
Conceptual Graph Theory Applied to
Reasoning in Ontologies

Dan Corbett

Advanced Computing Research Centre
School of Computer and Information Science

University of South Australia
Adelaide, South Australia 5095

+61 (8) 8302 3102
corbett@cs.unisa.edu.au

Abstract. This paper discusses automated reasoning over ontologies
represented as Conceptual Graphs. We discuss a tool which has been
implemented using Conceptual Graphs as its underlying knowledge
structure. The significance of this work is that we demonstrate that the
power of logic as implemented in Conceptual Graphs, and the tools
available in Conceptual Graph Theory can be used as powerful ontology
reasoning tools in a real-world domain. We show that ontologies can be
constrained and unified using efficient methods, and that these methods
provide the basis for an automated reasoning system. The Conceptual
Graph techniques of concept join, partial order and subsumption are all
exploited to create these reasoning tools.

We discuss the implementation of these ideas, and demonstrate the
software tool created in two domains: building architecture and defense.
Examples show that the system can reason over these domains and
assist the users in their tasks.

Keywords: Reasoning, visualization, ontologies, conceptual graphs

Conference topics: Reasoning models and Knowledge Representation

Conceptual Graph Theory Applied to
Reasoning in Ontologies

Dan Corbett

Advanced Computing Research Centre
School of Computer and Information Science

University of South Australia
Adelaide, South Australia 5095

Abstract. This paper discusses automated reasoning over ontologies
represented as Conceptual Graphs. We discuss a tool which has been
implemented using Conceptual Graphs as its underlying knowledge
structure. The significance of this work is that we demonstrate that the
power of logic as implemented in Conceptual Graphs, and the tools
available in Conceptual Graph Theory can be used as powerful ontology
reasoning tools in a real-world domain. We show that ontologies can be
constrained and unified using efficient methods, and that these methods
provide the basis for an automated reasoning system. The Conceptual
Graph techniques of concept join, partial order and subsumption are all
exploited to create these reasoning tools.

We discuss the implementation of these ideas, and demonstrate the
software tool created in two domains: building architecture and defense.
Examples show that the system can reason over these domains and
assist the users in their tasks.

1. A Brief Overview of Conceptual Graphs

Conceptual Structures (or Conceptual Graphs, or ÒCGsÓ) are a knowledge
representation scheme, inspired by the existential graphs of Charles Sanders Peirce
and further extended and defined by John Sowa [1, 2] . Informally, CGs can be
thought of as a formalization and extension of Semantic Networks, although the
origins are different. They are labeled graphs with two types of nodes: concepts
(which represent objects, entities or ideas) and relation nodes, which represent
relations between the concepts. As an example, Figure 1 shows a Conceptual Graph
which represents the knowledge that ÒThe cat Felix is sitting on the mat which is
known as mat 47.Ó

Every concept or relation has an associated type. A concept may also have a
specific referent or individual. A concept in a CG may represent a specific instance of
that type (e.g., Felix is a specific instance, or individual, of type cat) or we may

cat : Felix ON mat : #47

Figure 1. A Simple CG.

choose only to specify the type of the concept. That is to say that a concept may
simply represent a generic concept for a type, such as mammal or room, or a concept
may represent a specific object or idea, such as my cat or the kitchen at the SmithÕs
house. In the former case, the concepts in Figure 1 would be shown as Òcat: * Ó and
Òmat: * Ó indicating non-specified entities of types cat and mat. In the standard
canonical formation rules for Conceptual Graphs, unbound concepts are existentially
quantified.

A relation may have zero or one incoming arcs, and one or more outgoing arcs.
The type of the relation determines the number of arcs allowed on the relation. The
arcs always connect a concept to a relation. Arcs cannot exist between concepts, or
between relations.

A canon in the sense discussed here is the set of all CGs which are well-formed,
and meaningful in their domain. Canonical formation rules specify how CGs can be
legally built and guarantee that the resulting CGs satisfy Òsensibility constraints.Ó
The sensibility constraints are rules in the domain which specify how a CG can be
built, for example that the concept eats must have a theme which is food. Note that
canonicity does not guarantee validity. A CG may be well-formed in the canononical
formation rules for the domain, but still be false.

Figure 2. A relation type hierarchy.

support s

support s-heavy

support s-light

T

T

struct ure

support st ruct ure

single mult iple

T

bay s t ruct ure

T

......

Figure 3. A concept type hierarchy.

