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Abstract. Linear logic, proposed by Girard [Gir1987], has shown to be
extremely valuable for the formalization of typical problems in Com-
puter Science. This is due to the fact that, in linear logic, sentences are
treated as resources or actions, and logical consequences as transitions
among states. Since linear logic has a great number of connectives, the
deductive power of linear signs is hard to understand. In order to better
clarify the intuitive meaning of linear signs, a natural deduction system,
namely NDMF, will be presented here. It extends and modi�es the natu-
ral deduction system proposed by Medeiros [Med2001] by giving rules for
the whole multiplicative fragment of linear logic with multiple-conclusion
rules and also exponential rules based on S4 modal logic. We aim to fur-
ther prove normalization theorems to this system and obtain important
results, such as subformula property, which will be useful to implement
eÆcient linear theorem provers.
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1 Introduction

Linear logic, proposed by Girard [Gir1987], has shown to be extremely valuable
for the formalization of typical problems in Computer Science. This is due to
the fact that, in linear logic, sentences are treated as resources or actions, and
logical consequences as transitions among states. In [Gir1995], Girard presents
the following example where the sentential signs A1, A2 and A3 stand for actions:

A1: to spend $1.
A2: to buy a packet of Camels.
A3: to buy a packet of Malboro.

Suppose that the packet of Camels and the packet of Malboro cost $1 each.
In linear logic, the action (A1 ( A2) means to spend $1 to buy a packet of
Camels. With $1, we bought either a packet of Camels or a packet of Malboro
and, after buying them, we will not have $1 anymore. Thus, in linear logic, from
(A1) we can get (A1 ( A2) or (A1 ( A3), but not both.

Since linear logic has a great number of connectives, the deductive power
of linear signs is hard to understand. For this reason, many syntactical and
semantical approaches have been developed for linear logic as, for instance, the
linear sequent calculus [Gir1987] although a natural deduction system for full
linear logic has not been proposed yet.

The natural deduction system, introduced by Gentzen [Gen1934] for classical
logic, is a syntactical method that carries quite a meaning in his rules. When
Gentzen designed his rules, he tried to bring closer the natural deduction proofs
to the human reasoning.



The very aim of this work is to develop a natural deduction system for linear
logic bearing in mind the features of the method proposed by Gentzen [Gen1934].
Furthermore, many proof-theorectical results can be further investigated such as
normalization theorems proposed by Prawitz [Pra1965] for classical logic within
the context of natural deduction systems.

Among the corollaries of normalization theorems, it can be cited the de�-
nition of canonical proofs, the subformula principle and the consistency proof
of the calculus. Moreover, normalization theorems for the natural deduction
system in classical logic have stimulated the development of important studies
about length of proofs. The results obtained from these studies are considered
better than those obtained from similar studies in sequent calculus [Per1982].
Such results can be applied in automatic theorem provers and in programming
languages based on logic.

Besides the sequent calculus, Girard [Gir1987,Gir1995] proposed a new de-
duction system named proof-nets. Proof-nets are considered as to be the nat-
ural deduction of linear sequent calculus. They are de�ned as unoriented con-
nected graphs called proof-strutures. However, in order to recognize a proof-net,
a soundness criterion must be applied to a proof-structure, which overload the
task of building up a logically correct deduction within this system.

In [Med2001], a natural deduction system for a subset of the multiplicative
fragment of linear logic was proposed. She also proved normalization theorems
and used them to de�ne translations between logics. The natural deduction
system that will be presented here takes Medeiros's system as a starting point.
However, some rules are modi�ed and others are introduced to cope with all
multiplicative fragment. In section 2, linear logic is presented through a sequent
calculus. Our linear natural deduction system is introduced in section 3 and
completeness and correctness is proved in section 4. Conclusions and further
works are pointed out in the last section.

