
Filtering noisy continuous labeled examples†

José Ramón Quevedo, María Dolores García, Elena Montañés

Centro de Inteligencia Artificial. Oviedo University. Viesques, E-33271 Gijón, Spain
{quevedo, marilo, elena}@aic.uniovi.es

Abstract. It is common in Machine Learning where rules are learned from
examples that some of them could not be informative, otherwise they could be
irrelevant or noisy. This type of examples makes the Machine Learning
Systems produce not adequate rules. In this paper we present an algorithm that
filters noisy continuous labeled examples, whose computational cost is
O(N·logN+NA2) for N examples and A attributes. Besides, it is shown
experimentally to be better than the embedded algorithms of the state-of-the art
of the Machine Learning Systems.

1 Introduction

In Machine Learning environment the process of learning rules from available labeled
examples (training data) is called training and the process of applying these learned
rules to unlabeled examples (test data) is called testing.

An example is represented by a sequence of pairs attribute-value and a label that
represents its category. The category can be symbolic or continuous. The examples
have the same attributes although some values could be missing.

A good performance could be reached supposing that the sets of training and test
data have the same distribution of the category over theirs attributes [3].

One of the most difficult tasks when dealing with real problems is to find the
attributes more related to the category in the way to define a fixed distribution that a
Machine Learning System (MLS) could learn. An additional difficulty is the possible
presence of noisy examples mainly caused by the collection of them.

In this paper an algorithm that filters noisy continuous labeled examples is
presented. It is shown that some MLS perform better using the filtered data set than
using the original one.

2 Task Definition

This paper describes an algorithm that removes noisy examples from a set of
continuous labeled examples producing a subset containing informative ones.

† The research reported in this paper has been supported in part under MCyT and Feder grant

TIC2001-3579

This Noisy Continuos Labeled Examples Filter (NCLEF) takes an example e and
classifies it as noisy or as informative. This classification is made according to two
errors: the error committed when the current example is taking into account on the
data set and the error committed when the current example is removed from the data
set. The method employed to evaluate these errors is the continuous version of knn
[1], it is used with Leaving-One-Out (LOO)[12] (See Fig. 1).

It is well known that knn is noise sensitive [1], that is, adding a noisy example to
the data set the performance of knn would be worse. The algorithm described in this
paper is based on this idea on a reverse way: “if the removal of an example produces
lower error then this example is supposed to be noisy”.

The algorithm has two main disadvantages. The first one is that its computacional
cost is O(N·O(knn))=O(N·kAN2)=O(kAN3) for N examples and A attributes. The
second one is the insignificant influence of an example over the knn’s error for large
data sets. A Divide and Conquer method (D&C) is incorporated to overcome these
difficulties. The resulting filter adding D&C, called NCLEFDC , makes its cost be
O(N·logN+NA2).

3 Related Work

This work is related with Example Selection. There are several techniques about
Example Selection proposed by Wilson & Martinez [14]; Aha [2]; Aha, Kibler &
Albert [1] and Cameron-Jones [5].

Blum and Langley [4] propose at least three reasons for selecting examples:
purposes of computational efficiency, high cost of labeling and focusing attention on
informative examples. Our algorithm pays attention to the third one in the way that it
trends to remove noisy examples and keep informative ones.

 Most of the algorithms for Example Selection work only on symbolic labeled
examples. There are algorithms to deal with data set containing noisy continuous
labeled examples which are embedded in the MLS (M5’ [11], RT [9], Cubist [8]), but
there is no documentation for commercial systems like Cubist.

In this paper is compared the performance of using NCLEFDC before the MLS
with the performance of using only those MLS.

4 The NCLEFDC algorithm

The algorithm involves three steps which are detailed in the next subsections: the
principle, the iterative algorithm and the incorporation of a D&C.

4.1 The Principle

The principle involves the election of the measures employed to decide if an example
is noisy or not. A trivial measure could be the knn’s error for this example, being the
noisiest example that with the highest error. That is true in most cases, but it is not

useful since there could be no noisy examples with high error and since it is difficult
to find out the meaning of “high error“. Fortunately, noisy examples in knn entails
another very useful feature, namely, adding a noisy example to the data set causes an
increasing of the errors of its neighbors (See Figure 1).