Sowa discusses his original definitions in [1] but our work follows the further
formalized and refined versions of SowaÕs original ideas presented by Willems [3], by
Chein and Mugnier [4, 5] and by Corbett [6, 7] .

A type hierarchy is established for both the concepts and the relations within a
canon. This hierarchy is expressed by a subsumption or generalization-order on types.
The formal definitions of Conceptual Graphs are not repeated here, but can be found
in [2, 8] and other references.

2. Types and Inheritance

The set of types discussed in the last section is arranged into a type hierarchy,
ordered according to the specificity of each type. A type hierarchy is established for
both the concepts and the relations within a canon. A type hierarchy is based on the
intuition that some types subsume other types, for example, every instance of cat
would also have all the properties of mammal. This hierarchy is expressed by a
subsumption or generalization order on types. A type t is said to be more specific
than a type s if t specializes some of the concepts from s.

An example of a relation type hierarchy is shown in Figure 2. In one domain that
we have worked in, building architecture, we may wish to represent that one structure
supports another structure. We may further want to represent that any type of support
structure which supports a heavy load will also support a light load. This relationship
is expressed in the hierarchy. In this manner, some constraints on the relations
between concepts can be represented.

Similarly, an example type hierarchy for concepts is shown in Figure 3. The
universal type is shown at the top of the hierarchy, and is represented by T. The
absurd type is shown at the bottom of the graph, and is represented by ⊥. Here we see
that a support structure is a specialization of a structure, and that a bay structure
specializes support structure. Using these type hierarchies, it is possible to show, for
example, that the multiple-bay structure will support a heavy load, by using concepts
for multiple-bay structure, and a relation of the type supports-heavy.

The definitions of unification, consistency and type subsumption in this paper are
based on formal concepts of projection and lower bounds. Carpenter [9] defines each
of these operators as a morphism. We have modified CarpenterÕs definitions to work
with the properties of Conceptual Graphs. A morphism is then a mapping from the
set of nodes of one Conceptual Graph to the set of nodes of another that preserves the
order of relation arguments and the values of those arguments. In a morphism, all of
the connections and arguments are preserved.

This definition of projection then gives us a formal definition for subtype and
supertype and for subsumption on the partial order of the type hierarchy. All of these
operations are now simply applications of the projection operator. Finding types
which are compatible (i.e. that can be unified) is now a matter of finding a common
subtype (or join) between the two types. If the only common subtype is ⊥ then there
can be no unification.

3. Unification as Reasoning

In early pioneering work on the unification of first-order terms, Reynolds [10] used
the natural lattice structure of first-order terms, which was a partial ordering based on
subsumption of terms [11] . Many terms (or types in our case) are not in any
subsumption relation, for example cat and dog, or wood and mammal. Unification
corresponds to finding the greatest lower bound of two terms in the lattice [12] . The
bottom of any lattice, which is represented with the symbol ⊥, is the type to which all
types can unify, and represents inconsistency. The top of the lattice, represented by T,
is the type to which all pairs of types can generalize, and is called the universal type.
Every type is a subtype of T. Inheritance hierarchies can be seen as lattices that admit
unification and generalization [12] . The common specialization of two Conceptual
Graphs, s and t, is known as a join. The common generalization of the two graphs is
known as a meet.

The process of unifying Conceptual Graphs includes the process of finding the
most general subtypes for pairs of types of concepts, which depends on the two types
in question being consistent. We also allow constraints on the concepts in the graphs,
which are processed during the unification and resolution process. Unification (by
projection) is the mechanism we use to find the solution of the constraints. In our
work, unification is a tool which performs the work of identifying two structures
using subsumption, where the elements of the structure can be constrained.

4. Knowledge Conjunction

Unification is somewhat more complicated, and also more interesting and useful than
merely an extension of the join operation. The unification of two graphs contains
neither more nor less information than the two graphs being unified. Figure 6 shows
that the unification of the two graphs in Figure 5 still retains all the information of the
original two graphs. This is the idea behind knowledge conjunction.

The main thrust of the research described in this paper is the unification of
Conceptual Graphs in terms of conjoining the knowledge contained in two different
graphs. While this may involve term substitution (or the Conceptual Graphs
equivalent - instantiation, subsumption, variable binding, etc.) and constraint solving,
our research is more concerned with knowledge conjunction. Carpenter defines
unification as a system in which two pieces of partial information can be combined
into a single unified whole [9]. In our case, these pieces of partial information are
represented by Conceptual Graphs. Carpenter refers to this idea as information
conjunction, but in our work, it is knowledge conjunction that is more important to us.
We want to be able to combine the expert knowledge of a system, or even combine
knowledge from different sources, not merely gather additional information.
Unification here is the combining of pieces of knowledge in a domain, represented as
Conceptual Graphs. We define unification as an operation that simultaneously
determines the consistency of two pieces of partial or incomplete knowledge, and if
they are consistent, combines them into a single result.

