
Operational Semantics of Agents Sharing Action

and Communication

Abstract. This paper introduces a new the protocol for agents to col-
laborate each other and the description of agent’s actions including comu-
nications in extended π-calculus[Mil91,KM01] in order to share actions.
We focus on intentions of agents to define the protocol. In the protocol,
an agent builds a group in which agents have the same intentions or the
similar intentions. We formalize actions based on extended π-calculus
and show the operational semantics of our proposed actions. Our for-
malization is based on π-calculus which provides a sound foundation to
concurrent computations and a communication among parallel processes.
Thus we assign a process to an action, it constructs the action including
communications.

1 Introduction

The performance of a multi-agent system is bad when agents in it might indi-
vidually perform actions. Though agents may communicate with each other to
improve the performance, the performance might be worse because the commu-
nication augments ineffective actions [HCY99]. In order to avoid the situation,
an agent has to communicate agents which have similar intentions[CLS].

In a BDI(belief, desire and intention) model, agents focus on their intention
and collaborate with each other. The concepts of them have been described, but
there were no clear description of how such a model could be used and effectively
work [CLS,Nak99].

In this paper we propose a new protocol for agents to collaborate each
other and describe the operational semantics of sharing action and commu-
nication according to it. In the protocol, an agent communicates with other
agents to build groups and he builds a group in which agents have the same
intentions or the similar intentions. The agents in one group can share their
actions, because their intentions bring the same actions or the sharable actions.
Our formalization is based on π-calculus[Mil91,KM01] which provides a sound
foundation to concurrent computations and a communication among parallel
processes[FG99,MUN98]. Thus we assign a process to an action, it constructs
the action including communications.



2 Sharable Actions

“Sharable Action” means the action which can be performed by every agent in
a group. We define the rule to decide “Sharable Action” to denote unsharable
actions. The definition of unsharable actions is as follows:

Definition 1. Unsharable Actions

– An action influences an agent, which would perform it, is unsharable, like as
a walk and a turn, etc.

– An action influences agents in a group is unsharable, like as a communication
with neighbor agents, etc.

– An action which other agents cannot perform is unsharable, like as taking
the neighbor object which adjoins a agent.

The first rule means that if the action which is significant only to an agent
and influences himself is performed by other agent, it may be waste of time. For
instance, when an agent would like to move to a position and it performed by
other agent indead of him, they may be back to previous position.

The second rule means that if the action which influences agents in the same
group is performed, the results is undesirable. For instance, when an agent would
like to communicate with neighbor agents and it performed by other agent,
the agent, which built the action, cannot get necessary information to fail to
communicate.

The third rule means that some agents can perform the action and the others
cannot perform it. For instance, when an agent would like to clear rubble near
him and it would be performed by other agent, the other agent cannot clear
rubble, if he does not adjoin rubble.

Thus we call an action sharable, if it does not suit with any rules for un-
sharable actions.

3 Similar Intentions

Agents build groups according to their own intentions. The most simple way to
build a group and to share actions is building a group with agents which have
the same intentions. However, this condition is so hard that agents cannot build
many groups. In order to ease the condition, we define similar intentions.

Before defining the similar intentions, we explain what an intention means
in this paper. An intention means that the indicator to introduce actions from a
goal for agents. In other words, an agent select actions according to a intention
with the information of his environment and goal.

Definition 2. Intention
Intention : G×E → A

where “G” means the current goal of the agent. “E” means the information
including the environment around the agent. “A” means actions which have a
layered structure.



Similar intentions are defined by the relation among intentions. We define
the similar intentions which have some common sharable actions as a result of
map.

Definition 3. Similar Intentions
SIntentions : In ×Gn ×En → B

where “B” means boolean value(true or false) and “I” means a function
Intention in the definition 2.

If n equals 2, the function SIntention is as follows:
SIntentions(I1, G1, E1, I2, G2, E2) ≡

∣∣Set(I1(G1, E1)) ∪ Set(I2(G2, E2))
∣∣ > θ

where In means the function Intention, Set is the function from a layered struc-
ture to a set as Set : A → {a|a ∈ A} and θ is a threshold.

4 Agents Group

An agent communicates with other agents to build a group with them having
same intentions or similar intentions. If an agent communicate with all agent in
the system, the amount of communication among agents proliferates. However,
an agent only has to communicate with surrounding agents, because the proba-
bility that surrounding agents have sharable actions is high. For instance, if an
agent would like to move a block and collaborate with other agents which are in
the distance, they might be unable to find the block or move to near him. The
communication among them wastes the time.

