STeLLa v2.0: planning with intermediate goals

L. Sebastia, E. Onaindia, E. Marzal

Dpto. Sistemas Informaticos y Computacion
Universidad Politecnica de Valencia
e-mail: {Istarin, onaindia, emarzal }@dsic.upv.es

Abstract. In the last few years, AI planning techniques have experi-
mented a great advance. One of the reasons for this is the International
Planning Competition (IPC), which enforces the definition of language
standards as PDDL+ and new benchmarks. In this paper, we present
the new features of STelLLa, a planner that participated in the last IPC,
held in Toulouse last April. STelLLa is a forward search planner that
builds intermediate goals in order to ease the resolution of the planning
problem.

1 Introduction

The field of planning in AI has experimented great advances over the last few
years. Problems that seemed unsolvable, can be solved now in a few seconds.
Obviously, this motivates the researchers to increase the complexity of the prob-
lems to be solved by their planners. This way, some of the domains tested in
the last International Planning Competition 2002 (IPC2002) came out as a com-
bination of the domains used in the previous planning competition (AIPS’00),
like blocksworld, logistics, etc. thus increasing the difficulty of the problems!.
Moreover, other domains exhibiting new features such as the use of numerical
values or durative actions were also defined.

In this paper, we present STelLLa v2.0, a planner which participated in the
STRIPS track at the IPC2002. This version uses a new problem-solving approach
that consists of computing the set of subgoals to be achieved at each time step.
Solving a planning problem can be stated as successively decomposing the prob-
lem into a set of intermediate goals. STeLLa’s goal is then to find the (parallel)
actions to reach those intermediate goals. That is, STelLLa obtains parallel plans
and tries to minimize the overall number of actions in the plan.

Under this new approach, efforts are simply concentrated in obtaining the
literals in the next intermediate goal set and then finding the set of actions to
reach those literals from the previous state. The issue of how to build these
intermediate goals is fully detailed in Section 3, but we can anticipate that
STelLa uses landmarks graphs (LG) [6] to create those intermediate goals. A
landmark is defined in [6] as a literal that must be true in every solution plan.

! The definition of these new domains and the results obtained by the participating
planners in the IPC2002 can be found in www.dur.ac.uk/d.p.long/competition.html.

The process extracts a set of landmarks that are ordered under the concept of
“reasonable order”, obtaining a LG. This LG is used to guide the search process
in the FF planner [4].

Another work related to the landmarks concept can be found in [7]. In this
paper, the idea of “reasonable order” is extended. The obtained LG is used to
compute a disjunctive goal which is input (along with the current state) to a
base planner. This approach is independent from the base planner; in [7], FF
and IPP [5] are used. The main difference between this approach and the one
proposed in this paper is the nature of the input goal: while in [7] disjunctive
goals were used, in this paper we build intermediate sets of conjunctive goals,
that is, all the literals in these sets must be achieved at each time step.

This paper is organized as follows. Section 2 summarizes some basic concepts
about landmarks and LGs. Our technique to build intermediate goals is explained
in Section 3 and how STelLa uses the obtained intermediate goals in order to
find the solution is shown in Section 4. Section 5 gives the results obtained in the
TPC2002 and Section 6 concludes by summarizing the strong and weak points
of this framework and the future work.

2 Concepts about landmarks and orders

This section summarizes some basic concepts to understand the structure of a
LG. The process to build a LG consists of two steps [7]: (1) extracting the set
of landmarks and (2) ordering the obtained set of landmarks.

Definition 1. Given a planning task P = (O,Z,G). A fact l; is o landmark
in P iff l; is true at some point in all solution plans, i.e., iff for oll P =
(01,.-.,0n),G C Result(Z,P) :1; € Result(Z,{01,...,0;)) for some 0 <i<n.