2 Linear Logic

2.1 The Language of Linear Logic

The language L of sentential linear logic involves connectives for two diffe-
rent conjunctions \times" (
) and \with" (N), for two di�erent disjunctions
\par" (O) and \plus" (�), for linear implication (() and negation (?), besides
two exponential connectives \of course" (!) and \why not" (?). The alphabet
A of this language includes, in addition to the above signs, sentential signs
(A1; A2; A3; : : :), auxiliary signs ((, )), constants for linear contradiction (?) and
for linear tautology (1). We assume that none of the signs of A are a �nite
sequence of other signs.

We will use small Greek letters (�, �, 
, . . . ) to represent well formed formulas
(w�s or simply formulas), and capital Greek letters (� , �, �, . . . ), but � and
�, to represent sets of w�s. We inductively de�ne the set of w�s as follows:

i) Every sentential sign is a w�.



ii) ? is a w�.
iii) 1 is a w�.
iv) If � and � are w�s, then (�?), (!�), (?�), (�
 �), (�N�), (�O�), (� � �),

(�( �) are also w�s.
v) None of the expressions generated from the signs of the alphabet A, besides

those obtained from i), ii), iii), and iv), can be considered w�s.

2.2 The Sequent Calculus for Linear Logic

In the sequent calculus for linear logic proposed by Girard [Gir1987,Gir1995],
\Weakening" and \Contraction" structural rules are suppressed since, through
them, it could be possible to discharge hypotheses in an unrestricted way. Linear
logic treats hypotheses as limited and relevant resources: they must be discharged
for once only.

However, in exceptional cases, resources can be reused and/or discharged
without being used. Whenever it is the case, exponential operators will be
used pre�xing formulas that represent unlimited resources and \Weak-
ening"/\Contraction" rules will be reintroduced in a restricted way.

Rules for linear sequent calculus are as follows:

Identity � ` � ` 1 Tautology

Contradiction ? `

� 0 ` �;�0 � 00; � ` �00

� 0; � 00 ` �0; �00 Cut

L1

� ` �
�; 1 ` �

� ` �
� ` ?; � R?

Lx (Exchange)

�; �; � ` �

�;�; � ` �

� ` �; �;�

� ` �; �;� Rx (Exchange)

L


�; �; � ` �

�; (�
 �) ` �

� 0 ` �;�0 � 00 ` �;�00

� 0; � 00 ` (� 
 �); �0; �00 R


LO

� 0; � ` �0 � 00; � ` �00

� 0; � 00; (�O�) ` �0; �00
� ` �; �;�

� ` (�O�); � RO

L1N

�; � ` �

�; (�N�) ` �

� ` �;� � ` �;�

� ` (�N�); � RN

L2N

�; � ` �

�; (�N�) ` �

� ` �;�

� ` (�� �); � R1�

L�

�; � ` � �; � ` �

�; (�� �) ` �

� ` �;�

� ` (�� �); � R2�



L(

� 0;` �;�0 � 00; � ` �00

� 0; � 00; (�( �) ` �0; �00
�; � ` �;�

� ` (�( �); � R(

L?

� ` �;�

�; (�?) ` �

�;� ` �

� ` (�?); � R?

Lc! (Contraction)

�; (!�); (!�) ` �

�; (!�) ` �

� ` (?�); (?�); �

� ` (?�); � Rc? (Contraction)

Lw ! (Weakening)
� ` �

�; (!�) ` �
� ` �

� ` (?�); � Rw? (Weakening)

L! (Dereliction)

�; � ` �

�; (!�) ` �

� ` �;�

� ` (?�); � R? (Dereliction)

L? (Why not?)

!�; � `?�

!�; (?�) `?�

!� ` �; ?�

!� ` (!�); ?� R! (Of course!)

!� means that all w� in the set � of formulas is pre�xed by \!". ?� is equally
de�ned, mutatis mutandis.

In this paper, sequents will be treated as a \multiset" 1 and not as a sequence
of formulas. Hence, \Lx" and \Rx" rules will not be used.

Deductions in sequent calculus can be described as trees on which vertices are
sequents and edges represent the application of rules to sequents. The sequents of
\Identity", \Contradiction" and \Tautology" must appear at the top of the tree.
We will use the capital Greek letters � and �, eventually indexed, to represent
deductions.

