources (such as

gazetteers or lists of trigger words).

The overall organization of the paper is the following: Section 2 presents the

addressed task. Sections 3 and 4 are devoted to describe the algorithms and

sources of information used to recognize and classify NEs. Section 5 describes

the experimental evaluation of the model in a general Spanish corpus from a

news agency. Finally, section 6 presents the main conclusions of the work and

outlines some directions for future research.

2 Named Entity Extraction

In what respects to NE extraction, two sub-tasks must be approached: Named

Entity Recognition (NER) |consisting of detecting the boundaries for each

entity| and Named Entity Classi�cation (NEC) |consisting of deciding whether

the NE refers to a person, a location, an organization, etc.

We follow the approach of performing each task as soon as the necessary

information is available. In this way, NER is performed during morphological

analysis, since it requires only context information on word forms, capitalization

patterns, etc. NEC is performed after the morphological analysis and before the

tagging since no signi�cant improvement were obtained when adding lemma

and PoS information. NER and NEC tasks will be performed sequentially but

independently.

Formally, NER can be seen as the task of segmenting a sequence of words

into non{overlapping and non{recursive chunks (i.e., the NEs). From this point

of view, a NE is de�ned by its starting and ending points. There are several

possible classi�cation models for this task:



{ OpenClose: Two classi�ers are used: one classi�er to decide if a certain word

in the sentence opens a new NE and another one to decide if it closes an

already opened NE.

{ IOB: A single classi�er decides whether each word is the beginning of a NE

(B tag), if it is a component of a NE, but not the �rst word (I tag), or if it

is outside a NE (O tag).

There are several ways of using these classi�ers to perform the NER task. The

simplest and most e�cient way consists in exploring the sequence of words in

a certain direction and applying the open and close classi�ers (or, alternatively,

the IOB classi�er) coherently. This greedy approach is linear in the number of

words of the sentence. Given that the classi�ers are able to provide predictions,

which may be translated into probabilities, another possibility is to use dynamic

programming for assigning the sequence of tags that maximize a global score

over the sequence of words, taking into account the coherence of the solution

[10,7].

In this work, for simplicity and e�ciency reasons, the greedy approach has

been followed. Initial experiments on applying global inference have provided no

signi�cant improvements.

Finally, it is worth noting that NEC is simply a classi�cation task, consisting

of assigning the NE type to each potential, and already recognized, NE. In this

case, all the decisions are taken independently, and the classi�cation of a certain

NE cannot inuence the classi�cation of the following ones.

3 Learning the Decisions

The AdaBoost algorithm has been used to learn all the binary decisions involved

in the extraction of NEs. The general purpose of the AdaBoost algorithm is to

�nd a highly accurate classi�cation rule by combining many base classi�ers. In

this work we use the generalized AdaBoost algorithm presented in [12], which

has been applied, with signi�cant success, to a number of problems in di�er-

ent research areas, including NLP tasks [11]. In the following, the AdaBoost

algorithm will be briey sketched |see [12] for details.

Let (x1; y1); : : : ; (xm; ym) be the set of m training examples, where each xi

belongs to an input space X and yi 2 Y = f+1;�1g is the class of xi to be

learned. AdaBoost learns a number T of base classi�ers, each time presenting the

base learning algorithm a di�erent weighting over the examples. A base classi�er

is seen as a function h : X ! R. The output of each ht is a real number whose

sign is interpreted as the predicted class, and whose magnitude is a con�dence

rate for the prediction. The AdaBoost classi�er is a weighted vote of the base

classi�ers, given by the expression f(x) =
P

T

t=1
�tht(x), where �t represents the

weight of ht inside the combined classi�er. Again, the sign of f(x) is the class of

the prediction and the magnitude is the con�dence rate.

The base classi�ers we use are decision trees of �xed depth. The internal

nodes of a decision tree test the value of a boolean predicate (e.g. \the word

street appears to the right of the named entity to be classi�ed"). The leaves of



a tree de�ne a partition over the input space X , and each leave contains the

prediction of the tree for the corresponding part of X .

In [12] a criterion for greedily growing decision trees and computing the pre-

dictions in the leaves is given. Our base learning algorithm learns trees following

this criterion, having a maximum depth parameter as the stopping criterion.

These base classi�ers allow the algorithm to work in a dimensional feature space

that contains conjunctions of simple features.