When an ontology is represented by the use of Conceptual Graphs constructed in
this way, subsumption can be used to combine, refine and reuse the knowledge
contained in the graphs. This further allows us to perform reasoning over the
knowledge in the graphs as concepts. Reasoning is not limited to objects, classes or
libraries, but can also be applied to generic concepts in the knowledge. We
demonstrate reasoning over generic concepts in the next section.

One major advantage that Conceptual Graphs have over other representation
schemes is that Conceptual Graphs which contain existentially quantified concepts
can still be unified. In Feature Structures theory [9] for example, it is important to
know whether one is attempting to unify the intensions or the extensions of two
Feature Structures (FS). Essentially, the intension of a Feature Structure is all of the
attributes (or properties, or features) of a construct. The extension of a Feature
Structure is the actual object being represented, with the attributes specified, even if
only partially. In Feature Structures theory, one must decide whether the Feature
Structures being unified are of the same intensional type, or the same extensional
type, and then seek to identify the two FSs under that type. The unification of two
FSs under their extensional type is simply the identification of all their values for their
features (similar to type labels and individual markers for the concepts in CGs).
There is no way to derive identities of intensional types of two Feature Structures, as
there are no values to be compared.

Mineau uses Conceptual Graphs to represent the semantics behind web agents in
[13]. Mineau shows that the main advantages of Conceptual Graphs in this regard is
that they are highly expressive, formal, easy to use and easy to understand. He shows
that the use of CG-based agents as Knowledge Servers increases the interoperability
between objects in the ontology. Knowledge conjunction extends this capability by
providing a formal, efficient model for reasoning over ontologies.

5. The Air Operations Officer

The results discussed in this section are those recorded from the application of the
knowledge conjunction reasoning tool operating over the defense domain. The
domain knowledge is represented as Conceptual Graphs with constraints on either the
structure of the graph or on the values in the concepts [6]. Here, we discuss the idea
behind the reasoning mechanism by employing order sorted unification and
constraints within the domain of architectural design. The concepts discussed
previously were implemented in Allegro Common Lisp on a Sun Workstation.

An Air Operations Officer (usually known as an OPSO) is the defense officer
responsible for deciding the appropriate defensive response to an air threat. A study
of the Operations Officer decision-making methods was recently conducted, using a
cognitive modeling technique [14, 15] . The study was used to show the usefulness of
cognitive modeling in deriving rules from expert knowledge. In this section, we only
make use of the rules which resulted from the study; the cognitive modeling technique
is not discussed here.

In the domain of the Operations Officer, the magnitude of the response to an air
threat is in proportion to the threat itself. So, if the opposing aircraft are very close, or

if the aircraft is of a type which can cause a great deal of damage (known as a strike
aircraft), then the response is large. If the threat is smaller, then the response is
smaller. For example, Figure 7 shows a rule in this domain. (We have borrowed the
style of Cao [16] to express the rule, although we do not employ CaoÕs fuzzy
reasoning here.) This graph expresses the rule that if a fighter aircraft (small threat) is
between 400 and 500 nautical miles distant, then assert a threat level of Òalert 60Ó (the
lowest level of alert, in which response fighters must be ready to take off within sixty
minutes), and a single fighter is assigned to deal with this threat.

The assertion shown in Figure 6 unifies with the ÒifÓ portion of this rule. The
ÒthenÓ portion represents the response to the situation, and it is asserted into the
current world knowledge. In this manner, we can represent the decision-making
capabilities of the Operations Officer.

The rule shown in Figure 8 is used for a bigger and more impending threat. Any
threat aircraft which is closer than 400 nautical miles is considered an immediate
threat, and a response squadron must be ready very quickly. Further, a strike aircraft
is one which can inflict a great deal of damage, and is therefore dealt with more
severely than a fighter aircraft.