Definition 2. The side-effects of a landmark l; are defined as:
side_effects(l;) = {Add(o) — {l;} | 0 € O,1; € Add(0)}

The extraction process is straightforward. First, a Relaxed Planning Graph
(RPQG) is built. Then, all top level goals are added to the LG and are posted as
goals in the first level at which they were added in the RPG. Each goal is solved
in the RPG starting from the last level. For each goal g in a level, all actions
achieving g are grouped into a set and the intersection I of their preconditions
is computed. For all facts p in I we post p as a goal in the first RPG level where
p is achieved. When all goals in a level are achieved, we move on to the next
lower level. The process stops when the first (initial) level is reached.

In order to extend the set of landmarks we also compute a special set formed
by the union of the preconditions of all actions achieving g and which do not
belong to the intersection I. These preconditions are grouped into a disjunctive
set.

Definition 3. Letl;,1; be two landmarks. l; and l; are consistent if there exists
a possible state S/l; € SAI; € S.

We use the TIMinconsistent function [2], which returns whether two literals
are consistent or not. Once the set of landmarks has been extracted, they are
ordered according to the following orders, which in turn define an LG:

Definition 4. A natural order is established between two landmarks l;,1;
(l; <n l;) when in every solution plan it is necessary to solve l; to achieve l;,
that is, l; is a precondition of all the actions that satisfy I;.

Definition 5. A weakly reasonable order is established between two land-
marks U;,1; (li <wrl;) in the following cases:

— ifl; and l; are naturally ordered before the same node I, and 3 landmark x :
x <y l; A TIMinconsistent(z,l;) = TRUE

— if there exists some other landmark =, and x and l; are ordered before the
same node; and there is an ordered sequence of <, orders that post l; before
z; and 3 landmark y : y <, l; A TIMinconsistent(y, [;) = TRUE

— if Alandmark z : l; <, z Nlj <, x A TIMinconsistent(side_effects(l;),1;) =
TRUE

Definition 6. A LG is a graph (N, E) with three types of nodes®:

— simple node: I; € N as a simple node if l; is a landmark.

— disjunctive node: I; € N as a disjunctive node if l; is a disjunctive set.

— conjunctive node: [I;,1;] € N as a conjunctive node if l; is a side-effect of l;
and viceversa

The set of edges E for a LG is built as follows. Let l;,1; be simple or disjunctive
nodes and [l,,1,,] be a conjunctive node:
— Ifl; <p l]‘ Vi <wr lj —-FE=FU (lz,lj)
- Vlk/(lkaln) €EEV (lkalm) €EE—-E=FEU (lk7 [lnalm])
It is important to remark the fact that, both the process for extracting land-
marks and calculating the orders are approximate computations, that is, not

every landmark in a problem or all the orders between the obtained landmarks
are extracted. For this reason the information in the LG may not be complete.

3 Building intermediate goals

This section explains how to build the intermediate goals. First, we present some
definitions.

Definition 7. An intermediate goal ZG is the set of literals that should be
achieved next from the current state.

Definition 8. A fringe F is an TG whose literals can be reached by applying
only one action for each literal.

2 A landmark is any of the elements in N throughout the rest of the paper.

Currently, STeLLa v2.0 focuses on building fringes instead of intermediate
goals. The reason is because it is easier to build subplans to reach the cor-
responding fringe than the IG, although some more reasoning is required for
building a fringe than for building an IG, as we will explain later on.

The first step for obtaining a fringe is creating the LG between the current
state and the top level goals. Then, all the landmarks whose predecessors nodes
in the LG belong to the current state are included in F. More formally, let
LG(N,E) be the current LG and I; € N, l; € F if Vl; € N/(l;,l;) € E,l; €
current state.

Due to the incompleteness in the LG it might be the case that it is not
possible to achieve all the landmarks in F. This happens in any of the two
following cases:

1. One or more literals have to be postponed due to inconsistency or
optimality criteria. There are three cases in which a literal I; € F can be
delayed:

(a) 3l; € F / TIMinconsistent(l;,1;) = TRUE

(b) 3l; € F / TIMinconsistent(l;,1;) = FALSE but the producer actions for
each literal are mutually exclusive, that is, cannot be executed at the
same time from the current state

(c¢) Even though I; is consistent with all the other literals and its producer
actions would not cause any conflict, it may be the case that the achieve-
ment of this literal at this moment would lead to a non-optimal plan.