Taking into account this last feature, the algorithm sees the effect that an example
causes to the error of its neighbors in order to decide if it is noisy or not. The error is
approached by means of LOO with knn over the data set. The error for N examples is
denoted by EN, the error when removing example e from the data set is denoted by
EN-1(e) and the error EN but without considering the error of the example e is denoted
by E’N(e). This latter error is given by equation (1).

1
}){},{(·

)('
−

=−=−
=

N
etesteDataSetdataErrorKnnNE

eE N
N (1)

)()(')(1 eEeEeisySupposedNo NN −>⇐ (2)

It could be supposed that an example is noisy in the way of equation (2). This
means that the presence of this example makes that the knn’s error of the examples
that take it as its neighbor be bigger than if the example is removed from the data set.

Continuous
Category

 e1 e2 e3 e4 e5 e6 e7 (X)

Less error
(error = 0)

A bit less error

More error

Example ()
Error (vertical segment)
Value predicted by knn (k=2) ()

Errors with the examples in
study e3 and e6

Errors without the examples
in study e3 and e6

 e1 e2 e4 e5 e7 (X)

Continuous
Category

Fig. 1. Schema of a discrete step function and of how the errors vary when examples are
removed. Examples e3 and e6 have the same error, but e3 is informative (it is the first example
of the next step) and e6 is noisy. If e6 is removed the errors of its neighbors (e5 and e7) becomes
0, but if e3 is removed the sum of the error of its neighbors (e2 and e4) is higher.

The algorithm requires choosing the value of k for the knn . It should not be so
small because it is necessary that an example has enough neighbors in order to
measure its influence. It should also not be so big because the predictions of knn
should significantly vary if an example is removed. A good value for k is generally
determined via cross-validation [13] but a bad value is preferred in order to make knn

be very noise sensitive. Although the experiments show that the influence of k over
NCLEF is not so much significant, it is chosen the best one obtained in our
experiments, that is: k=A/2+1 , where A is the number of attributes of the problem.

4.2 The NCLEF algorithm

The NCLEF algorithm based on the principle previously shown tries to remove the
example with more error in each iteration. Over this structure it is possible to develop
several versions. We prefer to make a prudent version, one that the main objective is
to keep informative examples. In this way three aspects of the algorithm are changed.
Firstly a new test for noisy examples is proposed. This test, described in equation (3),
takes into account the number of examples previously removed in order to avoid
removing informative ones. Secondly, the application of the test is limited to
examples whose error is above a fixed threshold (MinError in equation (4)). Finally,
the algorithm ends when it considers the example as not noisy.

)()(')(1 eE
N

movedExamplesreN
eEesyprudentNoi NN −>

−
⇐ (3)

()))(())((DataSetknnLOODataSetknnLOOMinError σ+= (4)

In equation (4) LOO(knn(DataSet)) is the set of errors of a LOO execution on the
data set using knn . MinError is chosen to be the sum of the average and the typical
deviation of all LOO executions. The addition of the typical deviation to the average
assures that the algorithm only tries to remove examples with high knn’s error.

The NCLEF algorithm is described as follows.

DataSet NCLEF(DataSet DS){
 // Obtain the initial Average Error using knn
 {ExampleMaxErr,AverageErr,DeviationErr}=LOOKNN(DS);
 MinError=AverageErr+DeviationErr;

 for(ite=1;ExampleMaxErr.Error>MinError;ite++){
 // Obtain the Average Error and Example with
 // more error using knn
 {ExampleMaxErrN1,AverageErrN1}=

LOOKNN(DS-{ExampleMaxErr});
 //If the example is noisy, it is eliminated

 if(prudentNoisy(ExampleMaxErr)){
 DS=DS-{ExampleMaxErr};
 ExampleMaxErr=ExampleMaxErrN1;
 AverageErr=AverageErrN1;
 }
 else break; // the example is not noisy
 } // end of for
 return DS;
} // end of NCLEF

Function LOOKNN applies LOO with knn to the data set given as a parameter. It
returns the average error, the deviation error and the example with highest error. This
information is necessary in function prudentNoisy to test if an example is noisy or not.

