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Abstract. Grammar systems are abstract models of computation invented to
formalize the agents systems of Artificial Intelligence. In this work we show a
way to model dynamics able to produce chaotic temporal series using
Reproductive Simple Eco-grammars systems. Our system shows dynamics of
population according to the logistic equation developed by May in 1973. We
use an alphabet of symbols representing a population of “rabbit” agents and
“carrot” resources. This work is going on the direction of approaching Artificial
Intelligence, theoretical computer sciences and complex systems.
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Eco-grammar systems.

Grammar systems [4,6,8,9,12,14] are recent abstract models of computation
conceived to provide of a grammatical model of distributed processes. They are agent
systems where each agent is a grammar. All the agents act concurrently to perform a
derivation on a common sentential form that originally modelled blackboard
architectures. The agents generate collectively a language. The objective of Grammar
Systems is the study of agent systems from the point of view of the pure
communication protocols. This approach looks for the increment of the generative
power of grammars and for the decrement of the descriptive complexity.

Eco-grammar systems [4] are a particular type of grammar systems created to
model eco-systems. They are composed of an environment, a context free parallel
rewriting system, or OL system [12,15] together with a set of agents such that each
agent has a set of context free rewriting rules called action rules. At each derivation
step, agents act on the environmental string selecting each one a symbol and applying
an action rule to that symbol, while the rest of the symbols are expanded in parallel by
the environmental rules. Agents perceive the environment by means of a “sensor”
function, and they have a set of internal growth rules that change an internal world.
The action function selects the set of action rules taking as input the internal word.

Grammar systems and particularly Eco-grammar systems are at the cross-point of
the research in Artificial Life, Complex Systems and Distributed Artificial
Intelligence that is occupied in the elaboration of multiagent systems [7] following the
approach of Minsky [10]. Pollack [13] said in 1989 that connectionism would
introduce Artificial Intelligence in the revolution of thinking caused by physics and
biology.

The relation between the research lines appears in the graph of figure 1. The
objective of this paper is to prove that Simple Eco-grammar systems with
reproductive agents are enough to show chaotic behaviour in the sequences of derived
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words. Simple Eco-grammars have simple agents: they do not have a sensor function
(they are non sensitive) or an action function (they are fully active).
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Fig. 1.

Sistemas de Eco-gramaticas simples

Eco-Grammar systems are an abstract model of computation with universal

computation capability proposed as a formal frame to study systems composed of
interdependent agents acting on a common environment. This model was developed
by Csuhaj-Varjt, Kelemen, Kelemenova y Pa\u{u}n [4,12,14] as a formal model of
ecosystems. The six basic postulates intended by the authors for the development of
EG systems are:

1.

An ecosystem consists of an environment and a set of agents. The internal states of
the agents and the state of the environment are described by strings of symbols,
called words, over certain alphabets.

. In ecosystems there exists a universal clock that sets units of time, common to the

agents and to the environment.

. All the agents and the environment perform a parallel step of derivation at each

unit of time.

. The environmental rules are independent or the agents and independent of the state

of the environment. Agents' developmental rules depend on the state of the
environment, which determines a subset developmental rules that is applicable to
the internal state of the agent.

. Agents act in the environment (and possible in the internal words of other agents)

according to action rules, which are rewriting rules used in chomskyan (sequential)
mode. At each instant of time, each agent uses a rule selected from a set that
depends on the internal state of the agent.

. The action of the agents in the environment has greater priority than the

development of the environment. Only the symbols of the environmental string that
are not affected by the agents will be rewritten by the environmental rules.
Simple Eco-grammar systems are a sub-type of Eco-grammar systems composed

of agents without any internal definition and without sensor and action function. A
simple agent is blind; it is only a set of action rules applied in sequential mode to a
symbol selected in the environmental string.

An Eco-grammar system of degree n is formally a n+2 tuple [4]:



XY=(E,Ry,.... ,R,, w,) with 1 <i<n where E = (V;, P ) is the environment
and each agent R; is identified to a set of context free rewriting. The word w, € V| is
the axiom.

According to this definition, the agent will use the set of rules Ri, independently of
the state of the environment and of the internal state. A simple eco-grammar system
scheme is represented in figure 2.:

Ril e Rjj Ri
We

Fig. 2. Simple Eco-grammar sistem.