2. One or more literals need more than one action to be reached. In
this case, a regression process is performed to compute the new fringe.

3.1 Postponing literals

In this section, we focus on case 1. In order to avoid inconsistency or to reduce
the addition of redundant actions in the plan, the solution is to add new orders
between the literals in F :

Inconsistency orders (cases 1la and 1b)
We define inconsistency orders to be those orders that must be established
between two landmarks to solve cases 1la and 1b.

Definition 9. A literal l; can be delayed if Vi;/l; < 1;3, 3/l < 1; ANly ¢
F ANl ¢ current state.

We now define three types of inconsistency orders. The first two types are
aimed at solving case la and the last one covers case 1b.

Type 1: If TIMinconsistent(l;,1;) = TRUE A can-be-delayed(l;)A
—can-be-delayed(l;) then I; < I;.

3 1, < I; indicates that I, <n i VI <wr Ui

0:AT PACKAGE

3 B SN PACKAGE
PGH-AIRPORT

AIRPLANE1

AT AIRPLANE
BOS-AIRPORT

T5:AT AIRPLANE]
PGH-AIRPORT

T:AT PACKAGEY
LA AIRPORT

TIN PACKAGEY
ATRPLANEL

Fig. 1. Example of the order type 1 in the logistics problem

:AT AIRPLANE
LA-AIRPORT
:AT AIRPLANE 8:AT PACKAGE
PGH-AIRPORT BOS-AIRPORT
6:AT AIRPLANE
BOS-AIRPORT

Fig. 2. Example of the order type 2 in the logistics problem

Figure 1 shows an example where this order can be applied*. In this example,
F={(at packagel pgh-airport), (at airplanel la-airport), (at airplanel bos-airport)}.
Let’s take /;=(at airplanel la-airport) and [;=(at airplanel bos-airport), as a pair
of inconsistent literals. I; can be delayed because (at packagel la-airport) has a
predecessor landmark, (in packagel airplanel), which is neither in F nor in the
current state. However, [; cannot be delayed since the only previous landmark
for (in package? airplanel) belongs to the current state. Therefore, (at airplanel
bos-airport) should be achieved before (at airplanel la-airport).

Type 2: If TIMinconsistent(l;,1;) = TRUE A 3l1/l; <wr Ik Al; <p li then
l; < lj.

The intuition behind this type of order is as follows. A natural order l; <, I},
states that [; is a precondition for I, that is, [; must be true immediately before
Iy, Therefore, if [; is inconsistent with [, it seems reasonable to achieve /; before
so that [; does not have to be reachieved after ;.

Figure 2 shows an example of the order type 2. In this case, [;={at airplanel
la-airport}, I;={at airplanel bos-airport} and I;,={at packagel bos-airport}, then
l; should be achieved in first place so that [; is true just before satisfying [;,.

Type 3: If TIMinconsistent(l;,1;) = FALSE A 3l /I, < 1; Al < 1A
TIMinconsistent(l;, ;) = TRUE A TIMinconsistent(l;, ;) = FALSE then I; < [;.

Figure 3 shows an example where this order is applied. In this example,
F={(in packagel airplanel), (at airplanel la-airport), (at airplanel bos-airport)}.
If we take I;=(in packagel airplanel), [;=(at airplanel la-airport) and [;=(at air-
planel pgh-airport), since I; and [, are inconsistent and [/; and I, are not, then

4 The nodes in diamond indicate the landmarks that belong to F.

8:AT PACKAGE :IN PACKAGE
PGH-AIRPORT AIRPLANEIL

3:AT PACKAGE
4:AT AIRPLANE :AT AIRPLANE LA-AIRPORT
PGH-AIRPORT LA-AIRPORT
8:IN PACKAGEZ
AIRPLANEL

1:AT PACKAGE!
LA-ATRPORT
0:AT AIRPLANE
BOS-AIRPORT

23:AT PACKAGEZ
BOS-AIRPORT

Fig. 3. Example of the order type 3 in the logistics problem

l; should be delayed. Otherwise, we could not achieve (in packagel airplanel)
without reachieving (at airplanel pgh-airport).

