Text Categorisation with Support Vector
Machines and Feature Reduction*

Irene Diaz!, Elias F. Combarro?, Elena Montanés!, José Ranilla!

1 Artificial Intelligence Center, University of Oviedo. Campus de Viesques, Gijén
(Asturias) Spain
2 Computer Science Department, University of Oviedo. Campus de Viesques, Gijén
(Asturias) Spain

Abstract. The automatic classification of texts into predefined cate-
gories has became crucial due to the availability of documents in elec-
tronic form. The most modern approach to classification text is Machine
Learning, where Support Vector Machines (SVM) have proven to be
an efficient technique. This paper explores the use of Support Vector
Machines for learning text classifiers from examples. It analyses the in-
fluence of different methods of feature reduction when SVM are used to
classify the Reuters-21578 document set and compares them according
to precision/recall parameters.

1 Introduction

Text categorisation can be defined as the action of labelling natural language
text with respect to a fixed set of categories. Text categorisation is an important
task in the management and retrieval of information.

From a formal point of view, text categorisation consists of assigning a
boolean value to each pair < dj,¢; >€ D x C, where D is a domain of doc-
uments and C = {cy,...,¢,} is a set of n predefined categories [15]. Two main
processes must be carried out in order to categorise a document set. The first
one is feature extraction and the second one is the labelling assignment of the
documents according to the previously extracted features.

Within feature extraction it is possible to distinguish two steps. The first
one is to transform documents into a representation suitable for the categori-
sation task. This text transformation usually involves the removing of HTML,
XML or any other tags, the removing of stop-words and the stemming of the
words forming the text. The second step is the document indexing, that is the
representation of a certain document according to some words describing the
content of a document. The main issue of indexing is to reduce the size of the
representation of a document. This task is the main objective of this paper.

Since the 60’s some different approaches to text categorisation have been
developed. These approaches come mainly from statistics (regression models,

* The research reported in this paper has been supported in part under MCyT and
Feder grant TIC2001-3579 and FICYT grant BP01-114.

II

nearest neighbor classifiers, Bayesian classifiers) or machine learning (symbolic
learning algorithms, relevance feedback, neural networks and support vector ma-
chines).

The aim of this work is to study the behavior of support vector machines
when performing some different feature reductions.

This paper is organized as follows. In Section 2 we discuss previous work.
In Section 3 we describe the different feature reduction techniques that will be
applied. We also briefly describe the support vector machine algorithm as well as
describing the experiment. In Section 4 we present the results of the experiments
and finally, in Section 5 some conclusions are presented.

2 Previous work

Many algorithms can be used to categorise a corpus. Most of the research in
text categorisation have been focused on binary problems, where a document is
classified as either relevant or non relevant with respect to a predefined query.
However, there are many problems where a multi-label categorisation is needed.
The most common method to cope with a n multi-class problem is to break it into
n disjoint binary categorisation problems. Each binary problem separates one
class from the rest following the one-against-all method ([14]) In the following
section we briefly show some of the most well-known algorithms that carry out
text categorisation (TC) task.

2.1 Algorithms for classifying a document set

One classic categorisation algorithm is Rocchio’s one. This algorithm works by
computing the distance between each class prototype vector ¢; and the document
vector d ([1]).

K-nearest neighbor classifies a document vector by ranking the document’s
neighbors among the training document vectors, and predicting the class of the
input documents by using the labels of the k£ most similar neighbors.

Until the late 80’s, the most common approach to TC was knowledge engi-
neering. This approach involves the manual definition of a set of rules encoding
the expert knowledge about how to classify documents according to the prede-
fined categories ([15]).

Since the early 90’s machine learning has emerged as the most useful tool to
classify text. The machine learning approach needs a set of preclassified docu-
ments D = {d,,...,d,} (called train set) under C = {cy, ..., ¢, } to usually build
a decision tree. When the user needs to classify a new document, the document
d, is matched against the decision tree previously built. Well-known machine
learning algorithms can be applied to TC C4.5 [11], ID3[3] or ARNI [12].

In the 00’s Support vector machines [5] have been proved to be a good clas-
sifier in the TC environment (and in most classification problems). The SVM
integrates both dimension reduction and classification tasks. It is only appli-
cable to binary classification tasks. Support vector machines are based on the

111

Structural Risk Minimization principle from computational learning theory [18].
SVMs are universal learners able to find out linear or non-linear threshold func-
tions to separate the examples of a certain category from the rest. One important
property of SVM theory is that their are supposed to be independent of the di-
mensionality of the feature space. This characteristic is studied in this paper in
order to check if a well chosen dimensionality reduction improves the efficiency
of SVM.

2.2 Feature selection

Before classifying a document set, it is necessary to represent its documents in
a suitable way; the most commonly used document representation is the vector
space model [13] where documents are represented by vectors of words. Thus, a
document set is represented by matrix A where each element a;; of A represents
the weight of word 4 in document j.

