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Abstract. Embodied autonomous agents are systems that inhabit dynamic, un-
predictable environments in which they try to satisfy a set of time-dependent
goals or motivations in order to survive. One of the problems that this implies
is action selection, the task of resolving conflicts between competing behav-
ioral alternatives. We present an experimental comparison of two action selec-
tion mechanisms (ASM), implementing “winner-takes-all” (WTA) and “voting-
based” (VB) policies respectively, modeled using a motivational behavior-based
approach. This research shows the adequacy of these two ASM with respect to
different sources of environmental complexity and the tendency of each of them
to show different behavioral phenomena.

1 Introduction

In the mid 80’s, a new approach emerged in artificial intelligence (AI) to study in-
telligence in the context of “complete”, embodied autonomous agents [4]. This new
paradigm is highly inspired in biology, animal behavior (ethology), neuroscience and
evolutionary biology, and has been termed “behavior-based AI” or “animat 1 approach”
[13, 11]. The animat approach is appropriate for the class of problems that require a sys-
tem to autonomously fulfill several time-dependent goals or motivations in a dynamic,
unpredictable environment. The main problem in this area is to build architectures for
an autonomous agent that will result in the agent demonstrating adaptative, robust and
effective behavior. Specifically, two related subproblems have to be solved [8]: The
problem of action (or behavior) selection and the problem of learning from experience.
This research is focused on the first issue.

Action selection consists in making a decision as to what behavior to execute in
order to satisfy internal goals and guarantee survival in a given environment and situ-
ation. This implies resolving conflicts between competing behavioral alternatives. We
have modeled two action selection mechanism (ASM) using a motivational behavior-
based approach that follows the architecture proposed in [5]. This means that the agent’s
behavior is driven by motivational states—impulses to action based on bodily needs.
There are several ways in which the set of motivations can lead to the execution of
one behavior, since the same behavior may be able to satisfy more than one motivation

1 Animat is shorthand for “artificial animal”



and the satiation of one motivation may lead the arousal of another. In this paper, we
present an experimental comparison of two action selection architectures implement-
ing approaches that are often regarded as opposite in the literature: “winner-takes-all”
(WTA) and “voting-based” (VB). With a WTA policy the animat will execute the be-
havior that satisfies its highest motivation in the best way. This means that only the
highest motivation drives behavior selection. With a VB policy, all the motivations have
influence on the final selection since the animat will execute the behavior that best satis-
fies a subset of motivations at the same time. In previous work [3, 6] we did a systematic
study and comparison of four architectures that differed along a few relevant parame-
ters; however, only the differences between the two architectures we present here (WTA
and VB) were significant enough, giving rise to more stable results and differences in
behavior. Drawing on the notion of viability [1], used within the animat approach for
different purposes [11, 12, 2], we have defined several complementary viability indi-
cators to assess behavior selection performance, and we have analyzed our results in
terms of some interesting behavioral phenomena that [7] proposes as desirable features
of architectures to achieve flexible behavior selection.

2 The Valimar Environment

In order to test our architectures, we have created a typical behavior selection environ-
ment, called Valimar, in which our robot must select among and perform different activi-
ties in order to survive. The platform we have used is Webots 3.0 (www.cyberbotics.com),
a very realistic 3D mobile robot simulator allowing users to create different environ-
ments with continuous space and complex physics. For these experiments, we have
used Kheperas fitted with a color camera on their top to create two species of robots—
Nessas (green Kheperas) and Enemies (red Kheperas). Nessas are more complex crea-
tures used to implement the two behavior selection architectures described in Section 3.
Enemies have the same sensors and actuators as Nessas, but they have a much simpler
architecture and behavior (their main goal is to attack Nessas), since their only role is to
introduce dynamism in the environment. Neither Nessas nor Enemies can remember the
location of objects, and they also lack any planning capabilities. Valimar is surrounded
by a wall and contains cylindrically-shaped objects of different colors: food (yellow)
and water (blue) sources, nests (purple), obstacles (gray), dull blocks (red), and our
two species of robots. Since Enemies and dull blocks have the same color, Nessas can
mistake one for another.

3 Architectures for Behavior Selection

The architectures we have studied are neither strictly flat (parallel) nor hierarchical
(structured), but a combination of both that lies more on the flat side. They consist
of two layers—motivational and behavioral—that lead to a two-step computation of
intensity. This computation is parallel within each layer, but motivational intensity must
be computed prior to the calculation of behavioral intensity. Both architectures have the
same elements but differ in how these are linked together in their arbitration mechanism.



