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Abstract. In this work a back propagation neural network (BPNN) is used for 
the segmentation of Meteosat images covering the Iberian Peninsula. The im-
ages are segmented in the classes land (L), sea (S), fog (F), low clouds (CL), 
middle clouds (CM), high clouds (CH) and clouds with vertical growth (CV). 
The classification is performed from an initial set of several statistical textural 
features based on the gray level co-occurrence matrix (GLCM) proposed by 
Welch [1]. This initial set of features is made up of 144 parameters and to re-
duce its dimensionality two methods for feature selection have been studied and 
compared. The first one includes genetic algorithms (GA) and the second is 
based on principal component analysis (PCA). These methods are conceptually 
very different. While GA interacts with the neural network in the selection 
process, PCA only depends on the values of the initial set of features.  

1   Introduction 

In order to understand and model the radiation balance in the climatic system a 
very accurate information of the cloud cover is needed. Clouds play an important 
role reflecting the solar radiation and absorbing thermal radiation emitted by the 
land and the atmosphere, therefore reinforcing the greenhouse effect. The contri-
bution of the clouds to the Earth albedo is very high, controlling the energy enter-
ing the climatic system. An increase in the average albedo of the Earth-
atmosphere system in only 10 percent could decrease the surface temperature to 
levels of the last ice age. Therefore, global change in surface temperature is 
highly sensitive to cloud amount and type. 
These reasons make that numerous works about this topic have been published in the 
last years. Many of them deal with the search of a suitable classifier. Welch [1] used 
linear discrimination techniques, Lee et al. [2] tested a back-propagation neural net-
work (BPNN), Macías et al. at [3] showed that the classification results obtained with 
a BPNN were better than those obtained with a SOM+LVQ neural network, and at 
[4] they used a BPNN to studying the evolution of the cloud cover over Cáceres 



(Spain) along 1997. Bankert et al. [5] and Tiam et al. [6][7] used a probabilistic neu-
ral network (PNN). In [8] linear discrimination techniques, and PNN and BPNN 
neural networks were benchmarked and the results showed that BPNN achieves the 
highest classification accuracy. 
Other works are related with the search of an initial feature set that allow to obtain 
reliable classification results. First works used simple spectral features like albedo 
and temperature. Later works include textural features too since they are less sensitive 
to the effects of atmospheric attenuation and detector noise that the first ones [9]. In 
[1] Welch et al. used statistical measures based on gray level co-occurrence matrix 
(GLCM) proposed by Haralick et al. in [10]. In [6] several image transformation 
schemes as singular value decomposition (SVD) and wavelet packets (WP’s) were 
exploited. In [11] Gabor filters and Fourier features are recommended for cloud clas-
sification and in [6] authors showed that SVD, WP´s and GLCM textural features 
achieved almost similar results. 
In spite of it, the initial set of features and the classifier proposed in each work is very 
dependent on the origin of the images (season, satellite type, location on the Earth, 
etc.) that have been used. 
In this work we propose a BPNN neural network and GLCM textural features for the 
segmentation of Meteosat images covering the Iberian Peninsula. The initial GLCM 
feature set consists of 144 features. Because of the finite size of the prototypes set and 
in order to remove the redundancy in  these features, a selection process has to be 
used. 
In that sense, in [12] Doak identifies three different categories of search algorithms: 
exponential, sequential and randomised. In [13] Aha et al. use the most common 
sequential search algorithms for feature selection applied to the clouds classification: 
the forward sequential selection (FSS) and the backward sequential selection (BSS). 
In [14], [15] and [16] a genetic algorithm (GA) representative of the randomised 
category is used for feature selection. They use GA because it is less sensitive than 
other algorithms to the order of the features that have been selected. 
All these algorithms interact with the network in the selection process. Thus, it 
seems that this process is going to be very dependent of the prototypes selection 
and classification by the Meteorology experts. This process is particularly proble-
matic in this application, since clouds of different types could overlap on the same 
pixel of the image. Taking into account this drawback, feature selection algo-
rithms not dependent on the labelled of the prototypes, as principal component 
analysis (PCA), acquire a notable interest for comparison studies. 
Therefore, in this work we want to compare the classification results obtained 
from the two previously mentioned feature selection methods. In section 2 we 
show the methodology followed in all the process, namely, the pre-processing 
stage, a brief of the PCA feature selection algorithm and the characteristics of our 
GA feature selection algorithm. In section 3 the classification results with both of 
the feature selection methods are given and finally the conclusion and comments 
are presented in section 4. 



