
Automatic Optimization of

Multi-Paradigm Declarative Programs ?

Gin�es Moreno

Dep. Inform�atica, UCLM, 02071 Albacete, Spain. gmoreno@info-ab.uclm.es

Abstract. This paper investigates the optimization by fold/unfold of

functional-logic programs with operational semantics based on needed

narrowing. Transformation sequences are automatically guided by

tupling, a powerful strategy that avoids multiple accesses to data

structures and redundant sub-computations. We systematically decom-

pose in detail the internal structure of tupling in three low-level transfor-

mation phases (de�nition introduction, unfolding and abstraction with

folding) that constitute the core of our automatic tupling algorithm. The

resulting strategy is (strongly) correct and complete, e�cient,

elegant and realistic. In addition (and most important), our technique

preserves the natural structure of multi-paradigm declarative programs,

which contrasts with prior pure functional approaches that produce

corrupt integrated programs with (forbidden) overlapping rules.

1 Introduction

Functional logic programming languages combine the operational methods and
advantages of the most important declarative programming paradigms, namely
functional and logic programming. The operational principle of such languages
is usually based on narrowing. A narrowing step instantiates variables in an ex-
pression and applies a reduction step to a redex of the instantiated expression.
Needed narrowing is the currently best narrowing strategy for �rst-order (in-
ductively sequential) functional logic programs due to its optimality properties
w.r.t. the length of derivations and the number of computed solutions [6], and
it can be e�ciently implemented by pattern matching and uni�cation.

The fold/unfold transformation approach was �rst introduced in [10] to opti-
mize functional programs and then used for logic programs [21]. This approach
is commonly based on the construction, by means of a strategy, of a sequence

of equivalent programs each obtained from the preceding ones by using an ele-

mentary transformation rule. The essential rules are folding and unfolding, i.e.,

contraction and expansion of subexpressions of a program using the de�nitions
of this program (or of a preceding one). Other rules which have been consid-
ered are, for example: instantiation, de�nition introduction/elimination, and ab-
straction. The �rst attempt to introduce these ideas in an integrated language

? This work has been partially supported by CICYT under grant TIC 2001-2705-C03-

03 and by Acci�on Integrada Hispano-Italiana HI2000-0161.

is presented in [3], where we investigated fold/unfold rules in the context of a
strict (call-by-value) functional logic language. A transformation methodology
for lazy (call-by-name) functional logic programs was introduced in [4]; this work
extends the transformation rules of [21] for logic programs in order to cope with
lazy functional logic programs (based on needed narrowing). The use of narrow-
ing empowers the fold/unfold system by implicitly embedding the instantiation
rule (the operation of the Burstall and Darlington framework [10] which intro-
duces an instance of an existing equation) into unfolding by means of uni�cation.
[4] also proves that the original structure of programs is preserved through the
transformation sequence, which is a key point for proving the correctness and
the e�ective applicability of the transformation system. These ideas have been
implemented in the prototype Synth ([2]) which has been successfully tested
with several applications in the �eld of Arti�cial Intelligence ([1, 17]).

There exists a large class of program optimizations which can be achieved
by fold/unfold transformations and are not possible by using a fully automatic
method (such as, e.g., partial evaluation). Typical instances of this class are the
strategies that perform tupling (also known as pairing) [10, 13], which merges
separate (nonnested) function calls with some common arguments (i.e., they
share the same variables) into a single call to a (possibly new) recursive function
which returns a tuple of the results of the separate calls, thus avoiding either mul-
tiple accesses to the same data structures or common subcomputations, similarly
to the idea of sharing which is used in graph rewriting to improve the e�ciency of
computations in time and space [7]. In this paper, we propose a fully automatic
tupling algorithm where eureka generation is done simultaneously at transfor-
mation time at a very low cost. In contrast with prior non-automatic approaches
(tupling has only been semi-automated to some extent [11, 12]) where eurekas are
generated by a complicate pre-process that uses complex data structures and/or
produces redundant computations, our approach is fully automatic and covers
most practical cases. Our method deals with particular (non trivial) features of
integrated (functional-logic) languages and includes re�ned tests for termination
of each transformation phase. More exactly, we have identi�ed three syntactic
conditions to stop the search for regularities during the unfolding phase1.