3.1 Elements

Sensing and acting. The robots are equipped with the following external sensors: eight
infrared proximity sensors and eight binary collision sensors; a radio emitter/receiver
used to transmit and detect the attack of another robot (pain e); and a color camera re-
turning a RGB pattern of 90×90 pixels used to detect direction and discriminate objects.
Object learning and recognition is performed by a combination of three ART1 neural
networks, each of them specialized to detect patterns in one of the RGB components. In
addition to external sensors, we have programmed internal sensors to perceive the val-
ues of physiological variables. Navigation (including obstacle avoidance) is controlled
by a neural network that improves over time through Hebbian learning.

Physiology. The robots have a synthetic physiology of survival-related essential vari-
ables that must be kept within a range of values for the robot to stay alive. They thus
define a physiological space [10] or viability zone [11] within which survival (con-
tinued existence) is guaranteed, whereas transgression of these boundaries leads to
death. Nessa’s essential variables are: damage, energy, glucose, moisture, internal pain 2

(paini), and stress.

External stimuli. In addition to internal variables, behavior selection is also influenced
by the presence of external stimuli that affect the motivational state of the robot. There
are six types of external stimuli to which Nessas can react: the different (colors of the)
objects in the environment plus external pain (pain e).

Motivations. Motivations constitute urges to action based on bodily needs related to
self-sufficiency and survival. They implement a homeostatic process to maintain an es-
sential physiological variable within a certain range. A feedback detector generates an
error signal—the drive—when the value of this variable departs from its ideal value
(setpoint), and this triggers inhibitory and excitatory controlling elements (in this case,
the execution of behaviors) to adjust the variable in the adequate direction. The error
is a number normalized in the interval [0, 1], where 0 indicates no error and 1 results
when the actual value of the variable overflows/underflows the upper/lower limit, in
which case the robot dies. Each motivation receiving an error signal from its feedback
detector receives an intensity (activation level) proportional to the magnitude of the
error. Several motivations can be active at the same time, with varying degrees of in-
tensity. Nessa’s motivations are characterized by: a controlled (essential) physiological
variable, a drive to increase or decrease the level of the controlled variable, an (exter-
nal) incentive stimulus that can increase the motivation’s intensity, and a behavioral
tendency of approach or avoidance towards the stimulus. Table 1 (left) shows Nessas’
motivations with their drives and incentive stimuli.

Behaviors. Our behaviors are coarse-grained subsystems implementing different com-
petencies, similarly to those proposed in [7, 5]. Following the usual distinction in ethol-
ogy [9], Nessas have consummatory (goal-achieving) and appetitive (goal-directed) be-
haviors. A consummatory behavior is executed only if it has been selected by the mo-
tivational state of the robot and its incentive stimulus is present. If the stimulus is not
present, an appetitive behavior is activated to search for it. The execution of a behavior

2 Pain has a double characterization as internal and external stimulus. Internal pain receives its
value from externally felt pain but has more inertia, decreasing more slowly and lasting longer.



has an impact on (increases or decreases) the level of specific physiological variables.
Behaviors can be activated and executed with different intensities that depend on the
intensities of the motivations related to them. The intensity with which a behavior is
executed affects motor strength (speed of the wheels) and the modification of physio-
logical variables (and hence the duration of the behavior). Table 1 (right) shows Nessas’
behaviors.

Motivation Drive Incentive stimulus

Confusion ↓ stress nest

Excitement ↓ energy enemy

Fatigue ↑ energy nest

Hunger ↑ glucose food

Overmoisture ↓ moisture none

Overnutrition ↓ glucose none

Repair ↓ damage nest

Self-protection ↓ paini enemy, paine

Thirst ↑ moisture water

Behavior Stimulus Effects

Avoid none ↓ energy, ↓ glucose,
↓ moisture, ↓ pain, ↑
stress

Attack enemy ↓ energy, ↓ glucose,
↓ moisture, ↓ pain, ↓
stress

Drink water ↓ energy, ↓ glucose,
↑ moisture

Eat food ↓ energy, ↑ glucose,
↓ moisture

Rest none ↑ energy, ↓ glucose,
↓ moisture

RunAway enemy ↓ energy, ↓ glucose,
↓ moisture, ↓ pain, ↑
stress

Search none ↓ energy, ↓ glucose,
↑ stress, ↓ moisture

Sleep nest ↓ damage, ↑ energy,
↓ glucose, ↓ stress, ↓
moisture

Wander none ↓ energy, ↓ glucose,
↓ moisture

Table 1. Nessas’ motivations (left) and behaviors (right; names in italics indicate appetitive be-
haviors, the rest are consummatory).