There are several ways of determining the weight a;;. The simplest approach
is to assign a weight 1 if a word occurs in a document and 0 otherwise. Another
simple approach is to use the absolute frequency of the word in the document.
Just another approach is the tf-idf-weighting [13] which assigns the weight a;;
in proportion to the number of occurrences of the word in the document, and
in inverse proportion to the number of documents of the collection in which
the words occurs at least once. Other measures of this kind are tfc-weighting,
Ttc-weighting or Entropy weighting [1].

The selection of the subset of features to be used is a key step in text classi-
fication in order to reduce the dimensionality of the space and to remove words
without meaning (usually known as stop words). The simplest feature selection
is to select as representative features the words whose absolute frequency in a
document belongs to a fixed interval. There are a lot of more complex measures
as Information gain [11] which counts the number of bits of information for cat-
egory prediction knowing the presence (or absence) of a word in a document,
Ezpected cross entropy 7], Mutual information [19], Weight of evidence for text
[8] and Odds ratio [17].

3 Description of the experiments

3.1 The corpus

We have conducted all our experiments on the Reuters-21578 corpus. This a
collection of short economy-related news published by Reuters in 1987. It is
publicly available? and has been extensively used in previous research about
TC.

The stories on the collection were manually classified into at least one of the
135 fixed categories, resulting in an unbalanced distribution. Some categories

3 The files containing the _Reuters-21578 collection can be reached at
http://www.research.att.com/lewis/reuters21578.html

v

have several hundreds (and even thousands) of documents assigned to them,
while others have none.

The collection of documents has been splitted on train and test sets by Lewis
and later on by Apte ([2,9]). We have chosen to use this latter splitting, which
should give us 9603 train documents and 3299 test documents after eliminating
those documents not assigned to any category. However, as it has already been
noticed ([1]), there are some irregularities among the documents selected by Apte
and Lewis. Namely, there exist documents which are said to be classified but they
are really not, and documents which have no body text. Clearly, these documents
are not useful for the learning task, so we have decided to drop them. Then, we
finally work with 7063 train documents and 2742 test documents splitted on
90 categories. There is a difference with previous works ([1]) on the number of
selected test documents, but these figures are easily checked to be correct using,
for instance, an utility like grep*.

3.2 Representation of the documents and filtering

We have used the usual representation of documents as bags of words ([13]). It
simply consists of representing a document by the set of the words occurring in
it. This is the most used representation in TC ([13]).

To better study the influence of the dimensionality reduction we have chosen
two different initial vocabularies as feature spaces. The first one consists of those
words occurring in any train document. The second one is particular for each
category and consists only of those words occurring in the train documents
assigned to the category. This latter approach, which seems very natural since
it is more likely that the relevant words for a category occur within the category
itself, involves an extra reduction of the dimensionality of the feature space, so
we will have another parameter to test the effects of filtering words.

In both cases, before selecting the vocabularies, we eliminated a list of words
with empty meaning (also known as stop words) including articles, common
verbs, adverbs, etc. We also reduced the words to their stems applying the Porter
stemming algorithm ([10]).

To perform the reductions, we have ordered the vocabularies according to the
absolute frequency of appearance of words and applied different levels of filtering
ranging from 75% to 98% . In each case, we kept the most frequent words and
removed the others.

We have also performed experiments in which we made no filtering at all in
order to study the impact of the removal of words compared to the case in which
all available information is considered.

3.3 SVM and categorisation

We have divided the task of assigning categories to documents in a number
of binary decisions. Given a document, for each possible category we decide

4 grep is a computer program usual in Linux and other flavors of Unix, which allows
to search files for the appearance of text strings and regular expressions.

A%

whether the document belongs to the category or not. To make this decision we
use the model obtained for each category after training SVM with the 7063 train
documents.

The training of SVM has been performed with the default parameters for the
SVM-light package®.

4 Results

4.1 Evaluating the performance

For the quantification of the performance of different systems in TC, two mea-
sures of effectiveness commonly used in Information Retrieval(IR) have been
widely adopted ([15]). These measures are precision and recall. To define these
notions, we first need to introduce some auxiliary concepts.

Given a category and a categorisation system, a document is said to be a true
positive (TP) if the system says that it belongs to the category and this is true
(because the document was previously labelled as positive by an expert). If the
system classifies it as belonging to the category but it doesn’t, it is called a false
positive (FP). If the system doesn’t assign it to the category but it belongs to
it, we have a false negative (FN). Finally, if the system says that the document
doesn’t belong to the category and, in fact, it doesn’t, we have a true negative
(TN).

