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Abstract This paper contributes to the automated construction of diagnosis models for
complex, continuous-valued systems. Given is the following diagnosis scenario of first
principles: (a) The global behavior model of the system in question can be composed
from single component models, where (b) context-free models of both the normal and
the faulty component behavior are known.
This situation enables us to simulate the system with respect to expected inputs along
with possible faults, and to extract a compiled diagnosis model from the huge set of
generated data with mining techniques. As well as that, this situation enables us also to
choose optimum measurement points for fault isolation purposes.
The contributions of this paper are threefold: (1) It outlines the compilation approach
and its realization in the domain of hydraulic engineering, (2) it extends the GDE mea-
surement heuristics towards an optimum strategy with respect to an arbitrary observation
horizon, and (3) it presents a measure to quantify the diagnosis effort for systems whose
behavior can be captured by a compiled model.

1 Introduction

We present a diagnosis approach that combines the model-based paradigm with the associ-
ational (heuristic) paradigm as follows: By simulating a system in various fault modes and
over its typical input range a simulation database is built up. From this database a simpli-
fied rule-based behavior model is compiled where long cause-effect chains are replaced with
weighted associations and which is optimized for a heuristic classification of the interesting
faults. Since this process can be completely automated, the approach has the potential to com-
bine the advantages of the model-based philosophy, such as behavior fidelity and generality,
with the efficiency and robustness of a heuristic diagnosis system.

Of course, the approach must not be seen as a universal diagnosis recipe; it imposes several
applicability conditions: The faults must be component failures, the related fault models must
be known, and, typical system inputs must be given. However, there exist many situations
where these conditions are fulfilled—one is presented in this paper: The automatic generation
of diagnosis systems for hydraulic systems with focus on abrupt component faults. Such faults
cause significant deviations from steady state operations [11].

Model Compilation and its Impacts The diagnosis of complex systems is a challenge: Fol-
lowing the heuristic paradigm means to capture diagnosis rules from domain experts—a road
which is insecure and fault-prone, and which requires expertise being available at all [ 9].
Following the model-based paradigm may be precluded for limited computational resources.
Even when excellent simulation conditions are given, model-based diagnosis is still problem-
atic: In complex systems the long interaction paths between variables result in large conflict
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sets. Moreover, many technical systems have a feedback structure—i. e., cause-effect chains,
which form the ground for reasoning based on violated assumptions, cannot be easily stated.

In this connection, the compilation of a heuristic model from a model of first principles is
advantageous. Compiled models have a small computational footprint. As well as that, model
compilation breaks open feedback structures, and, under the assumption that all observations
have already been made, an optimum measurement strategy can be developed.1 Based on the
last consideration, the paper also proposes a new concept for assessing the diagnosability of
a system. Key idea is to relate the information gain of increasing sets of observers to the
theoretical optimum. This relation can be expressed as a concentration measure, which we
call a system’sdiscrimination entropy.

Relation to Existing Work The ability of a diagnosis system to identify faults depends on the
adequateness of the underlying model. Compilation is one paradigm for constructing adequate
models. The model-based diagnosis paradigm, either with or without fault models, provides
another possibility [14, 19]. Here, the cycle of simulation and candidate discrimination is
executed at diagnosis (run) time, while under the compilation paradigm it is anticipated in a
preprocessing phase.

Processing a compiled diagnosis model is comparable to reasoning with associational di-
agnosis systems. Note, however, that the underlying models of the latter are usually the result
of advanced model formation considerations. By contrast, model compilation pursues a data
mining strategy and aims at an automatic detection of associational knowledge [ 16]. The idea
to derive associational knowledge from deep models was proposed amongst others in [ 17].

With respect to fault detection and isolation (FDI), measurement selection, and diagnos-
ability, a lot of research has been done. Much of this work concentrates on dynamic effects,
which are not covered in this paper [8, 12]. Nevertheless, the presented compilation concept
focuses on search space and knowledge identification aspects and can be adapted to existing
FDI approaches.