4 Information Sources and Features

The features used to take the decisions in NER and NEC tasks can be obtained

from untagged text and may be divided into context features and external knowl-

edge features. For the latter, we used a 7,427 trigger-word list typically accom-

panying persons, organizations, locations, etc., and a 10,560 entry gazetteer con-

taining geographical and person names.

Due to the nature of AdaBoost, all features are binarized, that is, there is

a feature for each possible word form appearing at each position in the context

window. Although this creates large feature spaces, the AdaBoost algorithm is

able to deal with such dimensionality appropriately (i.e., e�ciently and prevent-

ing over�tting to the training examples).

4.1 NER Features

All features used for training the classi�ers in the NER task, refer to context.

Contrary to the NEC task, it has been empirically observed that the addition of

knowledge from gazetteers and trigger words provides only very weak evidence

for deciding the correct segmentation of a NE.

Since the basic AdaBoost algorithm is designed for binary classi�cation prob-

lems, we have binarized the 3{class IOB problem by creating one binary problem

for each tag. Therefore, each word in the training set |labelled as I, O, or B|

de�nes an example, which is taken as positive for its class and negative for the

rest. The following features are used to represent these examples:

{ The form and the position of all the words in a window of �3 words, and

including the focus word (e.g., word(-1)=\estadio").

{ An orthographic feature and the position of all the words in the same�3 win-

dow. These orthographic features are binary and not mutually exclusive and

consider whether the �i th word is: initial-caps, all-caps contains-digits, all-

digits alphanumeric, roman-number, contains-dots, contains-hyphen acronym,

lonely-initial, punctuation-mark, single-char, function-word, and URL.

{ I, O, B tags of the three preceding words.

In the OpenClose scheme, the open classi�er is trained with the words at the

beginning of the NEs as positive examples, and the words outside the NEs as

negative examples. The feature codi�cation of these examples is the same as in

the IOB case.



The close classi�er is trained only with examples coming from words internal

to the NEs, taking the last word of each NE as a positive example, and the rest

as negative examples. In this case, the decision of whether a certain word should

close a NE strongly depends on the sequence of words between the word in which

the NE starts and the current word (i.e., the structure of the partial NE). For the

words in a [-2,+3] window outside this sequence, exactly the same features as in

the IOB case have been considered. The speci�c features for the inner sequence

are the following:

{ Word form and orthographic features of the focus word and the word starting

the NE.

{ Word form and orthographic features of the words inside the sequence taking

its position with respect to the current word.

{ Length in words of the sequence.
{ Pattern of the partial entity, with regard to capitalized or non-capitalized

words, functional words, punctuation marks, numbers, and quotations.

4.2 NEC Features

A binary classi�er is trained for each NE class. Each training occurrence is used

as a positive example for its class and as a negative example for the others. All

classi�ers use the following set of features:

{ Context features: Form and position of each word in a �3{word window (e.g.

word(-2)=\presidente").

{ Bag-of-words features: form of each word in a �5{word window of �ve words

left and right of the entity being classi�ed. (e.g. banco 2 context).
{ NE inner features: Length (in words) of the entity being classi�ed, pattern of

the entity with regard to acronyms, numbers, capitalized words, prepositions,

determiners, and punctuation marks.

{ Trigger word features: Class and position of trigger words in a �3{word win-

dow. Pattern of the entity immediate left context, with regard to punctuation

marks, prepositions, determiners, trigger words denoting person, location, or-

ganization, or other entities, and trigger words denoting geographical origin,

{ Gazetteer features: Class (geographical, �rst name, or surname) and posi-

tion of gazetteer words in a �3 window. Class in gazetteer of the NE being

classi�ed and class in the gazetteer of its components.

5 Evaluation

5.1 The EFE Spanish Corpus

The EFE corpus used for the evaluation of the whole named entity processing

system is a collection of over 3,000 news agency articles totalling 802,729 words,

which contain over 86,000 hand tagged named entities. A corpus subset contain-

ing 65,000 words (4,820 named entities) is reserved for evaluation tests and the

remaining is used as training material.



For the NER task a only a subset of 100,000 words of the training set has

been used1. The exact number of examples and features derived from the training

corpus for each binary decision of the NER task is described in table 1. For the

NEC task, the whole training set, consisting of some 81,000 NE occurrences, has

been used. According to the features de�ned in section 4, these examples produce

near 89,000 features.

Both in NER and NEC, features occurring less than 3 times in the training

corpus have been �ltered out. For the NEC task, this reduces the feature space

to some 22,000 dimensions.