Now, we define the precision of a categorisation system for a category C on

a fixed test set as
#TP

T #TP+ #FP
where #T P is the number of true positives in the test set and #FP is the
number of false positives in it. Note that the precision will be maximum when
the system assigns to the category only documents really belonging to it.

We define the recall of the system for the category C on a fixed test set as

PT’C

#TP

Rec = rp 27N

where #F N is the number of false negatives in the test set and #TP is as
above. The recall will be maximum when the system assigns to the category
every document belonging to it.

To compute the global performance of a system over all the categories there
exist two different approaches. We could either compute the average precision
and recall over all categories (what is called macroaveraging) or consider the
number of documents in each category and compute the average in proportion to
these numbers (this is called microaveraging). There has been some controversy
about which of these approaches is more adequate ([15]). We won’t enter the

5 SVM-light is an efficient implementation of SVM that can be found at
htpp://svmlight.joachims.org

VI

discussion here, but since we are dealing with an unbalanced distribution of
documents into categories it seems more natural to take it into account and use
microaveraging.

It is well known that there exists a trade off between the precision and the
recall of a system ([15]) and then it makes no sense to consider these parameters
on their own. Several ways to combine their values have been proposed ([17]),
the family of functions F,, being among the most popular. These functions are
defined as)

a%+(1—a)ﬁ

Fo=

where « is a parameter ranging from 0 to 1. The value of « expresses the degree
of relevance given to precision and recall. The nearer « is to 1, the greater the
importance of precision is. Conversely, the more similar « is to 0, the more
important recall becomes.

In our framework, where neither precision nor recall are clearly more impor-
tant than the other, the most adequate choice for a seems to be 0.5, giving equal
relevance to both. Then resultant measure is commonly known as Fj (instead of
the more correct denomination Fy 5) and defined as

1
B =05l 1 05a
o5 T 097
We will also use a measure common in Machine Learning ([11]), accuracy,
which is just the proportion of correct decisions (either of assign or not assign a
document to a category) to the total number of documents. In symbols

#TP + #TN

Acco = o T TN T #FP + #FN

Again, we will microaverage the results obtained in all the categories.

4.2 The results

In tables 1 and 2 and in figures 1 to 4 we summarize the values of the measures
introduced in the previous section obtained in our experiments.

It is quickly noted (see table 1 and table 2) that the reduction of the feature
space seems to have little effect on the accuracy, which remains more or less
constant in all experiments, both when the vocabulary is considered category by
category or in all the corpus. However, the accuracy decreases when the filtering
is more aggressive (95% and 98%).

As we can see in figure 1, when the vocabulary is taken from all the doc-
uments, a moderate filtering (75%) results on an slight improvement in recall
when comparing with the case in which we do not filter at all (0% of filtering).
However, with greater reductions we obtain a considerable loss. This loss is a
constant in precision (figure 2), where there exists only an isolated case of im-
provement (92%). In both cases the more aggressive the filtering is, the greater

VII

Parameters MICROAVERAGE (total)
0%| 75%| 80%| 85%| 90%| 92%| 95%| 98%
accuracy|99,60%]99,60%)99,60%|99,60%|99,60%)99,60%99,59%99,51%
precision|92,98%(92,89%(92,84%92,77%92,93%(93,07%|92,88%92,15%
recall|77,30%|77,38%|77,21%|77,12%|77,15%| 76,86 % 76,50%] 70,96 %
F1|84,41%/84,43%84,30%84,22%84,31%84,19%|83,90%80,18%

Table 1. Microaveraging with total filtering

Parameters MICROAVERAGE (filtering by categories)
0%| 75%| 80%| 85%| 90%| 92%| 95%| 98%
accuracy|99,60%]99,58%)99,85%|99,53%|99,52%)99,47%|99,45%)|99,08%
precision|92,98%|92,29%|92,30%|92,19%92,39%(91,61%|91,61%|91,54%
recall|77,30%|78,70%|78,81%|78,63%|79,18%|78,94%|78,98%|76,95%
F1|84,41%84,95%85,03%84,87%85,28%|84,80% |84,83% 83,6 1%

Table 2. Microaveraging with filtering by categories

the loss becomes, specially in recall. This is natural, since when we consider
all documents in the corpus, those categories with more examples will have a
bigger influence than those with only a few. Then, those words particular to
the biggest categories will be the most frequent, while words representative of
others (and necessary to correctly classify their documents) could be removed
when aggressive reductions are made.

However, the aggregated performance of the system (as measured by F})
is more or less constant, and is even improved when a moderate filtering is
performed (see figure 3 and table 1).

Let’s now turn to analyze the results in the cases where the vocabulary
is chosen category by category. In table 2 we observe that precision is always
smaller than in case where no reduction is made. Again, it becomes worse with
the level of filtering.

The situation with recall is quite different, as shown in figure 1. There is
always a significant improvement (excepting the highest level of filtering) and it
reaches a maximum with a level of filtering of 95% .