The structure of the paper is as follows. After recalling some basic de�nitions,
we introduce the basic transformation rules and illustrate its use by means of
interesting tupling examples in Section 2. The next three sections describe the
di�erent transformation phases that constitute the core of our tupling algorithm.
Finally, Section 6 concludes. More details can be found in [16].

Preliminaries We assume familiarity with basic notions from term rewriting
[14] and functional logic programming [15]. In this work we consider a (many-

sorted) signature � partitioned into a set C of constructors and a set F of
de�ned functions. The set of constructor terms with variables is obtained by
using symbols from C and X . The set of variables occurring in a term t is
denoted by Var(t). We write on for the list of objects o1; : : : ; on. A pattern is

1 The method is not universal but, as said in [19], "one cannot hope to construct a

universal technique for �nding a suitable regularity whenever there is one".

a term of the form f(dn) where f=n 2 F and d1; : : : ; dn are constructor terms.
A term is linear if it does not contain multiple occurrences of one variable. A
term is operation-rooted (constructor-rooted) if it has an operation (constructor)
symbol at the root. A position p in a term t is represented by a sequence of
natural numbers. Positions are ordered by the pre�x ordering: p � q, if 9w such
that p:w = q. Positions p; q are disjoint if neither p � q nor q � p. Given a term
t, we let FPos(t) denote the set of non-variable positions of t. tjp denotes the
subterm of t at position p, and t[s]p denotes the result of replacing the subterm

tjp by the term s. For a sequence of (pairwise disjoint) positions P = pn, we let
t[sn]P = (((t[s1]p1)[s2]p2) : : : [sn]pn). By abuse, we denote t[sn]P by t[s]P when
s1 = : : : = sn = s, as well as ((t[s1]P1) : : : [sn]Pn) by t[sn]Pn . We denote by
fx1 7! t1; : : : ; xn 7! tng the substitution � with �(xi) = ti for i = 1; : : : ; n (with
xi 6= xj if i 6= j), and �(x) = x for all other variables x. id denotes the identity
substitution.

A set of rewrite rules l ! r such that l 62 X , and Var(r) � Var(l) is called
a term rewriting system (TRS). The terms l and r are called the left-hand side

(lhs) and the right-hand side (rhs) of the rule, respectively. A TRSR is left-linear
if l is linear for all l ! r 2 R. A TRS is constructor{based (CB) if each left-hand
side is a pattern. In the remainder of this paper, a functional logic program is a
left-linear CB-TRS. A rewrite step is an application of a rewrite rule to a term,
i.e., t !p;R s if there exists a position p in t, a rewrite rule R = (l ! r) and a
substitution � with tjp = �(l) and s = t[�(r)]p.

The operational semantics of integrated languages is usually based on narrow-

ing, a combination of variable instantiation and reduction. Formally, s;p;R;� t

is a narrowing step if p is a non-variable position in s and �(s) !p;R t. We
denote by t0 ;

�

�
tn a sequence of narrowing steps t0 ;�1

: : : ;�n
tn with

� = �n � � � � � �1 (if n = 0 then � = id). Modern functional logic languages are
based on needed narrowing and inductively sequential programs.

2 Tupling by Fold/Unfold

Originally introduced in [10, 13] for optimizing functional programs, the tupling
strategy is very e�ective when several functions require the computation of the
same subexpression. In this case, it is possible to tuple together those functions
and to avoid either multiple accesses to data structures or common subcompu-
tations [20]. Firstly, we recall from [4] the basic de�nitions of the transformation
rules. Programs constructed by using the following set of rules are inductively
sequential. Moreover, the transformations are strongly correct w.r.t. goals con-
taining (old) function symbols from the initial program.