3.2 Arbitration mechanisms

Motivations and behaviors are connected indirectly through physiological variables,
i.e., motivations take into account the effects that the execution of a behavior will have
on the physiology to make their selection. Our architectures differ in the way these ele-
ments interact to select the behavior that the robot must execute. In the WTA approach,
the main selection is made at the level of motivations, and a single motivation is se-
lected to be in charge of selecting the behavior that best satisfies it. In the VB approach
the main decision is made at the level of behaviors, and each behavior receives acti-
vation from all the motivations that will result affected by its execution, and behavior
selection is postponed until behavioral intensity has been computed. In this case, all the
behaviors are considered for the final selection, and the robot can satisfy several goals
simultaneously.

The behavior selection loops are as follows.
Behavior selection loop in WTA. At every cycle (simulation step):



1. The winner motivation jwinner is calculated.
(a) For each motivation j:

i. Compute the intensity of the drive as proportional to the error of its controlled
variable (evj).

ii. Compute the effect of the presence of external stimuli on the intensity of the moti-
vation: aj =

∑
(sk × ujk), where sk is the intensity of stimulus k, and ujk is the

weight between j and k.
iii. mj = evj + aj is the final intensity of j.

(b) The motivation with highest intensity is selected.
2. The intensity of each behavior linked (through the physiology) with the winner motivation

is computed as bi = mjwinner × fiv , where bi, mjwinner are the intensities of behavior i
and the winner motivation, respectively, and fiv is the effect that the execution of behavior i
has on v, which is the physiological variable controlled by jwinner .

3. The behavior with highest intensity is selected to be executed.

Behavior selection loop in VB. At every cycle (simulation step):

1. Calculate the intensity of each motivation j:
(a) Compute the intensity of the motivation’s drive as proportional to the error of its con-

trolled variable (evj).
(b) Compute the effect of the presence of external stimuli on the intensity of the motivation

j: aj =
∑

(sk × ujk), where sk is the intensity of stimulus k, and ujk is the weight
between j and k.

(c) mj = evj + aj is the final intensity of j.
2. The intensity of each behavior is computed as bi =

∑
(mj × fiv), where bi, mj are the

intensities of behavior i and motivation j, respectively, and fiv is the effect that the execution
of behavior i has on v, the physiological variable controlled by j.

3. The behavior with highest intensity is selected to be executed.

4 Experiments

4.1 Viability Indicators

We have used the notion of viability [1] as general criterion to assess behavior selection
performance. The values (upper and lower boundaries) of the robot’s essential variables
define a physiological space [10] or viability zone [11] within which survival (continued
existence) is guaranteed, whereas transgression of these boundaries leads to death. The
behavior of the robot is thus viable when it keeps the values of the essential variables
within the boundaries of the physiological space.

In our opinion, however, this notion of viability is too vague to provide a direct
criterion to measure the goodness or performance of a behavior selection architecture,
as it leaves several possibilities open. For example, the performance of a behavior se-
lection architecture can be simply assessed in terms of the time it allows the robot to
remain viable (survive) in a given environment. Longer life spans usually indicate better
behavior selection performance but this correlation is not necessarily straightforward,
since the “life quality” or “well-being” of the robot can be very different during its life
span depending on how viability is preserved during that period. A robot can live a long
life with poor “life quality” if the values of its essential variables are kept close to the



critical zone (near the boundaries) of the physiological space for a long period. On the
contrary, it can live a shorter life that ended due to “accidental” factors (e.g., the attack
of one or several predators or the absence of resources) during which it had good via-
bility in terms of “well-being” if the values of its essential variables remained close to
their ideal values. “Life quality” or “well-being” can also have different interpretations.
It can for example be measured in terms of global internal stability or “comfort” that
takes into account the average level of satisfaction of all the essential variables simulta-
neously. It can also be seen in terms of how “balanced” the satisfaction of the different
physiological needs is, since the same level of comfort and life span can be achieved
e.g., by satisfying one or few motivations to a high degree while keeping the rest close
to the critical zone, or by satisfying all the motivations in a more homogeneous way.