There is also some research respecting compilation for diagnosis purposes. The work of
[3] deals with the generation of decision trees; [4] discusses how rules can be generated for
platforms where computational resources are limited.

2 Model Compilation in Hydraulic Engineering

Hydrostatic drives establish an important driving concept for many industrial applications.
They consist of three types of hydraulic building blocks: Cylinders, which transform hydraulic
energy into mechanical energy, various forms of valves, which control flow and pressure of
the hydraulic medium, and service components such as pumps, tanks, and pipes, which pro-
vide and distribute the necessary pressurep and flowQ. Figure 1 shows two medium-sized
examples of circuits we are dealing with.

Component Faults and Fault Models A prerequisite for applying model compilation for
diagnosis purposes is that components are defined with respect to both their normal and their
faulty behavior. In the following, such a fault model is stated exemplary for the check valve.
Typical check valve faults include jamming, leaking, or a broken spring. These faults affect
the resistance characteristic of the valve in first place. Letp1 andp2 be the pressure values

1 A fact, which advised us to name the implementation of the approach “DÉJÀVU”.



3

Figure 1. Two hydraulic circuit examples.

at the two valve connections, letq be the flow through the valve, and letR be its hydraulic
resistance. Then, the pressure drop at a turbulent flow is

∆p = R · q2, where ∆p := p1 − p2.

The resistance law is given in Table 1 for both the normal and the faulty behavior. If the
valve is operating in its range of control, the fractions are well defined and∆p > p 0.

Normal resistance behavior Faulty resistance behavior

R =
m2 · ∆p

(∆p − p0)2
R =

m2 · ∆p

(∆p − p0 · (1 + εvalve))2

Table 1. Resistance law of a working and a faulty check valve operating in its control range. The
deviation coefficientεvalve is a state quantity, which is modeled as a continuous random variable.

Other fault models relate to slipping cylinders with an interior or exterior leaking, incorrect
clearance or sticking throttle valves, directional valves with defect solenoid and contaminated
lands, or pumps showing a decrease in performance. For all fault models, a deviation coeffi-
cientε is modeled as a continuous random variable which defines the distribution of the fault
seriousness.

2.1 Construction of a Compiled Model

We construct a compiled model in five steps. Within the first step a simulation data baseC
is built, which then is successively abstracted towards a real-valued symptom data baseC∆,
a symbolic interval data baseCI , an observer data baseCO, and, finally, a rule data baseCR,
which represents the heuristic diagnosis model.

Simulation Objective is the approximation of simulation data by a comparatively small set
of rules. This is fruitful only if the data can be generalized, that is to say, learned. Behavior
models of hydraulic systems are hybrid discrete event/continuous time models [ 2]. I. e., the
trajectories of the state variables can be considered as piecewise continuous segments, which
are called phases. The discrete state variables such as valve positions, relays, and switches
are constant within a phase, and between each two consecutive phases one or more of them
change their values, leading to another mode of the system. The continuous variables such as
pressures, flows, velocities, positions, etc., which are the target of our learn process, follow
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continuous but diverse curves. In the sequel, the entire set of continuous variables of a system
is denoted byZ.

The (quasi-)stationary values of the continuous state variables are in the role of symptoms,
since the effect of abrupt faults may cause significant changes. Our working hypothesis is that
between the continuous input variables and several of the continuous state variables a mono-
tonic characteristic can be assumed—as long as a single phase is considered. The simulation
procedure reflects this hypothesis as follows.

Let an initial state vector,x0, a vector of input functions,u(t), and some point in time,
t, be given. Then, during simulation, samples of the vector of state trajectories are drawn at
those points in timeτ , τ ≤ t, where a discrete event is imminent. Each sample is completed
by a numberπ designating its phase, the vector of input function values at timeτ , and a vector
d encoding component faults. I. e., under the single-fault assumption a fault simulation vector
c is of the following form:

c(π,u,d) := (π, u1, . . . , um, x1, . . . , x|Z|, d, εd)

The entirety of normal and fault simulation vectors forms the simulation data baseC.