Optimality orders (case 1c)

The orders discovered when building the LG are devoted to reduce the number
of actions in the final plan: a weakly reasonable order between two landmarks
l; <wr lj states that it is better to satisfy [; before I; because if I; is achieved
first it might be eventually deleted by l;. However, because not all reasonable
orders are found during the LG construction, we define some additional orders
so as to improve the quality of the final plan.

It is remarkable the fact that, while the inconsistency orders are defined
between pairs of literals in F, the optimality orders refer to a unique literal.

Type 4: If the producer action of a landmark removes a literal which is
required later on in the planning process, this landmark should be delayed. More
formally, let I; be a landmark in F and P = {l,/l; < I; ATIMinconsistent(l;,1;) =
TRUE}. If 3p € P/out—degree(p) > 1A3ly, ¢ F/p <l ATIMinconsistent(p, ;) =
FALSE then delay ;.

Figure 4 shows an example where this optimality order should be applied.
Let’s consider the node (at airplanel la-airport) as ;. Then, P ={(at airplanel
pgh-airport)}, and so is p. The out-degree of p is 2, setting I to (in packagel
airplanel). I, and p are consistent, so l; has to be delayed. If we analyse this
problem, we realise that if the literal (at airplanel la-airport) is satisfied before
(in packagel airplanel), we would have to achieve (at airplanel pgh-airport) again
for loading packagel in airplanel, which would imply to include one more action
in the plan.

Type 5: Let {; be a landmark in F. If 3, /1; <, [; A3l < A
TIMinconsistent(l;, ;) = TRUE Al ¢ current state then delay ;.

In the example shown in Figure 5, if we consider (at airplanel la-airport) as ;,
(at package2 la-airport) as I; and (at airplanel bos-airport) as lj, the conditions
above hold and, therefore, (at airplanel la-airport) should be delayed. In this
case, it is better going first to Boston to collect package2 and transport both
packages to la-airport, their final destination. Otherwise, if airplanel headed la-

"IN PACKAGEZ
AIRPLANE1
5:AT AIRPLANE 4:AT AIRPLANE
PGH-AIRPORT LA-AIRPORT
0:AT PACKAGE! 8:IN PACKAGE
PGH-AIRPORT AIRPLANE1

Fig. 4. Example of the order type 4 in the logistics problem

4:AT AIRPLANE
LA-AIRPORT

73:IN PACKAGE
AIRPLANE1

:AT AIRPLANE
BOS-AIRPORT
4:AT PACKAGE;
BOS-AIRPORT

Fig. 5. Example of the order type 5 in the logistics problem

1:AT PACKAGE!
LA-AIRPORT

3:AT PACKAGE
LA-AIRPORT

73:IN PACKAGE
PGH-TRUCK

76:AT PGH-TRUCK
PGH-AIRPORT

3:AT PACKAGE
LA-AIRPORT

5:AT AIRPLANE 1:AT PACKAGE!
PGH-ATRPORT LA-ATRPORT

8:IN PACKAGE:
AIRPLANE1

airport before bos-airport, the plan would have one more action as it would be
necessary to go to Boston from LA and then back again.

3.2 More-than-one-action literals

As we said above, it might be the case that a literal in F cannot be reached
by applying only one action from the current state. In this case, we perform a
regression process that approaches the current fringe F to the current state. If
we were working with ZG, we would not need to perform this regression process.
This is done by finding the set of literals F' that should be reached before F.
This intermediate fringe is computed as follows:

G =0
Forall the literals l; € F
1. Select an action A that achieves I;
2. G =G UPre(A)
Build a new fringe F' from Z to G’
If F' is a correct fringe, then return F’
Else Regression (Z,F')
The selection of the action 4 is very important because a wrong selection

may not lead to the best fringe. This can have a high impact in the final solution
since it can cause the planner to add redundant actions, as the results in Section

5 will show.