De�nition 1. Let R0 be an inductively sequential program (the original pro-

gram). A transformation sequence (R0; : : : ;Rk), k > 0 is constructed by apply-

ing the following transformation rules:

De�nition Introduction: We may get program Rk+1 by adding to Rk a new

rule (\de�nition rule" or \eureka") of the form f(x)! r, where f is a new
function symbol not occurring in the sequence R0; : : : ;Rk and Var(r) = x.

Unfolding: Let R = (l ! r) 2 Rk be a rule where r is an operation-rooted term

or Rk is completely de�ned. Then, Rk+1 = (Rk � fRg) [f�(l) ! r0 j r ;�

r0 in Rkg. An unfolding step where � = id is called a normalizing step.

Folding: Let R = (l ! r) 2 Rk be a non de�nition rule, R0 = (l0 ! r0) 2 Rj ,

0 � j � k, a de�nition rule
2
and p a position in r such that rjp = �(r0) and

rjp is not a constructor term. Then, Rk+1 = (Rk � fRg) [fl ! r[�(l0)]pg.

Abstraction: Let R = (l ! r) 2 Rk be a rule and let Pj be sequences of

disjoint positions in FPos(r) such that rjp = ei for all p in Pi, i = 1; : : : ; j,
i.e., r = r[ej]Pj . We may get program Rk+1 from Rk by replacing R with

l ! r[zj]Pj where hz1; : : : ; zji = he1; : : : ; eji (where zj are fresh variables).

The following well-known example uses the previous set of transformation rules
for optimizing a program following a tupling strategy. The process is similar to
[10, 11, 20] for pure functional logic programs, with the advantage in our case
that we avoid the use of an explicit instantiation rule before applying unfolding
steps. This is possible thanks to the systematic instantiation of calls performed
implicitly by our unfolding rule by virtue of the logic component of the needed
narrowing mechanism [4].

Example 1. The �bonacci numbers can be computed by the original program R0 =

fR1 : fib(0)! s(0); R2 : fib(s(0))! s(0); R3 : fib(s(s(X)))! fib(s(X)) + fib(X)g

(together with the rules for addition +). Note that this program has an exponential

complexity, which can be reduced to linear by applying the tupling strategy as follows:

1. De�nition introduction: (R4) new(X)! hfib(s(X)); fib(X)i

2. Unfold rule R4 (narrowing the needed redex fib(s(X))):

(R5) new(0)! hs(0); fib(0)i; (R6) new(s(X))! hfib(s(X)) + fib(X); fib(s(X))i

3. Unfold (normalize) rule R5: (R7) new(0)! hs(0); s(0)i

4. Abstract R6: (R8) new(s(X))! hZ1 + Z2; Z1i where hZ1; Z2i = hfib(s(X)); fib(X)i

5. Fold R8 using R4: (R9) new(s(X))! hZ1 + Z2; Z1i where hZ1; Z2i = new(X)

6. Abstract R3: (R10) fib(s(s(X)))! Z1 + Z2 where hZ1; Z2i = hfib(s(X)); fib(X)i

7. Fold R10 with R4: (R11) fib(s(s(X)))! Z1 + Z2 where hZ1; Z2i = new(X)

Now, the (enhanced) transformed program R7 (with linear complexity thanks to the

use of the recursive function new), is composed by rules R1; R2; R7; R9 and R11.

The classical instantiation rule used in pure functional transformation systems
is problematic since it uses most general uni�ers of expressions (it is commonly
called "minimal instantiation" [11]) and, for that reason, it is rarely considered
explicitly in the literature. Moreover, in a functional-logic setting the use of an
unfolding rule that (implicitly) performs minimal instantiation may generate cor-
rupt programs that could not be executed by needed narrowing. The reader must
note the importance of this fact, since it directly implies that tupling algorithms
(that performs minimal instantiation) developed for pure functional programs
are not applicable in our framework, as illustrates the following example.

2 A de�nition rule (eureka) maintains its status only as long as it remains unchanged,

i.e., once it is transformed it is not considered a de�nition rule anymore.