Symptom Identification For each fault simulation vectorc(π,u,d) ∈ C the difference of
its state variables to the faultless simulation vectorc(π,u) with sameu in the same phase
π is computed. The computation distinguishes between effort variables and flow variables.
The former are undirected, and a difference between two values of this type can be computed
straightforwardly. The latter contain directional information, and their difference computation
distinguishes between seven cases. Result of this step is the symptom data base,C∆, which
contains symptom vectors of the form(π, u, δ1, . . . , δ|Z|, d).

Interval Formation The symptom vectors inC∆ are generalized by mapping for each vari-
ablez∈Z its deviationsδ(1)

z , . . . , δ
(|C|)
z , δ

(i)
z ∈R, onto a small number ofp deviation intervals

I(1)
z , . . . , I(p)

z , I(j)
z ⊂ R, with

⋃
j I(j)

z = R. This is an optimization task where, on the one
hand, the loss of discrimination information shall be kept minimum, while on the other hand
technical constraints of measuring devices and cognitive limitations of human operators must
be obeyed.

The interval formation can be compared to discretization methods that map a cardinal do-
main onto an ordinal domain in order to make a classification or learning approach applicable
[13, 6]. Such methods are distinguished with respect to locality, supervision, and interdepen-
dency. We realized a method that is global, since the interval formation is applied to the entire
range of a variable; it is supervised, since it exploits classification knowledge (the faults within
an interval); however, it does not consider dependencies between variables.

Due to this abstraction step we leave the domain of real numbers,R, and continue on a
symbolic level with weak ordinal information: For each state variablez ∈ Z a new domainI z

is introduced.Iz is the union ofinterval names ιz, which map in a one-to-one manner onto
the real-valued intervalsIz ⊂ R. The symbolic interval database that emerges fromC∆ by
interval formation is denoted withCI and contains symbolic symptom vectors of the form
(π, u, ι1, . . . , ι|Z|, d). Note that the number of simulation vectors has not been reduced, say,
|CI | = |C|.

Measurement Selection By means of simulation, values are computed for all variables inZ.
In fact, restricted to a handful of measuring devices or sensors, only a small subsetO of Z can
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be observed at the system. Measurement selection means to determine the most informative
variables inZ—or, speaking technically, to place a set of|O| = k observers such that as much
faults as possible can be classified.O is determined by analyzing for each phaseπ and for each
variablez ∈ Z the correlations between the symbolic intervalsIz and the set of component
faults D. The analysis combines considerations from statistics and information theory [ 5],
which plays a salient role here.

The information theoretical considerations generalize the idea of hypothetical measure-
ments, which goes back on the work of Forbus and de Kleer. Reasoning by hypothetical mea-
surements means to evaluate for allz ∈ Z how an observed differenceδ z would reduce the
set of possible diagnosesD. For instance, let’s assume thatD = { a , . . . , h } and that we
are given the simulation results shown in Table 2. Then, a measurement ofqy resulting in the
symptom “δqy ≥ 1.5” complies with the component faultsb , c , and d . However, the mea-
surement could also result in the symptom “δqy < 1.5” where the component faultsa ,. . . , d

come into question.

Component faults

δqy < 1.5 a b c d

δqy ≥ 1.5 b c d

Table 2. The table shows for two observed differences at flowqy the related component faultsa , b ,
c , d .

With respect to the databaseCI , letκ(z, ι) ⊆ D designate the set of diagnoses that comply
with symptom(z, ι). Related to the example,κ(qy,“≥ 1.5”) = { b , c , d }. If one presumes
that all diagnoses (component faults) in the setD occur equally likely, then the probability
that a particular symptom(z, ι) will occur can be estimated by|κ(z, ι)|/ ∑τ∈Iz

|κ(z, τ)|, the
fraction of diagnoses that comply with the symptom.

If we also knew the measurement effort to discriminate amongst the remaining diagnoses
κ(z, ι), the most informative observer inZ could be determined. Here, the simplifying as-
sumption is made that the diagnosesD are equally distributed over the|I z| = r intervals in
Iz , z∈Z. Henceforth,logr κ(z, ι) defines a lower bound for the number of measurements that
are necessary to isolate each of the faults inκ(z, ι).