We take for granted the notion of an occurrence of a formula or (synony-
mously) a formula occurrence in a deduction. Two formula occurrences are said
to be of the same form or shape if they are occurrences of the same formula;
they are identical only if they also stand at the same place in the deduction.

2.3 The Multiplicative and Additive Fragments

In the sequent calculus, \RN" and \L�" rules share the same context � and
�. Because of this feature, the connectives \N" and \�" are called additives.
Contrary to this, \
" and \O" are named multiplicative connectives.

Linear logic can be divided into the multiplicative fragment and the additive
fragment, each one of these containing one conjunction and one disjunction. The
exponential operators and the linear negation belong to both fragments. The
implication \(" is considered multiplicative because it can be obtained through
\O" and \?". The constants \?" and \1" are also considered as multiplicative.

1 \Multisets" of formulas are sets of formulas where two occurrences of the same
formula are considered as distinct elements.



3 Natural Deduction for Linear Logic

According to Prawitz [Pra1965], a natural deduction system can be de�ned as a
set of rules that determine the concept of deduction for a language. The rules for
such a system should give the idea of \natural" as intended by Gentzen and are
of two kind: introduction and elimination for each sign of the language. These
rules indicate, in atomic steps, how to use a logical sign in a deduction.

The language for linear logic used here was de�ned in section 2.1 and our pro-
posed rules will be given below. Correctness and completeness of our deductive
system will be proved in relation to Girard's sequent system.

3.1 Natural Deduction for the Multiplicative Fragment

In [Med2001], Medeiros has presented a natural deduction system, named NLLM,
correct and complete with respect to Girard's sequent system, for a subset of
the multiplicative fragment of linear logic. She has introduced the multiplicative
constants and connectives \1", \?", \O", \?" by de�nition. Starting on some
of the Medeiros ideas, we have created a calculus for all multiplicative fragment
called NDMF.

Using NDMF system, we can prove a w� � from a set of w�s � . In this
case, we use the notation � `NDMF �. The set � represents assumptions. In
the NDMF system, the constant \1" is de�ned as \(?( ?)".

The inference rules of NDMF calculus are de�ned as follows:

I(

�x....
�

(�( �)
x

E(

� (�( �)

�
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� �....
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(!�) (!�)
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� E2!

(!�) �

�

I?
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�

�
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?
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(�?)x
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?
� x
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� (�?)

?

Hypotheses are as assumptions but they are discharged by inference rules.
A hypothesis appears in a rule with an index. This index is also indicated at
the right side of the respective rule marking the point where the hypothesis is
discharged. Hypotheses neither can be conclusions of inference rules nor are part
of the set of (always undischarged) assumptions.

Deductions in NDMF can be described as a graph where vertices are w�s
and edges are applications of inference rules on w�s.

We can de�ne the concept of path as a sequence of w�s �1, �2, . . . , �n in a
deduction such that, for a w� �i, i > 1, of this path �i�1 occurs immediately
above �i in the deduction, that is, �i�1 is one of the premises of the rule that
derives �i.

The concept of essentially modal formulas was used by Prawitz in [Pra1965]
to de�ne natural deduction rules for modal operators in S4 and S5 logics. We
will adapt this concept to de�ne the exponential rules for \!" and \?".

The inductive de�nition of the essentially !-modal formula is the following:

i) (!�) is an essentially !-modal formula.
ii) ((?�)?) is an essentially !-modal formula.
iii) If � and � are essentially !-modal formulas, so are (�
 �).
iv) None of the w�s, other than those obtained by i), ii), and iii), can be con-

sidered essentially !-modal formulas.

The inductive de�nition of the essentially ?-modal formula is the following:

i) (?�) is an essentially ?-modal formula.
ii) ((!�)?) is an essentially ?-modal formula.
iii) If � and � are essentially ?-modals formulas, so are (�O�).
iv) None of the w�s, other than those obtained by i), ii), and iii), can be con-

sidered essentially ?-modal formulas.