Example 2. Consider a functional-logic program containing the following well-known

set of non overlapping rules: f: : : ; double(0)! 0; double(s(X))! s(s(double(X)));

leq(0; X) ! true; leq(s(X); 0) ! false; leq(s(X); s(Y)) ! leq(X; Y); : : :g: Assume

now that a tupling strategy is started and after some de�nition introduction and unfold-

ing steps we obtain the following rule: new(: : : ; X; Y; : : :)! h: : : ; leq(X; double(Y)); : : :i:

Then, if we apply an unfolding step (over the underlined term) with implicitly performs

minimal instantiation before (lazily) reducing it, we obtain:

new(: : : ; 0; Y; : : :)! h: : : ; true; : : :i

new(: : : ; X; 0; : : :)! h: : : ; leq(X; 0); : : :i

new(: : : ; X; s(Y); : : :)! h: : : ; leq(X; s(s(double(Y)))); : : :i

And now observe that there exist overlapping rules that loose the program structure.

This loss prevents for further computations with needed narrowing. Fortunately (as

proved in [4]), our unfolding rule always generates a valid set of program rules by

using appropriate (non most general) uni�ers before reducing a term. In the example,

it su�ces with replacing the occurrences of variable X by term s(X) in each rule (as

our needed narrowing based unfolding rule does), which is the key point to restore the

required structure of the transformed program.

Since tupling has not been automated in general in the specialized literature,
our proposal consists of decomposing it in three stages and try to automate
each one of them in order to generate a fully automatic tupling algorithm. Each
stage may consists of several steps done with the transformation rules presented
in section 2. We focus our attention separately in the following transformation
phases: de�nition introduction, unfolding and abstraction+folding.

3 De�nition Introduction Phase

This phase3 corresponds to the so-called eureka generation phase, which is the
key point for a transformation strategy to proceed. The problem of achieving
an appropriate set of eureka de�nitions is well-known in the literature related to
fold/unfold transformations [10, 19, 21, 5]. For the case of the composition strat-
egy, eureka de�nitions can be easily identi�ed since they correspond to nested
calls. On the other hand, the problem of �nding good eureka de�nitions for the
tupling strategy is much more di�cult, mainly due to the fact that the calls to be
tupled are not nested and they may be arbitrarily distributed in the right hand
side of a rule. Sophisticated static analysis have been developed in the literature
using dependencies graphs ([11, 18]), m-dags ([8]), symbolic trace trees [9] and
other intrincated structures. The main problems appearing in such approaches
are that the analysis are not as general as wanted (they can fail even although
the program admits tupling optimizations), they are time and space consuming
and/or they may duplicate some work too4. In order to avoid these risks, our
approach generates eureka de�nition following a very simple strategy (Table 1)

3 Sometimes called "tupling" [19], but we reserve this word for the whole algorithm.
4 This fact is observed during the so-called "program extraction phase" in [19]. This

kind of post-processing can be made directly (which requires to store in memory

that obtains similar levels of generality than previous approaches and covers
most practical cases. The main advantages are that the analysis is terminat-
ing, easy and quickly, and does not perform redundant calculus (like unfolding,
instantiations, etc.) that properly corresponds to subsequent phases.

Table 1. De�nition Introduction Phase

INPUT: Original Program R and Program Rule R = (l ! r) 2 R

OUTPUT: Definition Rule (Eureka) Rdef

BODY: 1. Let T = ht1; : : : ; tni (n > 1) be a tuple where ft1; : : : ; tng

is the set of operation-rooted subterms of r that are

innermost (i.e., ti does not contain operation-rooted

subterms) such that each one of them shares at least

a common variable with at least one more subterm in T

2. Apply the DEFINITION INTRODUCTION RULE to generate :

Rdef = (fnew(x)! T)

where fnew is a new function symbol not appearing R,

and x is the set of variables of T

As illustrated by step 1 in Example 1, our eureka generator proceeds as
the algorithm in Table 1 shows. Observe that the input of the algorithm is the
original program R and a selected rule R 2 R which de�nition is intended to be
optimized by tupling. In the worst case, every rule in the program could be used
as input, but only those that generate appropriate eureka de�nitions should be
considered afterwards in the global tupling algorithm.