The considerations are comprised in Equation (1), which estimates the discrimination ef-
fort to identify a component fault fromD using observerz, when given the diagnosis situation
described by the interval databaseCI .

e(z) =
∑

ι∈Iz

|κ(z, ι)|
∑

τ∈Iz
|κ(z, τ)| · logr|κ(z, ι)|, (1)

wherer = |Iz |. The minimization of Equation (1) over allz ∈ Z is used as a heuristic to
determine the most informative observersO ⊂ Z. If a-priori probabilitiesP (d) for the faults
d ∈ D are known, they can be integrated in the likelihood estimator of Equation ( 1). The
equation resembles the formula of Forbus and de Kleer; it differs with respect to the identity∑

τ∈Iz
|κ(z, τ)| = |D|, which does not hold in our compilation situation.

Let O ⊂ Z be the set of selected observers. The database that emerges from the symbolic
interval databaseCI by eliminating all variables inZ \ O is called observer databaseCO; it is
much smaller thanCI . However, its number of elements is unchanged, say,|CO| = |C|.

Rule Generation The aim of the rule generation step is to extract reliable diagnosis rules
from the observer databaseCO. The rules have a propositional-logical semantics and are of
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the form
r = ιo1 ∧ . . . ∧ ιok

→ d,

whereιoi ∈ Ioi , oi ∈ O, d ∈ D, andk ≤ |O|. O ⊂ Z is the set of the chosen observers; the
symbols of a rule form a subset of a single vectorc ∈ CO. The left and right sides of the rule
are called premise and conclusion respectively. The semantics of such a ruler is defined by
means of two propositional-logical truth assignment functions,α :

⋃
z∈Z Iz → {0, 1} and

β : D → {0, 1}. For a constraint variablez ∈ Z, let I be the real-valued interval associated
with the interval symbolι, and letδz be a symptom. Thenα andβ are defined as follows.

α(ι) =
{

1 ⇔ δz ∈ I
0 otherwise.

β(d) =
{

1 ⇔ fault isd.
0 otherwise.

The truth assignment functionα matches a ruler if its premise,r−, becomes true under
α. If also the rule conclusion becomes true underβ, thenr is called positive.

Note that the inference direction of the above rules is reverse to the cause-effect com-
putations when simulating a behavior model: We now ask for symptoms and deduce faults,
and—as opposed to the simulation situation—this inference process must not be unique. Per-
haps there is a unique mapping from symptoms to faults in the original simulation databaseC.
Even so, it is very likely that the rigorously simplified observer databaseCO encodes ambigu-
ities. As a consequence, we get ambiguous rules, i. e., rules with the same premise (symbolic
intervals) that are associated with different faults. To cope with this form of uncertain knowl-
edge each ruler is characterized by its confidence,c, and its support,s:

c(r) =
h(r)

h(r−)
and s(r) =

h(r)
|CO| ,

whereh(r) denotes the frequency ofr in CO, while h(r−) denotes the frequency of the rule’s
premise inCO.

Rule generation is realized with data mining methods and yields the rule databaseCR.
In particular, we employ strategies with respect to confidence-thresholds and subsumption
handling to avoid computational overhead. Nevertheless, rule generation still is a combina-
torial problem. In the data mining jargon, rules of the described form are called “association
rules” [1].

2.2 DÉJÀVU: Model Application and Results

Model application means to process the rules inCR in the context of observed symptoms. It
requires an operational semantics for the rules’ confidence and support values. The classics
amongst the rule-based systems that employs rules with confidences is MYCIN [15]. How-
ever, MYCIN’s underlying computation scheme is designed for the accounting of a handful of
rules—it fails in our setting where confidences of 10-100 rules predicting the same diagnosis
candidated ∈ D must be reckoned up.