4.3 Using Divide and Conquer on NCLEF

As NCLEF iterates for each example and uses knn its order is O(NCLEF)=
O(N·O(knn))=O(N·kAN2)=O(kAN3). Besides, given that we choose k to be A/2-1 , then
O(NCLEF)=O(kAN3)=O(A2N3) for N examples and A attributes. This order makes
NCLEF computationally unacceptable. That is the reason why D&C is applied.

The new algorithm, called NCLEFDC , divides recursively the data set in subsets,
then applies NCLEF to each subset and finally joins all partial filtered subsets.

The goal is to divide the original data set into subsets where all the neighbors of an
example in the original set were in the same subset. As this could be impossible or, at
least, very computationally expensive, the Divide method based on the following
heuristic is used: (1) To take an example e and to calculate its || ||1, (2) to obtain two
subsets, one with the examples with more || ||1 than e and the other one with the
examples with less || ||1 than e. The algorithm looks for an example that produces two
subsets with similar number of elements. The attributes values are normalized
between 0 and 1 to avoid the generation of concentric subsets obtained by the
application of a norm. Given that all norms are equivalent in finite dimension spaces,
|| ||1 is chosen due to its faster calculus than euclidean one employed by knn.

The order of NCLEFDC is O(NCLEFDC)=O(N/M(O(Divide)+O(knn))), where M
is the maximum number of the size of the subsets and N/M is the number of subsets.

The order of Divide is O(Divide)=O(NDIVM), where NDIV is the number of
examples of the data subset. In each execution NDIV could be different, so the average
is estimated in the following way: Supposing that Divide splits the data set into two
subsets with equal number of examples, the algorithm is executed 2i times, each one
with a data set of N/2i examples in depth i of the recursive algorithm. This is made
until M/2<N/2L<M, been L the maximum depth of the recursive algorithm. If M and N
are integers such that 0<M<N then equation (8) represents an estimation of NDIV. Then
O(Divide) and O(NCLEFDC) are given by the equations (9) and (10) respectively.

1/2
)1(

12
)1(12122

1
1

−
+<

−
+⇒−>−⇒>

+
+

MN
LNLN

M
N

M
N

L
LL (5)

)1(
/

)1(
1/2

)1()5(
12
)1(

2

2
2

1

0

0 +=+<
−

+<
−
+== +

=

=

∑

∑
LM

MN
LN

MN
LNbyLN

N

N LL

i

i

L

i
i

i

DIV (6)

L
M
N

L
M
N

M
NMN L

L >





+⇒>






⇒>⇒> 22 log12log2

2
22

(7)







 +<+<

M
N

MbyLMbyN DIV 2log2)7()1()6((8)




















=


















+==

M
NMOM

M
NMOMNODivideO DIV 2

2
2 loglog2)()((9)

() 





+













=





 += MNA

M
NMNOKnnODivideO

M
NONCLEFDCO 2

2log)()()(
(10)

Fixing M to be constant in all experimentation, then O(NCLEFDC) is:

()()2
2·log)(NANNONCLEFDCO += (11)

The algorithm does not always split the data set into two subsets with exactly the
same number of examples, otherwise it could split into subsets with a proportion
between 40%-60%. Then, the base of the logarithm in equation (11) could be lower
than 2, but even though the first addend would be always lower that N2.

The algorithm NCLEFDC is described below:

DataSet NCLEFDC(DataSet DS,int M){
 // If there are more examples in the data set than M
 // we divide the data set into two subsets
 if(#DS>M) {
 {DS1,DS2}=Divide(DS,M);
 // The global result is the Union of the partial
 // result of the two recursive calls to NCLEFDC
 return Union(NCLEFDC(DS1),NCLEFDC(DS2));
 } else return NCLEF(DS); // base case
} // End of program

{DataSet DS1,DataSet DS2} Divide(DataSet DS,int M){
 Min=0;
 Max=MaxNormalizedNorm1;
 Example ERand;
 for(iterations=1;iterations<M;iterations++) {
 ERand=RandomExampleBetween(DS,Min,Max);
 above=PercentExamplesWithMoreNorm1(DS,ERand);
 if(above>=40 and above=<60) break; // good solution
 // Redefine search interval
 if(above<40) Max=Norm1(ERand);
 if(above>60) Min=Norm1(ERand);
 } // End of for
 DS1=ExamplesWithLessNorm1(DS,ERand);
 DS2=ExamplesWithMoreNorm1(DS,ERand);
}// End of Divide

The function Divide searches for an example e whose || ||1 is a percentile between
40% and 60% in the distribution of all || ||1. This interval is fixed as an approximation
of ‘equal number of examples’.