AMlgorithm STelLlLa (Z,G) — plan P organized in time steps

cC=1
time = 0
While G ¢ C

1. Compute fringe F

2. Compute the set of actions A that solve F
3. If A=) return P =90
4. Execute A, obtaining the new C
5. Ptime = A
6. time = time + 1
return P

Fig. 6. STelLLa algorithm

4 Using the intermediate goals

Once the fringe F has been built, STeLLa computes the set of actions applicable
in the current state that generate F. The complete algorithm implemented in
STelLa is shown in Figure 6. While the planner has not reached the goals, it
computes the next fringe F. Then, the set of actions 4, necessary to solve the
fringe, is computed. If A is empty the planner returns an empty plan. Otherwise,
this set of actions is executed over C, obtaining the new current state.

The most important difference between the current version and STelLLa v1.0
[8] is that in the latter the fringe after step 1 in Figure 6 could contain inconsis-
tent literals whereas in STelLLa v2.0 F is totally consistent. So, in the previous
version it was necessary to create consistent subsets of goals from F. Moreover,
as no regression process was used the planner could reach a dead-end when the
literals in the fringe could not be achieved in only one action.

5 Experiments

In this section, we summarize the experiments performed with STelLLa v2.0 for
the TPC2002. We compare these results with the planners that were awarded a
prize in this competition:

— The quality version of LPG planner [3] which exhibited a distinguished per-
formance of the first order in the fully-automated track.

— MIPS [1] which exhibited a distinguished performance in the fully-automated
track.

— VHPOP [9] which was awarded the best newcomer prize.

Table 1 shows only the results for the problems STelLa was able to solve in
the Depots and Driverlog domains out of 20 problems. For the Zeno and Satellite
domains (Table 2), STelLLa was able to solve almost all of the problems.

Table 1. Depots and Driverlog problems (time steps / number of actions).

Depots Driverlog
| LPG [VHPOP|MIPS|STeLLa | LPG [VHPOP|MIPS]|STeLLa
pfilel | 8/10 | 8/10 [12/13| 6/11 pfilel /T T/t | 1T |)7
pfile2 [12/15] 12/15 |9/16 | 9/16 pfile2 |14/20] 11/21 |18/22| 20/28

phile3 [21/27|] |21/34[17/33 || phle3 | 7/12| 8/13 |12/18| 8/13
pfile8 [21/35] / |27/48[30/56 || phled |11/16] 11/16 | 9/19 | 17/30
pflel0[13/24]] |22/34] 25/30 || phles |11/18] 8/18 |17/25| 10/22
phle13[19/25] / [18/25] 11/30 || phile6 |10/17] 5/11 | 7/13 | 9/16
pfile7 | 7/13| 8/15 |9/15 | 10/21
pfiles |11/22] 13/25 |15/27| 18/38
pfled |13/23[14/22 [14/24] 13/26
pfilel0 |11/17| 9/21 |11/21] 27/35
Time in avg.| 6986 | 1966 | 135 | 3426

We can see that in all domains the results obtained by STelLLa are comparable
in terms of time steps and number of actions with the other planners. In terms
of time®, the performance of STelLa varies along the domains.

One remarkable aspect is that STelLLa obtains sometimes better results for
more complex instances than LPG. This is because the LG provides a more global
view of the planning problem than local search planning.

It is also important to remark that STeLLa v2.0 obtains similar results to
the previous version for domains where regression is not needed. That is, both
planners exhibit the same performance but the new version can solve a broader
range of problems.

6 Conclusions and further work

In this paper we have presented the new version of STelLLa that participated in
the IPC2002. STeLLa v2.0 offers a new planning approach consisting in building
intermediate goals. However, the process to compute the intermediate goals is
not reliable enough because of the regression step which may not lead to the
best fringe.

Our ongoing work consists of building successive intermediate goals without
being subject to be fringes. This way, if we can assure that these intermediate
goals drive to an optimal plan, then solving a planning problem can be viewed as
solving several subproblems each consisting in achieving the next intermediate
goal.