We have therefore used three indicators of viability to measure and compare the
performance of our architectures:
Life span: The time that the robot survived (remained viable) during each run normal-
ized with the total simulation time, Slife = tlife/tsimul, where tlife is the number of
simulation steps that the robot lived and tsimul is the total simulation time measured in
number of simulation steps.
Overall comfort: The average level of satisfaction of all the essential variables, mea-
sured at each step as cstep = 1 − (Err/n), where Err is the total sum of errors of the
robot’s physiological variables normalized between [0, 1] with n (the worst error pos-
sible in each step), which corresponds to the sum of the intensities of the motivations’
drives (Err =

∑
(evj)), and n is the number of compatible motivations 3. Average

control for a run is given by C =
∑tlife

1 (cstep)/tlife, where tlife is the number of
simulation steps that the robot lived.
Physiological balance: The homogeneity with which the different physiological needs
are satisfied, measured at each step as bstep = 1 − (Unb/maxunb), where Unb is
the variance of the errors of the robot’s physiological variables normalized between
[0, 1] with maxunb (the worst variance possible in each step), which corresponds to the
variance of the intensities of the (compatible) motivations’ drives (Unb = σ 2(evj)).
Average balance for a run is given by the mean of steps. Average physiological balance
for a run is given by B =

∑tlife

1 (bstep)/tlife.

4.2 Method

We have explored the effects of three sources of environmental complexity on the be-
havior and performance of our architectures: Amount of objects (the more populated
a world is, the more complex navigation and perception are), availability of resources
(the fewer resources a world contains, the more difficult and costly it is to obtein them),
and dynamism (Enemies that can attack and kill Nessas, and also hamper foraging ac-
tivities). To vary these sources of complexity, we created four Valimar settings (Table 2)
with different elements sparsely distributed across the world.

We tested the two architectures in 30 sets of runs for each Valimar world (V1, V2,
V3, V4), each set being comprised of a run for each architecture. This made a total of
240 runs (about 45 hours), each run lasting 10,000 simulation steps.

3 Two motivations are compatible if they do not control the same variable in opposite directions.



Worlds Water sources Food sources Nests Obstacles Dull blocks Enemies Nessas

V1 4 4 2 2 2 0 1

V2 1 1 1 0 1 0 1

V3 2 2 1 2 0 1 1

V4 2 2 1 2 0 2 1

Table 2. Elements of the four Valimar worlds.

4.3 Results

Figure 1 shows average performance of both architectures in the four Valimar worlds in
terms of life span (left), overall comfort (center), and physiological balance (right).
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Fig. 1. Average performance of the two architectures in the four Valimar worlds in terms of life
span (left), overall comfort (center), and physiological balance (right). Mean confidence intervals
shown are calculated with a 95% confidence level.

Analysis of variance (using ANOVA Single Factor) showed that the difference of
each architecture across worlds is statistically highly significant (99%) in terms of our
three viability indicators. Considering both architectures, these three indicators show
significant differences between static (V1, V2) and dynamic (V3, V4) worlds.

In static worlds, the life span obtained by the both architectures is very similar. In
terms of overall comfort, there is a clear tendency that shows that VB obtains better
results than WTA, although they obtain very similar results in terms of physiological
balance. In the dynamic world with one Enemy, big confidence intervals indicate that
similarities among architectures in terms of life span might be due to external factors
(e.g., the ability of the Enemy to find and attack Nessa) to a big extent. A clear difference
appears in the world with two Enemies, where WTA outperforms the VB architecture.
Mean confidence intervals of the other indicators show that dynamism affects them too
much to be significant when analyzed separately in dynamic worlds, and results have to
be nuanced by taking into account life span. It would seem, then, that the trend observed
in static worlds appears in dynamic worlds as well.



4.4 Discussion

Let us now discuss some phenomena commonly studied in animal decision making (see
e.g., [9]) that we have observed in our simulations, and that allow us to better understand
the differences between architectures and how they deal with different properties of the
environment. Some of these phenomena have been proposed by [7] as desirable features
of architectures to achieve flexible behavior selection.

Reactivity (openness). WTA is more reactive to changes in the environment than VB
because only one motivation drives behavior selection. Since with a VB policy the nega-
tive effects of executing a behavior that satisfies a motivation are also taken into account,
there can be mutual inhibition among motivations that can diminish the extent to which
the behavior selected contributes to correct physiological imbalances. This means that
it usually takes longer for VB to satisfy the most urgent physiological need and to react
to external changes. Therefore, WTA deals better with quick and unpredictable (physi-
ological and external) environmental changes.