5 Experimental Evaluation

A set of experiments were conducted to compare the performance of M5’, Cubist and
RT with and without NCLEFDC.

The well known heterogeneous data sets of the Torgo’s repository at LIACC [10]
are used. Each experiment consists of a Cross Validation (CV) with 10 folds. Besides,
it is employed MLC++[6] with 2032 seed to make the experiments to be repeatable.

The result of a CV experiment is the Medium Average Deviation (MAD), but in the
forward tables it is shown the Relative Medium Average Deviation (RMAD) which is
the MAD divided by the MAD of the system that always predicts the average function.

Table 1. List of the data sets of the Torgo’s repository. The name, the number of examples
(#Ex), the number of attributes (#Att) and the MAD of the system that always predict the
average function (Av. MAD) are shown for each data set. Each data set is also numbered (Nº)
to be referred forward using this number.

Nº Name #Ex #Att Av.MAD Nº Name #Ex #Att Av.MAD
1 Abalone 4177 8 2,363 16 Diabetes 43 2 2,363
2 Ailerons 13750 40 0,0003 17 Elevators 16599 18 0,0046
3 Airpla.Com. 950 9 5,4852 18 Friedman Ex. 40768 10 4,0648
4 Auto-Mpg 398 4 6,5459 19 Housing 506 13 6,6621
5 Auto-Price 159 14 4600,65 20 Kinematics 8192 8 0,2156
6 Bank 32NH 8192 32 0,0903 21 Machine-Cpu 209 6 96,9004
7 Bank 8FM 8192 8 0,1236 22 MvExample 40768 10 8,8932
8 Cal. Hou. 20640 9 91174,5 23 PoleTele. 15000 48 37,2124
9 Cart Delve 40768 10 3,6069 24 Pumadyn(32) 8192 32 0,0235

10 Census(16) 22784 16 32428,2 25 Pumadyn(8) 8192 8 4,8659
11 Census(8) 22784 8 32428,2 26 Pyrimidines 74 27 0,0957
12 Com.Act 8192 21 10,6326 27 Servo 167 2 1,1662
13 Com.Act(s) 8192 12 10,6326 28 Triazines 186 60 0,1187
14 Delta Ailer. 7129 5 0,0003 29 Wisconsin 198 32 29,6833
15 Delta Eleva 9517 6 0,002

Table 2 shows that the use of NCLEFDC does not improve the performance
significantly because the data sets do not have enough noisy examples. Table 3 shows
the results when the 10% of training data are changed by noisy examples in each
execution of the CV (the test data are not modified). Under these circumstances the
performance of Cubist, M5’ and RT gets better. So NCLEFDC removes examples
better than the embedded filters that use these systems.

Table 2. RMAD of the MLS with and without the NCLEFDC filter. It is shown the RMAD for
each data set of Torgo’s repository and the average of all RMADs (Av.) of a MLS.

Only the systems NCLEFDC before the systems
Cubist 1.10 M5' RT 4.1 Cubist 1.10 M5' RT 4.1

1 105,16% 101,12% 100,46% 104,63% 99,89% 100,46%
2 73,88% 66,67% 84,74% 73,88% 66,67% 84,74%
3 39,54% 33,82% 42,62% 39,54% 33,82% 39,14%
4 27,83% 28,01% 48,81% 27,83% 28,01% 48,76%
5 33,07% 31,75% 36,73% 33,65% 30,54% 36,70%
6 34,04% 34,41% 43,17% 34,79% 34,83% 34,45%
7 12,67% 11,69% 16,94% 12,60% 11,76% 17,20%
8 63,48% 64,24% 67,85% 63,06% 64,43% 71,23%
9 100,00% 50,00% 50,00% 100,00% 50,00% 50,00%