2 Methodology 

In this paper images from the geostationary satellite Meteosat are used. This satellite 
gives multi-spectral data in three wavelength channels. In this work two of them, the 
visible and infrared channels, are used. The subjective interpretation of these images 
by Meteorology experts suggested us to consider the following classes: sea (S), land 
(L), fog (F), low clouds (CL), middle clouds (CM), high clouds (CH) and clouds with 
vertical growth (CV). 
For the learning step of the neural models, several Meteorology experts selected a 
large set of prototypes. These are grouped into rectangular zones, of such form that, 
each of these rectangular zones contains prototypes belonging to the same class. For 
this selection task a specific plug-in for the image-processing program GIMP was 
implemented. 
In order to compare the classification results obtained by the two feature selection 
algorithms and to carry out the GA feature selection process, the set of prototypes 
was divided into a training set, a validation set and a test set. For obtaining an op-
timal neural network with good generalization, we started from a BPNN with very 
few neurons in its hidden layer. This network was trained with the training set. The 
learning process stops when the number of misclassifications obtained on the vali-
dation set reaches a minimum. After that, the process was repeated by increasing 
the network size. The new network is considered optimal if the number of misclas-
sifications over the validation set is lower than the previous one. Finally, we select 
the optimal feature selection algorithm according to the classification results on the 
test set. 
For the training of the BPNN, the Resilient Backpropagation RProp algorithm descri-
bed in [17] is used. Basically this algorithm is a local adaptive learning scheme which 
performs supervised batch learning in multi-layer perceptrons. It differs from other 
algorithms since it considers only the sign of the summed gradient information over 
all patterns of the training set to indicate the direction of the weight update. The dif-
ferent simulations were performed by means of the freeware neural networks simula-
tion program SNNS (Stuttgart Neural Network Simulator).  

2.1   Preprocessing stage. 

Our final aim is the definition of a segmentation system of images corresponding to 
different times of the day and different days of the year. Therefore, satellite data must 
be corrected in the preprocessing stage to obtain physical magnitudes which are char-
acteristic of clouds and independent of the measurement process. 
From the infrared channel, we obtained brightness temperature information corrected 
from the aging effects and transfer function of the radiometer. From the visible chan-
nel we obtained albedo after correcting it from the radiometer aging effects and con-
sidering the viewing and illumination geometry. This correction deals with the Sun-
Earth distance and the solar zenith angle at the image acquisition date and time, and 
the longitude and latitude of the pixel considered. In [7] no data correction is made 
and an adaptive PNN network is proposed to resolve this issue.  



Next, from the albedo and brightness temperature data, which are already charac-
teristic of the cloud, 144 statistical measures based on gray level co-occurrence ma-
trix (GLCM) were computed. These measures constitute the characteristic vector for 
each pixel in the image. The large dimensionality of this vector and the limited quan-
tity of prototypes available lead us to the case where the sparse data provide a very 
poor representation of the mapping. This phenomenon has been termed the curse of 
dimensionality [18]. Thus, in many problems, reducing the number of input variables 
can lead to improved performances for a given data set, even though some informa-
tion is being discarded. Therefore, this process constitutes one of the fundamentals 
steps of the preprocessing stage and also one of the most significant factors in deter-
mining the performance of the final system. 

In the next sections we are going to describe briefly the algorithms used for reduc-
ing the dimensionality of the input vector. Two different methods will be applied, GA 
as representative of the algorithms that select a subset of the inputs and discard the 
remainder and PCA as representative of the techniques based on the combination of 
inputs together to make a, generally smaller, set of features. 

2.2 PCA feature selection 

Principal Components Analysis is one of the most known techniques of multivariate 
analysis [19]. Due to its versatility, this method has been used for many different 
purposes related to synthesizing information. This method starts with a large set of 
variables which are highly intercorrelated and defines new uncorrelated variables, 
which are linear combination of the initial ones, ordered by the information they 
account for. 
In this study, the 144 mentioned statistical measures were calculated for 4420 pixel 
extracted from a set of 20 images chosen to be representative of all types of clouds, 
land and sea. The distance between selected pixels is, at least, five pixels, which 
means about 35 km for the region of study. This avoids considering too much redun-
dant information. 
Next, a PCA was performed with the correlation matrix of the 144 variables and 4420 
cases. The correlation matrix was chosen as the dispersion matrix since the variables 
have different units. Thus, all variables have the same weight irrespective of their 
original variance. The most representative principal components (PCs) were selected 
according to the Kaiser's rule [20]. Then, the variable most correlated to each PC was 
chosen as representative of the information accounted for by the PC.  
Since rotating PCs results in a less ambiguous classification of variables, the PCs 
were also rotated according to Varimax method [21]. This rotation was chosen since 
it is widely accepted as being the most accurate orthogonal rotation method. 
Thus, finally, two sets of variables were selected, one for the case of unrotated PCs 
(PCANR) and other for the case of rotated PCs (PCAR). 