The restrictions to the NDMF inference rules are presented as follows:

i) The rule I( discharges one, and only one, occurrence of the hypothesis �x.
ii) In the rule E
, let � be the deduction that begins with � and � and ends

with 
.

� =

� �....



In �, none of the rules can discharge hypotheses on which (�
 �) depends.
Let r be the last rule of �. r infers 
 and it is the �rst rule that links
the branches which begins with � and �. Therefore, r must be one of the
following rules: \E(", \I
", \E1O", \E2O", \E2!" or \Contradiction".

iii) The rule I1O discharges one, and only one, occurrence of the hypothesis
(�?)x.

iv) The rule I2O discharges one, and only one, occurrence of the hypothesis
(�?)x.

v) In the rule I!, let � be the deduction that ends with �.

� =

....
�

Let C be any path between � and a hypothesis in � on which � depends.
Then, the rule I! can only be applied to the premise � if, for every C, there
exists a w� � belonging to C such that � is essentially !-modal.

vi) In the rule Duplication!, let � be the deduction that begins with two occur-
rences of (!�) and ends with �.

� =

(!�) (!�)
....

�

In �, none of the rules can discharge hypotheses on which the premise (!�)
depends. Let r be the last rule of �. r infers � and it is the �rst rule that
links the branches which begins with two occurrences of (!�). Therefore, r
must be one of the following rules: \E(", \I
", \E1O", \E2O", \E2!" or
\Contradiction".

vii) In the rule E?, let � be the deduction that begins with �x and ends with �.

� =

�x....
�

Let C be any path between � and a hypothesis in � on which � depends but
�x. C should contain an essentially !-modal w� 
. Besides of that, � should
be essentially ?-modal or � is ?.



viii) The rule I? discharges one, and only one, occurrence of the hypothesis �x.
ix) The rule E? discharges one, and only one, occurrence of the hypothesis

(�?)x.

We can observe that (�?) can be represented by (�( ?). In this case, we
can replace \E(" by the \Contradiction" rule.

In the calculus proposed in [Med2001], there are no rules for the connectives
\O" and \?", the operator \?" and the constant \1". They are included by
de�nition. In her work, rules for \E
" and \Duplication!" follow the pattern of
\E_" classical natural deduction rule [Gen1934]. Moreover, the rules for operator
\!" do not follow the style proposed by Prawitz [Pra1965] for the necessity modal
operator in S4.

3.2 Meaning of the connectives

Using NDMF, we intend to have a better understanding of the linear connectives.
In our system, we must discharge an occurrence of an hypothesis once, and only
once. This indicates that an hypothesis is treated as a limited and relevant
resource.

The connective \O" is one of the hardest to understand. With the rules \I1O",
\Contradiction" and \E?", we can prove the axiom ((� ( �) ( ((�?)O�)).
This axiom clari�es the meaning of \O". It says that an action of the type
(� ( �), if performed, can generate an action of the type ((�?)O�) which
means that we do not have � anymore and we certainly have �. Thus, although
\O" is a disjunction, \O" carries a conjunctive idea.

We have de�ned two multiple-conclusion rules: \E
" and \Duplication!".
However, proofs, in our system, have only one conclusion. Thus, every multiple-
conclusion rule is part of a cycle in the graph representation of a proof. Our rule
\E
" is similar to the rule \E^" in the multiple-conclusion calculus for classical
logic proposed by Ungar [Ung1992]. Nevertheless, in the calculus proposed by
Ungar, the rule \E^" generates two independent conclusions. On the contrary,
in our system, we have to deal with both conclusions of the rule \E
" in a
dependent way re
ecting the disjunctive 
avor of \
".

The rule \Duplication!" has the same structure of the rule \E
". The for-
mula (!�) represents a (�nite) formula (: : : ((� 
 �) 
 �) : : : 
 �). Thus, with
Duplication!, if we have (!�), then we have an unlimited amount of �

Another interesting rule is \E2!". It shows that a resource �, if preceded by
\!", may be discharged.