10 19,37% 20,64% 24,33% 19,37% 20,43% 24,41%
11 17,88% 18,53% 22,90% 17,88% 18,45% 22,90%
12 50,67% 51,42% 52,40% 50,65% 51,57% 52,39%
13 58,47% 64,45% 70,21% 58,14% 63,23% 70,32%
14 26,38% 28,51% 30,64% 26,81% 28,51% 30,64%
15 15,89% 17,80% 22,65% 15,80% 17,89% 22,65%
16 55,61% 56,17% 66,70% 55,52% 56,17% 66,88%
17 22,07% 22,08% 22,43% 22,07% 22,08% 22,44%
18 6,37% 8,28% 8,78% 6,56% 8,25% 8,76%
19 52,41% 58,01% 57,93% 51,60% 57,47% 57,49%
20 49,67% 54,57% 54,56% 49,28% 54,28% 54,02%
21 38,89% 35,98% 41,68% 35,45% 35,94% 42,08%
22 50,00% 36,96% 52,17% 50,00% 36,96% 52,17%
23 23,83% 26,63% 33,88% 23,83% 26,70% 33,79%
24 100,00% 33,33% 33,33% 100,00% 33,33% 33,33%
25 0,22% 0,97% 12,42% 0,22% 0,97% 12,36%
26 85,17% 81,80% 88,96% 89,89% 81,55% 89,72%
27 101,27% 97,49% 100,56% 101,07% 97,16% 96,76%
28 30,88% 28,16% 40,53% 32,18% 27,57% 42,62%
29 55,00% 55,00% 55,00% 55,00% 55,00% 55,00%

Av. 46,54% 42,02% 47,70% 46,60% 41,84% 47,36%

Table 3. RMAD of the MLS with and without the NCLEFDC. It is shown the RMAD for each
data set of Torgo’s repository and the average of all RMADs (Av) of a MLS. The data in each
execution of a CV are modified with a 10% of noisy examples.

Only the systems NCLEFDC before the systems
Cubist 1.10 M5' RT 4.1 Cubist 1.10 M5' RT 4.1

1 98,19% 101,52% 96,18% 98,88% 98,50% 95,58%
2 76,05% 71,01% 90,44% 75,84% 69,85% 90,86%
3 41,22% 50,84% 53,20% 38,84% 40,98% 43,10%
4 54,59% 60,01% 79,86% 39,61% 43,19% 54,45%
5 38,85% 37,01% 43,45% 35,57% 34,32% 40,66%
6 46,13% 42,09% 53,64% 41,18% 40,42% 52,08%
7 19,66% 20,60% 25,72% 15,28% 14,98% 28,02%
8 64,60% 68,83% 73,61% 62,53% 64,25% 75,30%
9 100,00% 50,00% 50,00% 100,00% 50,00% 50,00%

10 35,88% 41,70% 41,97% 27,85% 33,15% 34,19%
11 26,26% 30,44% 34,39% 20,53% 23,55% 28,20%
12 53,01% 54,31% 55,26% 53,04% 53,32% 55,07%
13 64,75% 76,53% 82,57% 57,28% 69,35% 76,34%
14 31,20% 36,32% 37,61% 30,77% 36,32% 37,18%
15 33,94% 40,85% 41,38% 24,13% 32,91% 33,81%
16 58,02% 60,58% 72,82% 57,79% 59,65% 72,77%
17 23,02% 24,10% 26,27% 22,25% 22,50% 24,03%
18 14,27% 18,35% 18,98% 10,52% 12,23% 12,35%
19 57,33% 79,30% 76,55% 48,19% 62,31% 60,37%
20 50,08% 74,08% 73,12% 43,14% 56,42% 56,37%
21 42,11% 41,53% 49,54% 42,59% 39,72% 47,09%
22 52,63% 56,14% 68,42% 45,61% 42,11% 57,89%
23 25,43% 34,82% 44,17% 24,92% 32,48% 41,29%
24 100,00% 33,33% 66,67% 100,00% 33,33% 66,67%
25 7,38% 15,24% 17,32% 3,65% 7,19% 9,65%
26 97,13% 93,53% 95,25% 93,28% 95,74% 98,20%
27 157,47% 156,00% 152,13% 156,73% 152,29% 151,54%
28 45,21% 44,78% 51,63% 42,80% 40,01% 46,15%
29 55,00% 55,00% 60,00% 55,00% 55,00% 60,00%