Stability of a sequence of behaviors occurs when behavioral intensities are (nearly)
similar for all the sequence. A non-stable sequence results in sudden changes 4 in the
robot’s velocity and modification of its variables. WTA, being more reactive as it uses
a single motivation to drive behavior selection, was the less stable architecture.

Displacement behaviors appear in a competition between two motivations highly acti-
vated when a third motivation less activated and unrelated to the current context drives
behavior selection. This phenomenon was only observed in VB, as its “voting-based”
policy, together with the fact that links between motivations and behaviors can be posi-
tive (excitatory) or negative (inhibitory), can lead to mutual inhibition (cancellation) of
two motivations with high intensity.

Opportunism management. WTA is less opportunistic than VB as a consequence of
the way in which the influence of external stimuli are taken into account. In WTA
each external stimulus is computed only once to calculate the intensity of the winner
behavior because it only influences the highest activated motivation. However in VB the
same external stimulus can be computed more than once—as many times as motivations
contribute towards calculating the intensity of a particular behavior. This may explain
the fact that the performance of VB in terms of overall comfort seems to be the same in
static worlds in spite of the shortage of resources in V2, while with a WTA policy this
indicator is affected.

Situations of self-protection are more difficult to deal with when Nessas are execut-
ing a consummatory behavior next to a resource, as they are more exposed to Enemies,
which can attack them on the back, where they are not detected, and block them against
resources, as shown in Figure 2. This roughly corresponds to what [7] denotes as vary-
ing attention—the fact that animals pay lower attention to danger when they are in an
extreme motivational state, e.g. very hungry. WTA, being more reactive (like a simple
emotional system), is the best in this case, while VB is more often trapped in these
situations due to its lower reactivity.

4 Recall that the intensity of the winner behavior has an impact on motor strength and on how
physiological variables are modified (and therefore on the duration of the behavior).



Fig. 2. Nessas (lighter Kheperas) attacked and blocked by Enemies next to a nest.

Maximizing efficiency of behavioral choice, i.e., executing the behavior that best con-
tributes towards approaching the ideal zone of the physiological space, is usually con-
sidered an important desideratum for behavior selection mechanisms. The extent to
which maximization is achieved is directly related to the amount of “information” avail-
able to each architecture about the effect that the execution of the behavior will have
on the physiology. WTA uses less information than VB, since it only takes into account
the effects of behavior execution on one motivation to make the selection, while VB
considers the (positive and negative) effects of behavior execution on all motivations.
Executing a behavior that satisfies several motivations simultaneously (VB) is more ef-
ficient in static worlds in terms of overall comfort than executing a behavior that only
satisfies one goal (WTA), as reflected by our results in Figure 1. However, maximizing
efficiency does not necessarily lead to better results in terms of physiological balance
and life span, again referred to static worlds, but leads to poorer reactivity and therefore
presents drawbacks in dynamic worlds, as seen above.

5 Conclusion and Future Work

We have presented a study comparing the performance of two different motivated be-
havior selection architectures (WTA and VB) in environments with varying degrees
and types of complexity. The indicators used have shown significant differences in the
behavior of both architectures between static and dynamic worlds. Interestingly, WTA
and VB obtained highly similar results in terms of physiological balance, and com-
plementary ones in terms of life span and overall comfort. We have demonstrated that
a “winner-takes-all” policy is more adequate for unpredictable and dynamic environ-
ments since it is the most reactive, while a “voting-based” policy is more adequate for
static and predictable worlds since in each step it takes the most efficient decision.

To continue this study we envisage several directions for future work. First, we plan
to perform quantitative analyses of the different behavioral phenomena observed (op-
portunism, displacement behaviors, etc.) in order to better understand the differences
between architectures. Second, we intend to study the optimization mechanisms under-
lying “winner-takes-all” versus “voting-based” architectures, to better understand our
results in terms of overall comfort and physiological balance. Third, we would like
to extend our model of motivational states to consider other aspects that contribute to
homeostatic regulation in addition to behavior execution, in particular physiological



regulation. Fourth, we want to increase the complexity of the world in terms of dy-
namism to take into account not only the presence of enemies but also extinction and
mobility of resources. Finally, we plan to add basic emotions to our behavior selection
architectures, following the design proposed by [5], and compare the performance of
both architectures with and without emotions in both more static and highly dynamic
worlds.
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