#Exs. #Feat. #Pos.examples

open 91,625 19,215 8,126 (8.87%)

close 8,802 10,795 4,820 (54.76%)

I 97,333 20,526 5,708 (5.86%)

O 97,333 20,526 83,499 (85.79%)

B 97,333 20,526 8,126 (8.35%)

Table 1. Sizes and proportions of positive examples in the NER binary decisions

5.2 Experimental Methodology

We trained the system using di�erent feature sets and number of learning rounds,

using base classi�ers of di�erent complexities, ranging from stumps (simple de-

cision trees of depth 1) to decision trees of depth 4.

The evaluation measures for NER are: number of NE beginnings correctly

identi�ed (B), number of NE endings correctly identi�ed (E), and number of

complete NEs correctly identi�ed. In the last case, recall (R, number of entities

correctly identi�ed over the number of expected entities), precision (P , number

of entities correctly identi�ed over the number of identi�ed entities), and F -

measure (F1 = 2 � P �R=(P +R)) are computed.

The evaluation measures for NEC task include the accuracy of the binary

classi�ers for each category, as well as the evaluation of the combined classi�er,

which proposes the �nal decision based on the outcomes of all binary classi�ers.

The combination performance is measured in terms of recall, precision, and F1.

The accuracy (Acc) of the system when forced to choose one class per entity is

also evaluated.

5.3 NER Results

Figure 1 contains the performance plots (F1 measure) with respect to the number

of rounds of the AdaBoost algorithm in the I, O, B binary decisions of the NER

1 It has been empirically observed that using a bigger corpus does not result in a

better performance for the task, while the number of examples and features greatly

increase.



task. Note that decision trees perform signi�cantly better than stumps and that

a further increasing of the depth of the trees provides a small gain. Also, it can be

noticed that all NER binary classi�ers are quite accurate, with F1 measure over

96%. The learning curves present a satisfactory behaviour, with no signi�cant

over�tting with larger number of rounds, and achieving maximum performance

after a quite reduced number of rounds. Exactly the same properties hold for

the curves corresponding to the open and close classi�ers.

I tag O tag B tag
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Fig. 1. F1 measure w.r.t. the number of rounds of the I, O, B classi�ers of NER task

Table 2 contains the results of the OpenClose and IOB approaches on the

whole NER task, using depth{3 base classi�ers. It can be observed that both

variants perform signi�cantly better than the baselineMaco+ [6]. TheMaco+

NE module is a heuristic rule based NE recognizer, which takes into account

capitalization patterns, functional words and dictionary lookup.

The performance of the OpenClose scheme is slightly worse than the IOB.

This can be explained by the fact that when the close classi�er wrongly decides

not to end a NE then its output for the following words becomes unpredictable,

since it enters into a situation not seen in the training phase.

This is con�rmed by an additional experiment with a modi�ed scheme con-

sisting of applying the OpenClose scheme but after each negative prediction of

the close, the I classi�er is asked to con�rm whether the following word is still

inside the NE. If the I classi�er gives a positive answer then the process contin-

ues normally, otherwise it is assumed that the close classi�er was wrong. The

positive answers of the close classi�er are never questioned, since it is very accu-

rate in its predictions. As it can be seen in table 2, this scheme (OpenClose&I)

achieves the best results on the task.

Finally, table 3 presents the NER results depending on the length of the NE

to recognize, as well as depending on whether the entity begins with uppercase

or lowercase letter. As it could be expected, the performance degrades with the

length of the sequence to be detected (specially on recall). However, a reasonable

high accuracy can be expected for NEs of length up to six words. The set of

NEs that begin with a lowercase word poses a very challenging problem for

the NER module, specially due to the very shallow semantic treatment of the



Method B E P R F1

Maco+ 90.83% 87.51% 89.94% 87.51% 88.71%

OpenClose 94.61% 91.54% 92.42% 91.54% 91.97%

IOB 95.20% 91.99% 92.66% 91.99% 92.33%

OpenClose&I 95.31% 92.14% 92.60% 92.14% 92.37%

Table 2. Results of all methods in the NER task

training examples (captured only through the word forms, without any kind of

generalization). We �nd very remarkable the precision achieved by the system on

this subset of words (85.40%). The recall is signi�cantly lower (63.93%), basically

because in many occasions the open classi�er does not have enough evidence to

start a NE in a lowercase word.