Av. 54,12% 54,10% 59,73% 50,61% 48,83% 55,15%

6 Conclusions

This paper describes an algorithm that filters noisy continuous labeled examples from
a data set. This algorithm uses knn to determine if an example is noisy or not. Knn is
helped by D&C in order to reduce its computational cost.

The quality of this algorithm has been evaluated by two criteria: the cost associated
to the filtering and the accuracy of M5’, Cubist and RT when they use the filtered data
set instead of the original one. The cost of the algorithm is O(Nlog2N+A2N) where N
is the number of examples and A is the number of attributes.

It is shown experimentally that the accuracy of the latter systems is better when
they use this filter under the presence of noisy examples. However, the accuracy is the
same when there are no noisy examples.

A conclusion is that the performance of M5’, Cubist and RT is worse under the
presence of noisy examples. Another conclusion is that in our experiments NCLEFDC
deals with noisy examples better than the embedded algorithms of the latter systems.

In this paper only basic principles are presented, but a lot remains could be done in
this area. We are interested in the following issues: (1) to calculate automatically the
stop condition of the D&C phase; (2) to extend this idea to a discrete labeled
examples; (3) to transfer the use of knn as noise detector to the area of feature
selection.

7 References

1. Aha, D.W., Kibler, D., Albert, M.K.: Instance based learning algorithms. Machine Learning,
Vol. 6. (1991) 37-66

2. Aha,D.W.: Lazy learning. Kluwer Academic Publishers, Dordrecht. (1997)
3. Blum A.L.: Relevant examples and relevant features: Thoughts from computational learning

theory. In AAAI Fall Symposium on `Relevance'. (1994) 31
4. Blum A.L., Langley. P.:Selection of relevant features and examples in machine learning.

Artificial Intelligence. (1997) 245-271
5. Cameron-Jones, R.M.: Instance Selection by encoding length heuristic with random

mutation hill climbing. IEEE Proc. of the 8th Australian Joint Conference on AI. World
Scientific. (1995) 99-106.

6. Kohavi, R., John, G., Long, R., Manley, D., & Pfleger, K. (1994). MLC++: A machine
learning library in C++. In Proc. of the 6th International Conference on Tools with Artificial
Intelligence, 740-743. IEEE Computer Society Press.

7. Quinlan, J.R.: Learning with continuous classes. In Proc. 5th Australian Joint Conference on
Artificial Intelligence. World Scientific, Singapore, (1992) 343-348.

8. Quinlan, J.R.: Cubist. http://www.rulequest.com/cubist-info.html
9. Torgo. L.: Functional models for regression tree leaves. In Proc. of the 14th International

Conference on Machine Learning, Nashville, TN. Morgan Kaufmann. (1997) 385-393
10.Torgo. L: Regression Data Sets Repository at LIACC (University of Porto).

http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html
11.Wang, Y., and Witten, I.H.. Inducing model trees for continuous classes. In Poster Papers

9th European Conf. on Machine Learning. Prague, Czech Republic. (1997) 128-137.
12.Weiss, S. M., Kulikowski, C. A.: Computer systems that learn: Classification and prediction

methods from statistics, neural nets, machine learning, and expert systems.
MorganKaufmann, San Mateo, CA, (1991.)

13.Wettschereck, D., Dietterich, T. G.: Locally adaptive nearest neighbor algorithms in
Advances of Neural Information Processing Systems 6. Morgan Kaufmann Publishers.
(1994) 184-191

14.Wilson, D.R., Martinez, T.R.: Instance pruning techniques. Proc. of the 14th International
Conference on Machine Learning. Morgan Kaufmann, Nashville, TN., (1997) 403-411