This improvement in recall results in an overall improvement and the value
of Fy (figure 3) is always bigger than that obtained with no filtering at all (again,
excepting the too aggressive filtering of 98%).

5 Conclusions and future work

It is a widely accepted fact in IR ([17]) that some words are more relevant
than others to understand or classify a document and even that some infrequent
(or too common) words can introduce noise and misguide the algorithms that
perform these tasks.

VIII

Recall
80% -
78% . ’
76% A
T4% A
T2% A
70% . .
0% 5% 80% 85% A0% 92% 05% 8%
| ----- categories total
Fig. 1. Recall
Precission
94% -
93% o
97% A
91% A
90% . .

0%

5%

80% 85% 90%

92%

| ----- categories

total

95%

98%

Fig. 2. Precision

IX

F1
87% A

85% L L

83% A

81% A

79% T T T T T T]
0% 5% 80% 85% 90% 92% 95% 98%

| ----- categories total

Fig. 3. F1

However, it had been argued ([5,6]) that the special properties of the SVM
learning model (namely, the capacity of dealing with a huge number of features)
could overcome the necessity of feature space reduction in TC.

The experiments shown here suggest that this may not be true in all the
cases. At least in the special circunstances considered here, the simple removing
of non-frequent words could help in the automatic classification of documents
even if it is performed with Support Vector Machines. In particular, it seems that
considering vocabularies local to each category could be a way of improving the
overall performance of the classification and, specially, its recall.

Of course, the study presented here is quite preliminar and incomplete and
without further investigation it is impossible to know to what extent the results
we have got depend on the particular representation of the documents chosen
and on the weighting scheme that we have adopted.

It may well be the case that with more informative measures of the relevance
of the words of the corpus (for instance information gain or tf-idf, see [19]) all
the features are needed to achieve the best classification results.

Then, it seems interesting to repeat these experiments varying several param-
eters, like document representation, weighting scheme, and internal parameters
of the SVM.

It would also be interesting to adopt other measures of evaluation (like the
breakeven point or the 11-point average precision [15]) to see if the improvements
and their trend remain. Finally, the hypothesis drawn here should be tested on
other document collections before it can be accepted that feature reduction can
help SVM in the classification task.

X

References

1. Aas K., Eikvil L.: Text categorisation: A survey. Technical report, Norwegian Com-
puting Center (1999)

2. Apté C., Damerau F., Weiss S.: Automated learning of decision rules for text cate-
gorization. ACM Transactions on Information Systems,12 (1994) 233-251

3. Colin A.: Building decision trees with the ID3 algorithm Dr. Dobbs Journal (1996)

4. Cortes C., Vapnik V.: Support-vector networks. Machine Learning, 20 (1995) 273-
297

5. Joachims T.: Text categorization with support vector machines: Learning with many
relevant features Proc. 10th European Conference on Machine Learning, Springer
Verlag (1998)

6. Joachims T.: Text categorization with support vector machines: Learning with many
relevant features. University of Dortmund (1997)

7. Koller D., Sahami M.: Hierarchically classifying documents using very few words.
Proc. of the 14rd International Conference on Machine Learning, (1997) 170-178

8. Komnonenko I.: On biases estimating multi-valued attributes. Proc. of the 14th In-
ternational Conference on Artificial Intelligence, (1995) 1034-1040

9. Lewis D.D., Ringuette M.: A comparison of two learning algorithms for text catego-
rization. Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, (1994) 81-93

10. Porter M. F.: An algorithm for suffix stripping. Program, 43(5) (1980) 130-137

11. Quinlan J.R.: Constructing decision tree in C4.5. Programs of Machine Learning,
Morgan Kaufman Publishers (1993) 17-26

12. Ranilla J., Bahamonde, A.: Fan: Finding accurate inductions. To appear in Inter-
national Journal of Human Computer Studies (IJHCS)

13. Salton G., McGill M.J.: An introduction to modern information retrieval. McGraw-
Hill (1983)

14. Scholkopf B., Burges C., Vapnik V.: Extracting support data or a given task.
Proceedings of the 1st International Conference on Knowledge Discovery and Data
Mining, AAAI Press (1995)

15. Sebastiani F.: Machine Learning in Automated Text Categorisation ACM Com-
puting Surveys, 34(1) (2002)

16. Van Rijsbergen C.J.: Information retrieval (Second edition) Butterworths, London,
U.K. (1979)

17. Van Rijsbergen C.J., Harper D.J., Porter M.F.: The selection of good search terms.
Information Processing and Management, 17 (1981) 77-91

18. Vapnik V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

19. Yang T., Pedersen J.P.: Feature selection in statistical learning of text categoriza-
tion. 14th Int. Conf. on Machine Learning, (1997) 412-420