The rules for the operators \!" and \?" of our system were inspired in the
rules proposed by Prawitz [Pra1965] for the modal operators \�" (necessity) and
\�" (possibility) of the modal logic S4. The restrictions of the rule \I�" in the
Prawitz's system, for instance, were our starting point to draw the restrictions
that we have proposed for the rule \I!". Those restrictions are important to
preserve correctness and to allow normalization. Similar observations can be
said about the restrictions of the rule \E?". They were inspired in the rule \E�"
of the Prawitz's system. Thus, we can say that the operators ! and ? carry a
modal idea.



4 Equivalence between NDMF and the Sequent Calculus

The length of a deduction � in NDMF, denoted by l(�), is de�ned inductively
in the following way:

i) If � has just one hypothesis, then l(�) = 1.
ii) If � has the form:

�
� or

�1 �2

�

then the length of � is l(�) = l(�) + 1 or l(�) = maxfl(�1); l(�2)g+ 1 2

respectively.

The length of a deduction � in sequent calculus, denoted by ls(�), is de�ned
inductively in the following way:

i) If � has just the rules of \Identity", \Contradiction" or \Tautology", then
ls(�) = 1.

ii) If � has the form:

�
� ` � or

�1 �2

� ` �

then the length of � is ls(�) = ls(�)+1 or ls(�) = maxfls(�1); ls(�2)g+1
respectively.

Lemma 1. If � is an essentially !-modal formula, then � ` (!�) is proved in the

sequent calculus.

Lemma 1 can be proved by induction on the number of occurrences of 
 in
�.

Lemma 2. If � is an essentially ?-modal formula, then (?�) ` � is proved in

the sequent calculus.

Lemma 2 can be proved by induction on the number of occurrences of O in
�.

Theorem 3. (Correctness) If �; (�?1 ); : : : ; (�
?
n�1) `NDMF �n, then the sequent

� ` �1; : : : ; �n is proved in the sequent calculus.

Theorem 3 can be proved using Lemmas 1 and 2 and by induction on the
length of a deduction � in the system NDMF for �; (�?1 ); : : : ; (�

?
n�1) `NDMF

�n.

Theorem 4. (Completeness) Let � = f�1; : : : ; �ng, eventually empty, and let

�? = f(�?1 ); : : : ; (�
?
n
)g. If � ` � is a sequent proved in sequent calculus, then

�;�? `NDMF ?.

Theorem 4 can be proved by induction on the length of a deduction � in the
sequent calculus with end sequent as � ` �.

Corollary 5. The NDMF calculus is equivalent to Girard's sequent calculus.

The proof of Corollary 5 is a consequence of Theorems 3 and 4.

2
max is a function that returns the greatest value among the input values.



5 Conclusion

In this paper, a natural deduction system was proposed for the multiplicative
fragment of linear logic. Our system has introduction and elimination rules for
all connectives and operators of this fragment. We proved that our system is
equivalent to Girard's multiplicative sequent calculus system.

The rules for the connective \O" should be improved since they do not follow
the Gentzen [Gen1934] idea that rules must deal with just one connective. \EO",
for example, could follow the pattern of \E
".

E'O

(�O�)

� �
....



And \IO" could follow the pattern of the \I
"

I'O

� �

(�O�)

In order to preserve the correctness of the system, we must introduce restric-
tions on the deduction graphs to avoid cycles that begin with a rule \E'O" and
end with one of the rules: \E(", \I
", \E2!" and \Contradiction". In others
words, a cycle that begins with the rule \E'O" can end only with the rule \I'O".
Ungar [Ung1992] de�ned some restrictions on cycles for his multiple-conclusion
classical calculus like those presented above. However, those modi�ed rules for
\O" cannot assure the completeness. It is necessary to add others rules to pre-
serve completeness.

We also intend to extend our calculus for the additive fragment and prove nor-
malization results. Such proofs will allow the implementation of theorem provers
for linear logic, which can be used in several arti�cial intelligence applications
where resources are limited.
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