By taking the prior conditions into consideration, we simplify Similar In-
tentions in the definition 3, because agents in a close zone have a similar en-
vironmental information . The definition of simplified SimilarIntentions is as
follows:

Definition 4. Similar Intentions’
SIntentions′ : In ×Gn ×Eo → B

If n equals 2, the function SIntention′ is as follows:
SIntentions(I1, G1, Eo, I2, G2) ≡

∣∣Set(I1(G1, Eo)) ∪ Set(I2(G2, Eo))
∣∣ > θ

where In means the function Intention, Set is the function from a layered struc-
ture to a set as Set : A → {a|a ∈ A} and θ is threshold.

4.1 Build Groups

An agent builds a group with surrounding agents because of the previous con-
clusion. When an agent does not belong to a group and would like to collaborate
with other agents, he builds a group as follows:

1. The agent, named agent L, asks the each surrounding agent about whether
he belongs to any group.



2. Each agent sends the group identification to the agent L as the answer if he
belongs to a group, otherwise sends his current goal .

3. The agent L chooses the member of a new group. The criterion to choose
the member is the similarity between the intentions defined in the definition
4. A quantity in one communication is less than by using the definition 3.

4. The agent L sends the group identification to the chosen agents and asks
them to send the actions.

4.2 Collaboration in Groups

The agent which asked other agents is the leader in the group. In subsection 4.1,
the agent L is the leader.

The roles of the leader are the management of the member and allocating
sharable actions. The details of the collaboration and the leader’s roles are as
follows:

1. The member in the group sends his actions to the leader, if he wants to
continue belonging to the group, otherwise he informs the leader that he
secedes from the group.

2. The leader analyzes the actions and creates new action set including the
communication function which is written in π-calculus (the details are in
the next section).

3. The leader sends the action set to the members including himself.
4. The members perform the action set. They send their next goal to the leader.
5. The leader tells to the member whose next goal differ from the leader’s very
much to secede from the group.

6. When the number of the member is less than some number γ, the leader
informs all members that the group is deactivated and the works of the
group is finished. Otherwise, the leader asks the other agents to send the
actions and a situation returns to 1.

5 Description of Actions

The action set including communication is written in π-calculus and extended
π-calculus[Mil91,KM01] which includes the effect of passing process and self-
interpreter like ’eval’ in Lisp. Because of the attributes, agents can transparently
send the action set among them and easily perform actions and communication
only by evaluating the action set in π-calculus.

Before proposing the description, we explain the layered structure of actions
and how to share actions.

5.1 Layered Structure

The layer in actions means the relationship among the actions. The upper layer
means the precondition to perform lower layers. Actions in the same layer can
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Fig. 1. Layered Structures of Actions

be performed without depending on those order. Figure 1 shows the actions with
two layers.

In Figure 1, “a” and “ai” are in the upper layer and “b” and “bi” are in
the lower layer. The actions “ai” or “bi” can be performed without depending
on their order. Therefore, the actions in the same layer can be performed in
parallel. The leader of a group can distribute the actions in the same layer to
the members.

The four cases in Figure 1 are divided into two cases according to the number
of actions in the upper layer. The first case is the upper layer with one action,
which is the two cases of the left-hand side in Figure 1. The other case is the
upper layer with many actions. In the former case, the action b and bi are
performed after performing the action a. Therefore, the agent performing the
action a should just tell other agents to perform the actions b and bi. In the
latter case, when all actions named ai are finished, the action b and bi can be
performed. Therefore, it is necessary to confirm that all actions in a precondition
are finished.

The leader of a group analyzes gathered actions and connects them by sharing
same actions. The general style to connect actions is shown in Figure 2.

We abbreviate “the action set A” to “A”, and use the same abbreviation to
the others. “A-X” means the difference set between the sets “A” and “X”.

In Figure 2, intersections among action sets not to be described do not have
any element. For instance, the case A ∩ C = X 
= ∅ implies the case which is
A ∩ C = X 
= ∅, A ∩D = ∅, B ∩ C = ∅ A ∩B = ∅, and C ∩D = ∅.

1. The case A∩C = X 
= ∅ means that each precondition has common actions
X , then X must be the preconditions for B and D. If A equals C, then A is
the preconditions for B and D.

2. The case A ∩ D = Y 
= ∅ means that Y is the preconditions for B, but C
must be finished to perform Y . If A equals D, then A is performed after
finishing C. This situation is regarded as grafting the actions. There is the
contrast case B ∩ C = Y ′ 
= ∅.

3. The case B ∩D = Z 
= ∅ means that Z needs A and C as the preconditions.
If B equals D, then B is performed after finishing A and C.

4. The case A∩C = X 
= ∅, A∩D = Y 
= ∅ and X ∩Y = ∅ is composed of the
case 1 and 2.
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5. The case B ∩ C = W 
= ∅, B ∩D = Z 
= ∅ and W ∩ Z = ∅ is composed of
the case 3 and the contrast case of the case 2.

5.2 Description of Actions in π-calculus

We define the descriptions of actions according to action sets in previous sub-
section. We use π-calculus and extended π-calculus [Mil91,KM01] to describe
transparent communications.