In our logistic system, the alphabet is composed of two symbols: V={r,c}. the symbol
“r” represents a rabbit in the population, while “c” represents a carrot. Consider the
word wy= cccrrrecce that represents an initial population of three rabbits, and seven
carrots. The agents that allow the change in the population represent active rabbits for
example, A={r—&c—r’}. The environmental rules are the set Pr=fr—cc, c—r}.
Symbol € represents the empty word.

Let 2 = (E, w,) be a simple eco-grammar system: formed of the environment
E={V,Pg} and the initial population wy= cccrrrccce without agents. The environmental
OL rules are the only rules, rewriting the environmental string in parallel in steps of
derivation r=0,1,2,...

CCCITICCCC=Dy IITCCCCCCITIT=>y CCCCCCITTTTTCCCCeCee

Consider now the simple Eco-grammar system 2'= (E,A,, A,, w,) that contains two
agents A4,. In a single sep of derivation, each agent selects at random one symbol in
the environmental word and applies a rule. The environment expands the rest of the
symbols. We underline the symbols that agents select for more clarity:

CCCITICCCC=Dy IT ITI CCCCEITTT

Reproduction, development and death of the agents.

One of the open problems in the definition of eco-grammar systems is related to
the birth, development and death of agents. This is our proposal to solve the problem:

Definition of reproduction: A simple reproductive eco-grammar system is a
simple eco-grammar system where there exists at least one agent 4 able to generate u-
1 copies of itself when meeting a symbol ® called reproductive symbol. Reproduction
is represented as 4—»44*" indicating that agent A stays alive together with its
descendants 4“’. This is equivalent to write A—4* The environment expands the
rest of the symbols.
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Definition of development: the new -1 agents generated by each agent A take
positions in the environmental word after the action of the environment. They apply
their rules without reproduction. This is interpreted as a delay because agents are too
young to be reproduced.

Definition of death: A simple agent A dyes when in its action in the environmental
string A4 finds a cleaning symbol ©. After using the action rule ©—a the agent
disappears. The death of the agent is denoted A —&

Consequently, we define a simple reproductive agent as a 4-tuple A={R,Vg, Ve, 14}
composed of a set of action rules R, a set of reproductive symbols Vg, a set of
cleaning symbols Vg and the reproduction rate p.

Logistic system: rabbits and carrots

The logistic equation developed by May in 1973 [16] is one of the models of
population growth more studied because of the chaotic behavior that exhibit the
trajectories when the system is iterated. Equation 1 corresponds to the iteration of the
logistic equation from initial conditions p(@) in discrete time steps t=0,1,2,...
Necessarily 0<u<4, to bound 0<p(t+1)<I ensuring that population size is N
constantly over time.

ple+1)= ux p(t)x(1- p(1)) M

Informal description: the system that we call logistic models a population of
rabbits in a finite environment of /V positions. All the positions of the environmental
string not occupied by a rabbit are occupied by carrots, being the alphabet Vg-{r,c}.
Notice that agents are born and dye and hence a reproductive eco-grammar varies at
each step de derivation being 2{#) the grammar at step z. A sequence is denoted:

Wo=x0) W1=z1) Wa=52). -+ =2(k-1) Wk

The reproductive simple eco-grammar is 3(2) = {E , A,,.... ", A,, w,} where N,(1)
=|w, |, is the number of occurrences of symbols r in the environmental string at step ¢,
while N.(?) =|w/. is the number of carrots. For example, if the word w=crrccccr has
three symbols r, denoted, |w,,=3, the corresponding grammar will be 2(7) = {E , A,,
A, A, wi} This is equivalent to dually interpret each symbol r of the string as an
agent A,. It is easy to see that the length of the word w, is |w|=N= N, (9)+ N.(1),
constant over time z.

Rabbit agents get reproduced when they find a carrot ¢ in the interaction with the
environment in a position drawn at random. Rabbit agents 4, dye when they meet a
rabbit r in the string. Consequently 4,={R,,Vg, Vo } where Vg={c} and V~{r}.

The rewriting rules of rabbit agents are R, = {r—c, c—r}. The rules of the
environment are Pr = {r—c, c—¢} indicating that the rabbits in the population non
interacting with agents will dye proportioning substrate to a carrot, while non
interacting carrots remain in the environment.