The assertion shown in Figure 8 states that a bomber is known to be between 380
and 390 nautical miles distant. Our type hierarchy indicates that a bomber is a type of
strike aircraft. Because of the proximity of the threat, the response aircraft are put on
Òalert 10Ó status. Because of the enormity of the threat, two fighters are assigned to
deal with the target aircraft. Again, the assertion unifies with the ÒifÓ portion of the

fight er: * [495, 5 10] : *d ist ance

A sse r t i on:

[400, 500] : *d ist ance

i f

response leve l aler t : 60

number 1

t hen

fight er : *

Figure 7. A rule in the defense domain.

rule, causing the ÒthenÓ portion of the rule to be asserted.

6. Results and Discussion: The Air Operations Officer

Conceptual Graphs and knowledge conjunction can be used to efficiently represent a
set of rules in the domain of the Air Operations Officer. The use of Conceptual
Graphs is an efficient method for representing the complete ontology of the OPSO,
not only in the rules, but also in the exploration and use of the knowledge of types of
aircraft and responses. General rules can be represented as Conceptual Graphs, and
then specialized dynamically to match the current situation and describe an
appropriate response.

7. Architectural Design Tool

The results discussed in this section are those recorded from the application of the
knowledge conjunction reasoning tool operating over the domain of architectural
design. The point of automated search for the designer is to use computer media that
engage designers in exploring design modifications. The design user may want to
create new designs, or index, compare or adapt existing designs. This type of user
requires efficient representations for the designs and states (of designs) in a symbol
system [17]. The designer needs to be able to represent spaces of possibilities which
are both relevant to the language and knowledge of design and lend themselves to
tractable computations.

strike: * [< 400]: *distance

if

then

response level alert: 10

number 2

bomber: * [380, 390]: *distance

Assertion:

Figure 8. Another rule from the same domain.

Consider a design for the kitchen of a custom-made house. In this design, the
architect has specified some of the lighting design and that the floor area must be
greater than 20 square meters. The architect has also retrieved an old design, which
specifies the remainder of the lighting design. The knowledge conjunction software
discussed above combines these two graphs into a single result which represents
neither more nor less knowledge than the original graphs. In this graph, all the
original knowledge of the first two graphs has been preserved, and the values in the
concepts have been joined as specified.

8. Results and Discussion: Architectural Design Tool

Conceptual Graphs can be used to efficiently represent a building design ontology.
The use of Conceptual Graphs is an efficient method for representing not only the
designs, but also constraints on the designs and knowledge conjunction of designs.
The system described in this paper allows general designs to be represented as
concepts, and also allows values to be constrained by specifying real-valued
constraints as intervals.

The three main areas where the architects want the contribution of Knowledge
Conjunction are in type subsumption, knowledge-level reasoning, and pattern
matching. First, architects want to be able to use type subsumption to make
statements such as, ÒAn office (or kitchen, or corridor) is a kind of room. All the
properties which apply to one should apply to its specializations.Ó This is distinct
from the object-oriented objective of objects inheriting all the properties of a class of
objects. The essential difference is in treating a kitchen as you would any generic
room. A generic room can be placed, occupy space, and have attributes like color and
number of doors. A class of rooms will have attributes, but cannot be said to occupy
a space or have specific dimensions, or have a specific count or placement of doors.

The knowledge conjunction model that we developed give this ability to the
architects. The algorithm allows the user to specialize designs by matching (unifying)
previous designs with the current design problem. Since all characteristics, attributes
and constraints are carried along in the unification, the specialization represents all of
the design concepts included in the more generic design. Further, and more
importantly, there is no real separation between generic and specific, since all points
in between can be represented. Conceptual Graphs combined with the ability to
specialize using unification are the ideal tool for the knowledge conjunction approach
and the constructive nature of architectural design.

The second major concern of architectural designers was the ability to have
knowledge-level reasoning. That is, they want to be able to speak in the language of
the architect, not the language of the computer (or CAD system). The user wants to
be able to refer to the ÒNorth WallÓ or ÒdoorÓ without resorting to discussing
geometric coordinates in space. The user wants to depart from previous CAD-based
data-level processing, and work at the knowledge level in the architecture domain.

This is certainly another area where Conceptual Graphs and unification combine
to bring a solution to this domain. While spatial coordinates (and their constraints)
can be stored in a graphical representation of a room, there is no need for the user to

bother with using them. The graph can be manipulated as a whole, and treated as a
room, rather than a square in a diagram. The completed system will not deal with
lines and boxes, but rather with specializing entire designs for rooms (or houses, or
office buildings). This approach frees the architect from dealing with data-level
concerns of numbers and coordinates, and allows the architect instead to deal with the
architectural design.