Subset #NE B E P R F1

length=1 2,807 97.04% 95.80% 94.64% 95.65% 95.15%

length=2 1,005 99.30% 93.73% 94.01% 93.73% 93.87%

length=3 495 93.74% 88.69% 91.65% 88.69% 90.14%

length=4 237 89.45% 84.81% 84.81% 84.81% 84.81%

length=5 89 87.64% 76.40% 77.27% 76.40% 76.84%
length=6 74 93.24% 79.73% 81.94% 79.73% 80.82%

length=7 22 59.09% 54.55% 60.00% 54.55% 57.14%

length=8 22 77.27% 68.18% 88.24% 68.18% 76.92%

length=9 11 90.91% 72.73% 80.00% 72.73% 76.19%

length=10 3 66.67% 33.33% 50.00% 33.33% 40.00%

uppercase 4,637 96.42% 93.25% 92.81% 93.25% 93.03%

lowercase 183 67.21% 63.93% 85.40% 63.93% 73.13%

TOTAL 4,820 95.31% 92.14% 92.60% 92.14% 92.37%

Table 3. Results of OpenClose&I on di�erent subsets of the NER task

5.4 NEC Results

The binarization of the NEC problem used in this work consists of a binary

classi�er for each class (one-vs-all scheme). All NEC binary classi�ers achieve an

accuracy between 91% and 97% and show very similar learning curves in terms

of number of rounds. As in the NER task, decision trees signi�cantly outperform

stumps.

With respect to the complete NEC system, the combination of binary de-

cisions is performed selecting the classes to which binary predictors assigned a

positive con�dence degree. The system can be forced to give exactly one predic-

tion per NE by selecting the class with higher con�dence degree.

The results of all NEC systems are presented in table 4 (left part). The basic

row refers to the model using context word, bag-of-words, and NE features as

described in section 4.1. Results when the models include features obtained from



lists of trigger words (tw) and gazetteers (gaz) are also presented. As a baseline

we include the results that a dumb most-frequent-class classi�er would achieve.

In all cases, the use of extra information improves the performance of the

system, both in the binary decisions and in the �nal combination. The best

result is achieved when both external resources are used, pointing out that each

of them provides information not included in the other. Note that, although

the individual performance of the binary classi�ers was over 91%, the combined

classi�er achieves an accuracy of about 88%.

Method P R F1 Acc P R F1 Acc

Most frequent 39.78% 39.78% 39.78% 39.78% 37.47% 37.47% 37.47% 37.47%

basic 90.19% 84.44% 87.22% 87.51% 83.84% 79.39% 81.55% 81.85%

basic+tw 90.11% 84.77% 87.36% 88.17% 85.08% 79.30% 82.09% 82.15%

basic+gaz 90.25% 85.31% 87.71% 88.60% 85.05% 79.57% 82.22% 82.15%

basic+tw+gaz 90.61% 85.23% 87.84% 88.73% 85.32% 79.80% 82.47% 82.31%

Table 4. Results of all feature sets in the NEC task assuming perfect NE segmentation

(left part), and using the real output of the NER module (right part)

Finally, the complete system is evaluated by testing the performance of the

NEC classi�er on the output of the NER module. Again, table 4 (right part)

presents the results obtained. Performance is rather lower due to the error prop-

agation of the NER module and to the worst-case evaluation, which counts as

misclassi�cations the entities incorrectly recognized.

6 Conclusions and Further Work

We have presented a Named Entity Extraction system for Spanish based on

robust Machine Learning techniques. The system relies on the usage of a large

set of simple features requiring no complex linguistic processing. The perfor-

mance of the learning algorithms is fairly good, providing accurate and robust

NE recognizers and classi�ers, that have been tested on a large corpus of running

text. By adding extra{features from a gazetteer and a list of trigger words the

performance has been further improved.

Comparing to state{of{the{art English systems, we have achieved a similar

performance, though a cross{language comparison with other systems results

is not reliable since, besides the di�erences from the linguistic phenomena ad-

dressed in each language, the evaluation corpora used as well as the criteria used

to annotate them are not homogeneous.

The following are some lines of current work to improve the performance and

quality of the system:

{ Classi�cation algorithms other than AdaBoost must be tested at NE extrac-

tion and results compared. Although this task �ts well AdaBoost capabilities,



other algorithm such as Support Vector Machines may o�er similar or better

performances.

{ Although the initial experiments have not reported good results, we think

that the use of global inference schemes (instead of the one-pass greedy

approach used in this paper) for assigning the sequence of tags deserves

further investigation.

{ NEC: The combination of the four binary classi�ers obtains lower perfor-

mance than any of them. Further combination schemes must be explored,

as well as the use of multi-label AdaBoost algorithms instead of the binary

ones.
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