At each step of derivation, all the V,(2) agents 4, are distributed at random on the N

positions of the environment. Consider the following example with w,=crreccer and

=2, The derivation step is divided in three sub-steps:

1. Reproduction and death of agents. The agents select positions and they get
reproduced or dye depending on the symbol that they find in the string:

A,—¢ A— A2 A— A2
J \2 J
C r r C C C C r =Wy
C C r r C C r r

2. Environmental expansion. The environment expands the rest of symbols symbols
producing resources c:

A,—>¢ A— A2 Ac— Ac?
C C r r C C r r
U U y U U
[ c [ r [ C r C

3. Development of agents. New born agents take positions on the environmental
string and consume the resources created by the environmental rules. New agents
are too young to be reproduced in this step, they simply apply their action rules:

Ar—)S A r Ar A r Ar
{ {
C C C r C C r C
¢ ¢ r r c r r c =w,

Consequently, wy=>59w, is a step of derivation. The reproductive simple
eco-grammar system at step t=1 is: 2(1) = {E, A,, A,, A,y A,y W, }

The dynamic of the system

To determine the dynamic of the system we have to determine the population
of rabbits X, and of carrots X, at time step #+1 from the population at step t. The
length of the derived word is constantly NV and the number of rabbit agents is identical
to the number of symbols r in the string if we start at initial conditions filling this
requirements at 7=0:

¥, 0)= o, (0x K= 0 W00

ST

2

We call pr(t)zp(t)z

environment w,

to the probability of finding a symbol r in the

X, (0)
N
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N-X,(0)
I

Dividing the two members of equation, 2 by NV we obtain a two dimensional systems
given in equation 4. the logistic equation(1):

Pr(l+1)=p(f+1)=ﬂ><X]’V(’)x(N_;(r(’))

plt+1)=1=plt+1)=1-ux ple)1- plr))

The probability of meeting a carrot is p, (t + 1) =1- p(l‘) =

3

= px ple)1- plr))

Analysis of the stability in the equilibrium.

An equilibrium point for equation 1 is a pair x =(p,I-p’) such that p"=p@®)=p(t+1)=
w@(1- p@®) and p =I-p=I-p(t+1)=I1-p(®). Thus, p p*(I-p*)=p* obtaining two
equilibrium points, corresponding to values p;*=0, and p,*=I1-1/u The equilibrium
points of the logistic equation are x ;=(0,1) and x",=(1-1/u,1/p) respectively.

The first case correspond to the stationary state x ;=(0,1) reached when all the
agents dye. The second corresponds to an equilibrium point whose stability depends
on the value of g There are three types of equilibriums: stable, unstable and
indifferent. An equilibrium point is stable when any perturbation affecting value p~
tends to disappear over time, that is the system tends to recover the equilibrium value
p* The equilibrium is unstable if the effect of the perturbation tends to increase, an
indifferent if the perturbation stays in a neighborhood of p* in the long term behavior
of the system. Notice that p* is a stable equilibrium of the logistic equation 1 iff
x"=(p*,(I-p)*) is a stable equilibrium of the two dimensional systems of equation 3
representing the dynamic of the reproductive simple eco-grammar system.

Equation 1 is the discrete time version of the logistic function F,(p)=up(1-p).
Starting at initial conditions p(0), we obtain the iteration p(t+I)=F,,(p(t))=,Lp*(t)(I-
P(1). At each time step t, the increment of a perturbation of the equilibrium p is a
geometrical succession where the first derivative of F, is the growth rate, we obtain
the condition for stability by the method Lyapunov coefficient A as explained in [16]:

“@
,I‘M‘ 2
5p p*

If |/1| <1 the equilibrium is stable. If |/1| > the equilibrium is unstable. If |/1| =]
the equilibrium is indifferent.

Analyzing value A= zz- 2. up" in the equilibrium p:

For x,;*=(0,1); p;*=0 and A=

For x,* =(1-1/1 1/1); p,*=1-1/u and 1=2-p.



From order to chaos.

In this section we analyze the equilibriums p’ for the values of zeN between 1 and
4. Notice that any real value x could be considered if we consider probabilistic agents,
that is agents with a distribution of probability applied to the rules with the same left
hand side.

p =1 A slow walk to extinction.
The only equilibrium is in this case x;*=x,*=(0,1), that is stable, and means that
rabbits will dye in the long term evolution of the system.
|l =1-11 =12-11 =1 and consequently the equilibrium is indifferent. In
our system, agents A, and with with them symbols r in the environment, tend slowly
to disappear.