One �nal remark: it is not clear in general neither the number nor the occur-
rences of calls to be tupled, but some intuitions exist. Similarly to most classical
approaches in the literature, we require that only terms sharing common vari-
ables be tupled in the rhs of the eureka de�nition [11, 19]. On the other hand,
since it is not usual that terms to be tupled contain operation rooted terms
as parameters, we cope with this fact in our de�nition by requiring that only
operation-rooted subterms at innermost positions of r be collected. On the con-
trary, the considered subterms would contain nested calls which should be more
appropriately transformed by composition instead of tupling (see [5] for details).

4 Unfolding Phase

During this phase, that corresponds to the so-called symbolic computation in
many approaches (see a representative list in [19]), the eureka de�nition Rdef =

elaborated data structures, as is the case of symbolic computation trees) or via

transformation rules similarly to our method, but with the disadvantage in that

case that many folding/unfolding steps done at \eureka generation time" must be

redundantly redone afterwards at \transformation time" or during the program ex-

traction phase.

(fnew(x)! T) generated in the previous phase, is unfolded possibly several times
(at least once) using the original programR, and returning a new programRunf

which represents the unfolded de�nitions of fnew . Since the rhs of the rule to be
transformed is a tuple of terms (T), the subterm to be unfolded can be decided
in a "don't care" non-deterministic way. In our case, we follow a criterium that
is rather usual in the literature ([10, 11]), and we give priority to such subterms
where recursion parameters are less general than others, as occurs in step 2 of
Example 1 (where we unfold the term fib(s(X)) instead of fib(X)). Moreover,
we impose a new condition: each unfolding step must be followed by normalizing
steps as much as possible, as illustrates step 3 in Example 1.

Table 2. Unfolding Phase

INPUT: Original Program R and Definition Rule (Eureka) Rdef

OUTPUT: Unfolded Program Runf

BODY: 1. Let Runf = fRdefg be a program

2. Repeat Runf=UNFOLD(Runf ;R)

until every rule R0 2 Runf verifies TEST(R0; Rdef)>0

As shown in Table 2, the unfolding phase basically consists of a repeated
application of the unfolding rule de�ned in Section 2. This is done by calling
function UNFOLD with the set of rules that must be eventually unfolded. In each
iteration, once a rule in Runf is unfolded, it is removed and replaced with the
rules obtained after unfolding it in the resulting program Runf , which is dy-
namically actualized in our algorithm. Initially, program Runf only contains the
de�nition rule Rdef = (fnew(x) ! T). We observe that, once the process has
been started, any rule obtained by application of the unfolding rule has the form
R0 = (�(fnew(x)) ! T 0). In order to stop the process, we must check if each rule
R0 2 Runf veri�es one of the following conditions:

{ Stopping condition 1: If there are no subterms in T 0 sharing common
variables5 or they can not be narrowed anymore, then rule R0 represents a
case base de�nition for the new symbol fnew. This fact is illustrated by step
3 and rule R7 in Example 1.

{ Stopping condition 2: There exists a substitution � and a tuple T 00 that
packs the set of di�erent innermost operation-rooted subterms that share
common variables in T 0 (without counting repetitions), such that �(T) =
T 006. Observe that rule R6 veri�es this condition in Example 1 since, for

5 This novel stopping condition produces good terminating results during the search

for regularities since it is more relaxed than other ones considered in the literature.
6 This condition is related to the so-called similarity, regularity or foldability conditions

in other approaches ([19]) since it su�ces to enable subsequent abstraction+folding

steps which may lead to e�cient recursive de�nitions of fnew .

� = id there exists (in its rhs) two an one instances respectively of the terms
ocurring in the original tuple, that is, �(T) = T = T 00 = hf(s(X)); f(X)i.

In algorithm of Table 2 these terminating conditions are checked by function
TEST, which obviously requires the rules whose rhs's are the intended tuples T
and T 0. Codes 0, 1 and 2 are returned by TEST when none, the �rst or the second
stopping condition hold, respectively. We assume that, when TEST returns code
0 forever, the repeat loop is eventually aborted and then, the unfolding process
returns an empty program (that will abort the whole tupling process too).