Definition 5. Leader’s Actions

Leader
def
= !

(
Leader(x).(eval x)

)

where Leader is the name to get a process and (eval x) means the self-
interpreter like ’eval’ in Lisp.



Definition 6. Member’s Actions

Agentn
def
= !

(
Agentn(x).(eval x)

)

where Agentn is the agent identification and (eval x) means the self-interpreter
like ’eval’ in Lisp.

The definitions 5 and 6 mean an agent get a process through networks and
perform it by evaluating it.

Definition 7. Actions to Members

Actions(T )
def
= Code(P )

P ≡ system[t1].t1 | · · · | system[tn].tn | t1. · · · .tn.Leader[Code(Q)]
Q ≡ t1 | · · · | tn

where T = {t1, t2, . . . tn−1, tn}.
In the definition 7, Code(P ) means the coded process from P . Two processes

P and (eval Code(P )) are equivalent. system[ti] means accessing the action
named ti in the system. The detail of the process is in the next section.

The definitions 8, 9, 10, 11 and 12 correspond to the connectiong actions 1,
2, 3, 4 and 5 in previous subsection, respectively. These defined processes are
used by the leader agent according to the action structures. In them, Ai means
the action set {ak, ak+1, · · · , al−1, al}(k ≤ l) which is assigned to the Agenti.
The other descriptions Bi, Ci, Di, Wi, Xi, Yi and Zi are the same.

For instance, the definition 8 means that the leader assigns the action sets
Ai, Ci, Xi to Agenti at first, after finishing the action sets X and A he assigns
the action sets Bi to Agenti or finishing the action sets X and C he assigns the
action sets Di to Agenti. We will explain the detail of an operational semantics
in next Section.

Definition 8. Common Precondition

Common
def
= x1.x2 · · ·xk−1.xk.

(
(ai. · · · .aj .P ) | (cx. · · · .cy.Q)

) | R
P ≡ Agent1[Actions(B1)] | · · · | Agentn[Actions(Bn)]
Q ≡ Agent1[Actions(D1)] | · · · | Agentn[Actions(Dn)]
R ≡ Agent1[Actions(A1C1X1)] | · · · | Agentn[Actions(AnCnXn)]

where X = A ∩ C, A =
n⋃

i=1

Ai and Ai ∩ Aj = ∅(i 
= j). And the other sets

are the same.

Definition 9. Merged Precondition

Mearged
def
= (ai. · · · .aj .yt. · · · .ys.P ) | (cx. · · · .cy.Q) | R

P ≡ Agent1[Actions(B1)] | · · · | Agentn[Actions(Bn)]
Q ≡ (

Agent1[Actions(D1)] | · · · | Agentn[Actions(Dn)]
| Agent1[Actions(Y1)] | · · · | Agentn[Actions(Yn)]

)



R ≡ Agent1[Actions(A1C1)] | · · · | Agentn[Actions(AnCn)]

where X = A ∩D. Ai, Bi, Ci, Di and Yi are the same as above.

Definition 10. Common Posterior Action

CommonPost
def
=

(
ai. · · · .aj .(a′ | P )

) | (
cx. · · · cy.(c′ | Q)

) | (
a′.c′.R

) | S

P ≡ Agent1[Actions(B1)] | · · · | Agentn[Actions(Bn)]
Q ≡ Agent1[Actions(D1)] | · · · | Agentn[Actions(Dn)]
R ≡ Agent1[Actions(Z1)] | · · · | Agentn[Actions(Zn)]
S ≡ Agent1[Actions(A1C1)] | · · · | Agentn[Actions(AnCn)]

where Z = B ∩D. Ai, Bi, Ci, Di and Zi are the same as above.

Definition 11. Common Precondition & Merged Preconditions
Common&Merged

def
= x1. · · · .xk.

(
(ai. · · · .aj .yt. · · · .ys.P ) | (cx. · · · .cy.Q)

)
| R

P ≡ Agent1[Actions(B1)] | · · · | Agentn[Actions(Bn)]
Q ≡ (

Agent1[Actions(D1)] | · · · | Agentn[Actions(Dn)]
| Agent1[Actions(Y1)] | · · · | Agentn[Actions(Yn)]

)

R ≡ Agent1[Actions(A1C1X1)] | · · · | Agentn[Actions(AnCnXn)]

where X = A ∩ C and Y = A ∩D. Ai, Bi, Ci, Di, Xi and Yi are the same
as above.

Definition 12. Common Posterior Action& More Action
CommonPost&More

def
=

(
ai. · · · .aj.(a′ | P )

) | (
cx. · · · cy.(c′ | Q)

) | (
a′.c′.(R | S)) | T

P ≡ Agent1[Actions(B1)] | · · · | Agentn[Actions(Bn)]
Q ≡ Agent1[Actions(D1)] | · · · | Agentn[Actions(Dn)]
R ≡ Agent1[Actions(W1)] | · · · | Agentn[Actions(Wn)]
S ≡ w1. · · · .wn.