1 =2 The way to stability.

The equilibriums are x;*=(0,1) and x,* = (1/2,1/2) and respectively:

| Al 1:| 2| = 2>1 is a unstable equilibrium,

| A ,,=12-2] = 0<1 is stable and reached evolutionarily.

The observation of these two results indicates that the introduction of agents A4, in
the system and symbols # in the environmental string in equilibrium state x," brings
the system to reach the point x,*.

1 =3 More or less.

The equilibriums are X, =(0,1 ) and X, =(2/3, 1/3) and respectively:

| Al ,=1-3=3>1 is unstable,

| 4] P 3:| 2-3|=1is indifferent, non reachable evolutionarily.

Introducing agents A4, in the system and symbols  in the environment in the state
x, makes the system go towards state x,, but the point is not reachable
evolutionarily. The trajectories will approximate to the point x,* with smaller
oscillations over time.

1 =4 Chaos:
The equilibriums are x;* = (0, 1) and x,* = (3/4, 1/4) y, respectively:
| Al, =1-3=3> Iis unstable
| Al 34 =] 2-4| = 2>1 is also unstable.
When agents A4, and symbols r are introduced in the system in the state x; or x," the
system does not tend to recover the equilibrium.
For the purpose of this work we are interested in the value u = 4, that shows
chaotic behavior.
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Is Chaotic the behavior of the system?

The more exact meted to determine the presence of chaos in a system consists in
calculating the maximal Lyapunov coefficient [16] that describes the evolution of two
trajectories starting at initial conditions arbitrarily near. The Lyapunov coefficient
measures one of the more characteristic properties of chaotic series, the sensibility to
initial conditions.

In the case of dimension 1, like the logistic equation, the exponent has an intuitive
meaning. It is the exponent that regulates the distance between the points of two near
trajectories.

If the exponent is negative, the two trajectories tend to converge one to another
because the distance is decreasing over time. If the exponent is zero, the distance the
trajectories are parallel. That is the case of periodic or quasi-periodic trajectories. If
the Lyapunov exponent is positive, the two trajectories tend to separate one to
another. The velocity of convergence or divergence of two trajectories is what the
Lyapunov exponent tells us.

The number or coeficcient of Liapunov for the logistic equation is calculated as
follows. Consider:

K= lim(J(t))W ®
where:
o - (aFmp)) (aFu<p>) (aFmp)) ©
P ) P
p(1) r(2) p(t)

The Liapunov coefficient is obtained calculating the neperian logarithm:

7
lnK:liman(t) @

{—w t

We calculated the Lyapunov coefficient for 400 iterations starting at
x(0)=(0.04,0.996) for the value A=4. The number is [n &= 0,69457843 > 0.
Consequently, two trajectories diverge exponentially, the temporal series representing
the values p(#) are chaotic, and hence x(z) defines a chaotic trajectory.
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Conclusions

In this work we develop a way to model chaotic temporal series by means of
grammatical agents systems called Grammar Systems [4,6,8,9,12,14]. The aim of
Grammar Systems is to model the agents systems of Artificial Intelligence [7,10] as
pure protocols. An specialised variant of Grammar systems are Eco-grammar
systems[4]. They are composed of agents that represent organisms in an ecosystem
and an environment. Eco-grammar systems are useful to analyse the simulations of
ecosystems elaborated in the field of Artificial Life[3] and to model evolutionary
games [2]. This work goes on the line of Pollack[13], relating Artificial Intelligence to
Formal language theory and to the field of Complex Systems and Artificial Life.

We elaborate an agents model of the logistic equation p(t+1)=up(t)(1-p(r)) [16]
using Reproductive Simple Eco-grammar systems. The definition of birth,
development and death of agents is an open problem in [4] that we solve in this paper.

In this work, for the sake of simplicity, we use a factor p of reproduction that is a

natural number, but any non-negative real number could be obtained using agents
with probabilistic rules and environments [1,3].
We chose the representation of the logistic equation in grammatical terms because of
its simplicity and because of the complexity of its behaviour. We proved that chaotic
temporal series could be obtained as the mean dynamic of populations of symbols
generated by Reproductive Simple Eco-grammar systems. In a further extension of
this paper we will prove that adding predators to the system, wolf agents A, and
symbols w, we get the classical equations modelling the population of predators and
prays of Lotka-Volterra [16].
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