5 Abstraction+Folding Phase

This phase follows the algorithm shown in Table 3 and is used not only for
obtaining e�cient recursive de�nitions of the new symbol fnew (initially de�ned
by the eureka Rdef), but also for rede�ne old function symbols in terms of the
optimized de�nition of fnew. This fact depends on the rule R to be abstracted
and folded, which may belong to the unfolded program obtained in the previous
phase (Runf), or to the original program (R), respectively. In both cases, the

algorithm acts in the same way returning the abstracted and folded programR0.

Table 3. Abstraction+Folding Phase

INPUT: Program Raux = Runf [R and Definition Rule (Eureka) Rdef

OUTPUT: Abstracted+Folded Program R0

BODY: 1. Let R0 = Raux be a program and let R0
be an empty rule

2. For every rule R 2 Raux verifying TEST(R;Rdef)=2

R0
=ABSTRACT(R; Rdef)

R0
=FOLD(R0; Rdef)

R0
=R0 � fRg [fR0g

Firstly we consider the case R 2 Runf . Remember that Rdef = (fnew(x) !
T) where T = ht1; : : : ; tni. If R = (�(fnew(x)) ! r0) satis�es TEST(R;Rdef)=2,
then there exists sequences of disjoint positions7 Pj in FPos(r0) where r0jp =
�(tj) for all p in Pj , j = 1; : : : ; n, i.e., r0 = r0[�(tj)]Pj . Hence, it is possible
to apply the abstraction rule described in Section 2 to R. This step is done

by function ABSTRACT(R;Rdef), that abstracts R accordingly to tuple T in rule
Rdef and generates the new ruleR0: �(fnew(x)) ! r0[zj]Pj where hz1; : : : ; zni =

�(ht1; : : : ; tni) ; being zj are fresh variables. This fact is illustrated by step 4 and
rule R8 in Example 1.

Observe now that this last rule can be folded by using the eureka de�ni-
tion Rdef , since all the applicability conditions required by our folding rule

7 This positions obviously correspond to the set of innermost operation-rooted sub-

terms that share common variables in r0.

(see De�nition 1) are ful�lled. This fact is done by the call to FOLD(R0; Rdef)

which returns the new rule: �(fnew(x)) ! r0[zj]Pj where hz1; : : : ; zni =

�(fnew(x)): Note that this rule (illustrated by rule R9 and step 5 in Exam-
ple 1), as any other rule generated (and accumulated in the resulting program
R0) in this phase, corresponds to a recursive de�nition of fnew, as desired.

The case when R 2 R is perfectly analogous. The goal now is to reuse as
much as possible the optimized de�nition of fnew into the original program R,
as illustrate steps 6 and 7, and rules R10 and R11 in Example 1.

6 Conclusions and Further Research

Tupling is a powerful optimization strategy which can be achieved by fold/unfold
transformations and produces better gains in e�ciency than other simpler-
automatic transformations. As it is well-known in the literature, tupling is very
complicated and automatic tupling algorithms either result in high runtime cost
(which prevents them from being employed in a real system), or they succeed
only for a restricted class of programs [11, 12]. Our approach drops out some
of these limitations by automating a realistic and practicable tupling algorithm
that optimizes functional-logic programs. Compared with prior approaches in
the �eld of pure functional programming, our method is less involved (we do not
require complicate structures for generating eureka de�nitions), more e�cient
(i.e., redundant computations are avoided), and deals with special particulari-
ties of the integrated paradigm (i.e., transformed rules are non overlapping).

For the future, we are interested in to estimate the gains in e�ciency pro-
duced at transformation time. In this sense, we want to associate a cost/gain
label to each local transformation step when building a transformation sequence.
We think that this action will allow to drive more accurately the transforma-
tion process, since it will help to de�ne deterministic heuristics and automatic
strategies.

Acknowledgements. My thanks to Mar��a Alpuente and Moreno Falaschi for
helpful discussions on transformation strategies. I am specially grateful to Ger-
man Vidal for critical comments that helped to improve this paper.