(
Agent1[Actions(Z1)] | · · · | Agentn[Actions(Zn)]

)
T ≡ Agent1[Actions(A1C1)] | · · · | Agentn[Actions(AnCn)]

where W = B ∩ C and Z = B ∩D. Ai, Bi, Ci, Di, Wi and Yi are the same
as above.

6 Operational Semantics

The operation semantics of the definitions uses the basic definitions of π-calculus
and extended π-calculus with an additional operation in terms of the process
system: system[a] which means accessing the action named a in the system. This
process can be performed without a symmetric process as the process system(x).



The operation rule of the process is extending the reduction rule of π-calculus
as follows:

SYSTEM : system[a].P
perform a−→ P

The reduction mark
perform a−→ means that after observing the process named

“a” the process is reduced. However, the rule has no influence upon calculating
processes in π-calculus.

Firstly, we give the opereational semantics of the definiton 8. Suppose the
action set Ai equal {ai} to ease the explanation. The other action sets are on
the same supposition.

The leader has the following processes:
Leader ≡ !

(
Leader(x).(eval x)

) | x1. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

) |R
P ≡ Agent1[Actions(b1)] | · · · | Agentn[Actions(bn)]
Q ≡ Agent1[Actions(d1)] | · · · | Agentn[Actions(dn)]
R ≡ Agent1[Actions(a1c1x1)] | · · · | Agentn[Actions(ancnxn)]

The member numbered i has the following processes:
Agenti ≡!

(
Agenti(x).(eval x)

)

The names Leader and Agenti mean the communication ports to the leader
or agents.

In the first step, the leader perform the processes Agenti[Actions(aicixi)].
Each agent named i getsActions(aicixi) and evaluates it by (eval Actions(aicixi)).
These operations are as follows:

!
(
Leader(x).(eval x)

) | x1. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

) | R
→ !

(
Leader(x).(eval x)

) | x1. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

)

!
(
Agenti(x).(eval x)

) → !
(
Agenti(x).(eval x)

) | (eval Actions(aicixi))

The next step is that each agent performs action by (eval Actions(aicixi))
as follows:

(eval Actions(aicixi))
→ system[ai].ai | system[ci].ci | system[xi].xi | ai.ci.xi.Leader[Code(Si)]

ai,ci,xi−→ ai | ci | xi | ai.ci.xi.Leader[Code(Si)] → ci | xi | ci.xi.Leader[Code(Si)]
→ xi | xi.Leader[Code(Si)] → Leader[Code(Si)]

The leader gets Code(Si) ≡ Code(ai | ci | xi) through the prot Leader. The
next operation is as follows:
!
(
Leader(x).(eval x)

) | (eval Code(Si))
| x1. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

)
→ !

(
Leader(x).(eval x)

) | ai | ci | xi | x1. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

)
If the agent Agent1 finishes actions then
→ !

(
Leader(x).(eval x)

)
| a1 | c1 | x1 | ai | ci | xi | x1. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

)
→ !

(
Leader(x).(eval x)

)
| a1 | c1 | ai | ci | xi | x2. · · · .xn

(
(a1. · · · .an.P ) | (c1. · · · .cn.Q)

)



If all agent Agenti finishes actions then
→ !

(
Leader(x).(eval x)

) | a1 | c1 | · · · | an | cn | (a1. · · · .an.P ) | (c1. · · · .cn.Q)
→ !

(
Leader(x).(eval x)

) | P | Q
→ !

(
Leader(x).(eval x)

) | Agent1[Actions(b1)] | · · · | Agentn[Actions(bn)]
| Agent1[Actions(d1)] | · · · | Agentn[Actions(dn)]

In above operations, agents have performed the actions ai, ci and xi. After
above operations, the leader sends Actions(bi) and Actions(di) to the agent
Agenti. The agent Agenti performs the action bi and di as before operations.
The results show as follows: the actions A, C and X are performed at first, then
B and D are performed. It means that the operations satisfies the conditions for
the actions.

The other actions can be performed as before. We abbreviate the detail be-
cause of limited space.

7 Conclusion

We have shown in this paper that the protocol for agents to collaborate each
other and the description of agent’s actions including comunications in extended
π-calculus in order to share actions.

We have focused on intentions of agents to define the protocol. In the pro-
tocol, an agent builds a group in which agents have the same intentions or the
similar intentions. We have formalized actions based on extended π-calculus and
have shown the operational semantics of our proposed actions.

Some specific issues (to find common process, communication performance,
to find the most suitable number of members · · ·) have been left out and will be
described in a forthcoming paper.
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