2.3   GA feature selection 

The GA algorithm [22] tries to select a subset of features that offer the neural network 
with the best generalization by using the prototypes selected and labelled by the ex-



perts in Meteorology. That is, the network that, trained with the prototypes of the 
learning set, achieves the minimum number of misclassifications over the validation 
set. 
For each subset of features the algorithm uses one hidden layer perceptrons where the 
number of the neurons of the hidden layer changed from 20 till 40. For each topology 
the training process is repeated 20 times randomizing the weights each time. As fit-
ness we have used the sum of squared error (SSE) over the validation set. 
The GA was configured using a cross-over probability of 0.6, a mutation probability 
of 0.1, a population of 350 individuals, a tournament selection and a steady-state 
population replacement with a 30% of replacement. 
The simulations were done in a Beowulf style cluster with Clustermatic as OS (a 
patched RedHat 7.2 Linux OS, with bproc for cluster management). The cluster is 
built using on master node, a double Pentium III @ 800 MHz with 1 Gbyte of 
RAM memory, and 25 nodes, with AMD Athlon @ 900 MHz with 512 Mbytes of 
memory each. For GA simulations we used the PGAPack [23] simulator with MPI 
enabled. 

3   Results 

In order to implement the processes described above, the experts in Meteorology 
selected 4599 prototypes, 2781 for the training set, 918 for the validation set and 900 
for the test set. The prototype selection was made from the Iberian Peninsula Me-
teosat images corresponding to the years 1995-1998. 

In the feature selection process the PCANR algorithm selected 8 variables, the 
PCAR 17 and the GA gave 13. In table 1 we can observe the set of parameters se-
lected for each algorithm. 

Table 1. Parameters selected for each algorithm 

Algorithm Number Parameters 
GA 13 113, 143, 83, 85, 72, 125, 110, 119, 88, 72, 17, 58, 40 

PCAR 17 136, 25, 67, 94, 15, 22, 96, 126, 60, 121, 102, 84, 30, 50, 
56, 86, 132 

PCANR 8 140, 25, 22, 78, 12, 121, 56, 86 
 
Once feature selection is made, we use a BPNN to make the comparison of the algo-
rithms and to make the final classification. In order to select the network with the best 
generalization for each algorithm we take one hidden layer BPNN with variable num-
ber of neurons. We train the neural network with the training set and we calculate the 
SSE over the validation set each training iteration. The network that reaches a mini-
mum of misclassification over the validation set is chosen as representative for this 
algorithm. 
In the GA case the minimum value for the sum of squared error (SSE) over the vali-
dation set was SSEV=35 and this value was reached with 23 neurons in the hidden 
layer. With the PCAR algorithm SSEV=136 with 24 neurons in the hidden layer and, 



finally, with the PCANR algorithm we used 48 neurons in the hidden layer to obtain a 
SSEV=196. 

In tables 2,3 and 4 the percentage of success over the seven classes defined in the 
learning process and the SSE calculated over the three subsets of prototypes by the 
network representative of each feature selection algorithm can be observed. 

Table 2. Classification results over the learning set reached by the networks with the best 
generalization over the three sets of features. 

Learning set 
Algorithm F CL CM CH CV L S SSEL 

GA 96.4 95.1 94.6 100 96.5 100 100 146 
PCAR 87.4 86.1 89.6 98.4 89.2 100 100 347 

PCANR 84.2 92.3 93.3 97.8 86.7 94.5 95.0 376 

Table 3. Classification results over the validation set reached by the networks with the best 
generalization over the three sets of features. 

Validation set 
Algorithm F CL CM CH CV L S SSEV 

GA 96.4 96 99.4 98.4 98.9 100 100 35 
PCAR 83.2 87.9 88.7 98.4 87.8 90.3 100 136 

PCANR 74.3 87.9 79.9 98.4 90 88.2 95.2 196 

Table 4. Classification results over the test set reached by the networks with the best 
generalization over the three sets of features. 

Test set 
Algorithm F CL CM CH CV L S SSET 

GA 92.7 86.5 77.6 100 75.9 100 100 167 
PCAR 84.6 69.7 78.8 97.3 76.8 97.6 100 194 

PCANR 62.6 94.2 94.1 91.8 60.7 69.6 99.3 262 

4 Conclusions 

Since the feature selection algorithm interacts with the network in the selection proc-
ess for the GA case, the minimum value for the SSEv is lower than the minimum 
obtained with the other algorithms. But it also happens that the value of the SSET for 
the GA algorithm is the lowest obtained. Thus we propose the features selected by the 
GA algorithm to perform the future automatic segmentation of the Iberian Peninsula 
Meteosat images.  

In Figure 1 an example of an Iberian Peninsula Meteosat image segmentation can 
be observed. For the final classification a new class, the indecision class (I), has been 
added. We consider that one pixel belongs to a class when the output of the neuron 



representative of this class is bigger than 0.6 and the others outputs are least than 0.4. 
In other case the pixel is considered to belong to the indecision class. 

 

 
Fig. 1. Example of an Iberian Peninsula Meteosat image segmentation. 
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