References

1. M. Alpuente, M. Falaschi, C. Ferri, G. Moreno, and G. Vidal. Un sistema de trans-

formaci�on para programas multiparadigma. Revista Iberoamericana de Inteligencia

Arti�cial, X/99(8):27{35, 1999.
2. M. Alpuente, M. Falaschi, C. Ferri, G. Moreno, G. Vidal, and I. Ziliotto. The Trans-

formation System synth. Technical Report DSIC-II/16/99, UPV, 1999. Available

in URL: http://www.dsic.upv.es/users/elp/papers.html.
3. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. Safe folding/unfolding with

conditional narrowing. In H. Heering M. Hanus and K. Meinke, editors, Proc.

of the International Conference on Algebraic and Logic Programming, ALP'97,

Southampton (England), pages 1{15. Springer LNCS 1298, 1997.

4. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A Transformation System

for Lazy Functional Logic Programs. In A. Middeldorp and T. Sato, editors, Proc.

of the 4th Fuji International Symposyum on Functional and Logic Programming,

FLOPS'99, Tsukuba (Japan), pages 147{162. Springer LNCS 1722, 1999.
5. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. An Automatic Composi-

tion Algorithm for Functional Logic Programs. In V. Hlav�a�c, K. G. Je�ery, and

J. Wiedermann, editors, Proc. of the 27th Annual Conference on Current Trends

in Theory and Practice of Informatics, SOFSEM'2000, pages 289{297. Springer

LNCS 1963, 2000.
6. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st

ACM Symp. on Principles of Programming Languages, Portland, pages 268{279,

New York, 1994. ACM Press.
7. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.
8. R.S. Bird. Tabulation techniques for recursive programs. ACM Computing Surveys,

12(4):403{418, 1980.
9. M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding

In�nite Unfolding. New Generation Computing, 11(1):47{79, 1992.
10. R.M. Burstall and J. Darlington. A Transformation System for Developing Recur-

sive Programs. Journal of the ACM, 24(1):44{67, 1977.
11. W. Chin. Towards an Automated Tupling Strategy. In Proc. of Partial Evaluation

and Semantics-Based Program Manipulation, 1993, pages 119{132. ACM, New

York, 1993.
12. W. Chin, A. Goh, and S. Khoo. E�ective Optimisation of Multiple Traversals in

Lazy Languages. In Proc. of Partial Evaluation and Semantics-Based Program Ma-

nipulation, San Antonio, Texas, USA (Technical Report BRICS-NS-99-1), pages

119{130. University of Aarhus, DK, 1999.
13. J. Darlington. Program transformation. In J. Darlington, P. Henderson, and

D. A. Turner, editors, Functional Programming and its Applications, pages 193{

215. Cambridge University Press, 1982.
14. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science, volume B: Formal Models and

Semantics, pages 243{320. Elsevier, Amsterdam, 1990.
15. M. Hanus. The Integration of Functions into Logic Programming: From Theory

to Practice. Journal of Logic Programming, 19&20:583{628, 1994.
16. G. Moreno. Automatic Tupling for Functional{Logic Programs. Technical Report

DIAB-02-07-24, UCLM, 2002. Available in URL: http://www.info-ab.uclm.es/

personal/gmoreno/gmoreno.htm.
17. G. Moreno. Transformation Rules and Strategies for Functional-Logic Programs.

AI Communications, IO Press (Amsterdam), 15(2):3, 2002.
18. A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations

and Techniques. Journal of Logic Programming, 19,20:261{320, 1994.
19. A. Pettorossi and M. Proietti. A Comparative Revisitation of Some Program

Transformation Techniques. In O. Danvy, R. Gl�uck, and P. Thiemann, editors, Par-

tial Evaluation, Int'l Seminar, Dagstuhl Castle, Germany, pages 355{385. Springer

LNCS 1110, 1996.
20. A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional

and Logic Programs. ACM Computing Surveys, 28(2):360{414, 1996.
21. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In

S. T�arnlund, editor, Proc. of Second Int'l Conf. on Logic Programming, Uppsala,

Sweden, pages 127{139, 1984.