% In the Driverlog we have considered only those problems solved by STeLLa, whereas
in the Zeno and Satellite domains the average is computed over the problems solved
by each planner.

Table 2. Zeno and Satellite problems (time steps / number of actions).

Zeno Satellite
Problem | LPG |VHPOP|MIPS|STeLLa LPG |VHPOP|MIPS|STeLLa
pfilel 1/1 1/1 1/1 1/1 8/9 8/9 8/9 | 8/9
pfile2 5/6 | 6/6 | 5/6 | 7/9 ||12/13] 12/13 |12/13] 12/13
pfile3 5/6 | 5/6 | 7/9 | 5/6 ||10/11] 10/11 |10/11] 10/11
philed 7/8 | 7/8 |9/10|11/13 || 17/18 | 20/22 |17/18| 17/18
pfile5 | 7/11 | 9/12 |11/16] 11/15 || 14/16 | 15/16 |14/16] 15/19
pfile6 | 6/12 | 7/12 |11/15] 10/15 || 10/20 | 18/21 |12/21] 10/26
pfile7 | 8/15 | 7/16 |6/16 | 6/16 | 12/21| 13/25 |14/23[19/26
pfile8 7/12 | 9/13 |8/12| 8/15 | 14/26 | 12/29 |14/27| 21/26
pfile9 7/23 | 10/21 |10/25| 16/32 || 10/30 / 10/35| 13/31
pfile10 9/30 | 9/25 |(16/32| 10/31 || 27/30 | 21/37 |18/35| 23/48
pfilell 6/15 | 6/16 |8/18| 9/18 || 27/32| 13/33 |13/35| 23/40
pfile12 16/33 10/25 12/26 13/28 22/43 29/47 / 49/71
pfilel3 | 16/38 | 10/27 | 9/33 | 11/35 || 22/61 | 24/64 |22/60| 43/84
pfileld | 18/45 15/41] 10/41 || 18/42 | 22/41 |19/44] 25/51
pfilels 11/54 14/54| 23/61 || 16/48 | 19/50 |17/50| 19/56
pfilel6 16/63 / |21/65 | 26/51 | 35/52 / | 28/74
pfilel7 | 45/96 / |46/131|[28/43 | 22/43 |] | 27/70
pfile18 25/91 38/79 / 18/32| 18/32 / 16/35
pfilel9 59/113 / |27/117]|25/75 / / /
phle20 |37/126 / |56/148][25/110] / / /
Time in avg.[164612| 11380 |43515(268315 || 13370 | 11528 |34125| 33981

~ e

References

1.

2.

3.

S. Edelkamp. Symbolic pattern databases in heuristic search planning. In Proc. of
the 6th Int. Conf. on AI Planning and Scheduling. AAAI Press, 2002.

M. Fox and D. Long. The automatic inference of state invariants in TIM. Journal
of Artificial Intelligence Research, 9:367-421, 1998.

A. Gerevini and I. Serina. LPG: a planner based on local search for planning graphs.
In Proc. of the 6th Int. Conf. on AI Planning and Scheduling. AAAT Press, 2002.
J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253-302, 2001.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs
to an ADL subset. In 4th European Conf. in Planning. Springer Verlag, 1997.

J. Porteous and L. Sebastia. Extracting and ordering landmarks for planning. In
19th Workshop of the UK Planning and Scheduling Special Interest Group, 2000.
J. Porteous, L. Sebastia, and J. Hoffmann. On the extraction, ordering, and usage
of landmarks in planning. In Proc. of the 6th European Conf. on Planning. Springer
Verlag, 2001.

L. Sebastia, E. Onaindia, and E. Marzal. STeLLa: An optimal sequential and parallel
planner. In Proc. of the 10th Portuguese Conf. on Artificial Intelligence. Springer
Verlag, 2001.

H. Younes and R. Simmons. On the role of ground actions in refinement planning.
In Proc. of the 6th Int. Conf. on AI Planning and Scheduling. AAAT Press, 2002.