Finally, the users want to be able to start with a high-level, generic description of a
building, and then make queries such as, ÒCan this bay structure be used in the
support structure?Ó or, ÒDo the constraints match up adequately for a particular
technology to be used? If yes, tell me the constraints under which it is usable.Ó

Once again, the work presented in this paper meets the requirements of the
architects. A query is represented as a Conceptual Graph. The user can specify a type
of structure for support, and make the query by attempting to unify the structure with
the more generic design. If the unification fails, then the user knows that the
proposed structure does not meet the constraints of the design problem. If the graphs
unify, then the resulting graph will contain the constraints which must be met in order
to make the design work.

Overall, the system of unification over constraints on Conceptual Graphs
presented in this paper gives a set of tools to the designer. The ability to use
knowledge conjunction with constraints to handle objects at the knowledge level
greatly leverages the ability of the designer to work efficiently.

9. Conclusions

We have demonstrated a method for automated reasoning on ontologies, using
Conceptual Graphs to represent the underlying ontology. Type hierarchies and the
canonical formation rules efficiently specialize graphs into concrete instances. A
simple unification operation, using join and type subsumption, is used to perform
knowledge conjunction of the concepts represented as graphs. The significance of our
work is that the previously static knowledge representation of ontology is now a
dynamic, functional reasoning system.

References

1. Sowa, J.F., Conceptual Structures: Information Processing in Mind and Machine.
1984, Reading, Mass: Addison-Wesley.

2. Sowa, J.F., Conceptual Graphs Summary, in Conceptual Structures: Current
Research and Practice. 1992, Ellis Horwood: Chichester, UK.

3. Willems, M. Projection and Unification for Conceptual Graphs. in Proc. Third
International Conference on Conceptual Structures. 1995. Santa Cruz,
California, USA: Springer-Verlag.

4. Chein, M. and M.-L. Mugnier, Conceptual Graphs: Fundamental Notions. Revue
d'Intelligence Artificielle, 1992. 6(4): p. 365-406.

5. Mugnier, M.-L. and M. Chein, Représenter des Connaissances et Raisonner avec
des Graphes. Revue d'Intelligence Artificielle, 1996. 10(6): p. 7-56.

6. Corbett, D.R., Conceptual Graphs with Constrained Reasoning. Revue
d'Intelligence Artificielle, 2001. 15(1): p. 87-116.

7. Corbett, D.R. and R.F. Woodbury. Unification over Constraints in Conceptual
Graphs. in Proc. Seventh International Conference on Conceptual
Structures. 1999. Blacksburg, Virginia, USA: Springer-Verlag.

8. Corbett, D.R. Reasoning with Conceptual Graphs. in Proc. Fourteenth Australian
Joint Conference on Artificial Intelligence. 2001. Adelaide, South Australia:
Springer.

9. Carpenter, B., The Logic of Typed Feature Structures. 1992, Cambridge:
Cambridge University Press.

10. Reynolds, J.C., Transformational Systems and the Algebraic Structure of Atomic
Formulas. Machine Intelligence, 1970. 5.

11. Davey, B.A. and H.A. Priestley, Introduction to Lattices and Order. 1990,
Cambridge: Cambridge University Press.

12. Knight, K., Unification: A Multidisciplinary Survey. ACM Computing Surveys,
1989. 21(1): p. 93-124.

13. Mineau, G. A First Step Toward the Knowledge Web: Interoperability Issues
Among Concpetual Graph Based Software Agents, Part I. in Proc.
International Conference on Conceptual Structures. 2002. Borovets,
Bulgaria: Springer.

14. Mitchard, H. Cognitive Model of an Operations Officer. Honours Thesis,
Computer and Information Science, University of South Australia. Adelaide,
South Australia, 1998.

15. Mitchard, H., J. Winkles, and D.R. Corbett. Development and Evaluation of a
Cognitive Model of an Air Defence Operations Officer. in Proc. Fifth
Biennial Conference of the Australasian Cognitive Science Society. 2000.
Adelaide, South Australia.

16. Cao, T.H., P.N. Creasy, and V. Wuwongse. Fuzzy Unification and Resolution
Proof Procedure for Fuzzy Conceptual Graph Programs. in Proc. Fifth
International Conference on Conceptual Structures. 1997. Seattle,
Washington, USA: Springer-Verlag.

17. Woodbury, R., S. Datta, and A.L. Burrow. Erasure in Design Space Exploration.
in Proc. Artificial Intelligence in Design. 2000. Worcester, Massachusetts,
USA.