Hence we apply the better suited formula (2) below, which computes for each faultd ∈
D its confidence in “β(d) = 1” given a rule databaseCR and a truth assignmentα. The
formula consists of two parts: A base term, where the impact of a positive rule with maximum
confidence cannot be weakened and, an update term, where the confidences of the positive
rules are weighted with all matching rules.

c(“β(d) = 1”) = c(r∗) +
(
1 − c(r∗)

) · 1
|R−|

∑

r∈R
c(r), (2)
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whereR− ⊂ CR comprises the matching rules,R ⊂ CR comprises the positive rules, andr∗

denotes a positive rule of maximum confidence.

The outlined model construction process as well as the rule inference have been real-
ized within the diagnosis program DÉJÀVU [10]. For simulation purposes, DÉJÀVU employs
the FLUIDSIM simulation engine [18]. Note that the automatic simulation and recording of
a large number of operating scenarios implies demanding problems on its own, which are
be discussed in this place. Using DÉJÀVU and FLUIDSIM the approach has been applied to
several medium-sized hydraulic circuits (about 20-40 components) with very promising re-
sults. Figure 2 (left) shows diagnosis hit rates depending on the number of observers; basis
were more than2000 variations of|D| ≈ 15 different component faults, the circuits’ driving
processes were clearly defined. The results were achieved with automatically constructed rule
databasesCR which have not been manually revised. The right-hand side of Figure 2 shows
average values of the rule data base sizes.

Rule confidence > 0.5
Rule confidence = 1

1 2 3

800

400

4 5 6

1200

1600

|O|
1 2 3

80%

20%

40%

100%

60%

4 5 6

Unique fault proposal
Proposal of component set (< 3) including fault

|O|

Figure 2. Classified faults depending on the number of observers|O| (left): Dark bars indicate a unique
proposal of the faulty component, light bars a multiple prediction (≤ 3 components including fault).
Number of generated rules depending on|O| (right): Dark bars indicate rules with a confidence value
of 1, light bars stand for confidence values> 0.5.

3 Model Compilation Enlarges the Observability Horizon

The abstraction from the real-valued simulation databaseC towards the symbolic interval
databaseCI provides the ground for applying information-theoretical considerations to mea-
surement selection. This section goes a step beyond: It shows how the selection heuristic,
Equation (1), can be turned into an optimum measurement strategy.

Equation (1), which estimates the effort to discriminate between several diagnoses inD
when using observerz ∈ Z, has alook-ahead of 1: For each observable intervalι, discrim-
ination must go further on amongst the remaining setκ(z, ι) ⊆ D of diagnoses. A global
selection strategy would determine a set of observersO ⊂ Z such that the overall discrimina-
tion effort is minimum.

Within the diagnosis setting of the GDE, aglobally optimum selection strategy can only be
employed, if additional hypothetical simulation runs are performed. Hypothetical simulations
are initiated by hypothetical measurements. In this connection letι be a possible outcome from
a hypothetical measurement at some observerz∈Z. Thenι is interpreted as additional system
input, and for each component in the conflict set a simulation is carried out having its state
transition function disabled. Since such a symptom-driven, hypothetical simulation concept is
computationally very expensive, Forbus and de Kleer do not follow this idea. Moreover, the
execution of symptom-driven simulations in connection with real-valued behavior models is
questionable because of the infinite hypotheses space.

Within the compiled model setting, which is encoded byC I , the situation is different. A
large database with simulation scenarios is at our disposal that can be exploited for a global



8

selection strategy. In this regard, we introduce the conditional probabilityP z(ι|D) which spec-
ifies the probability that the symptomι can be observed at observerz ∈Z under the condition
that some fault fromD has been occurred. We use the frequency distribution ofD in the
databaseCI to estimate the probabilitiesPz(ι|D):

Pz(ι|D) =

∣
∣{d ∈ k(z, ι) | d ∈ D}∣∣

∑
ι∈Iz

∣
∣{d ∈ k(z, ι) | d ∈ D}∣∣ ,

wherek(z, ι) is the multiset counterpart ofκ(z, ι). I. e.,k(z, ι) is the set of diagnosis that com-
ply with symptom “(z, ι)”, and multiple occurrences of the same interval-fault combination
are counted multiply.

Now Equation (1) can be extended to exploit a-priori knowledge about the diagnosesD
amongst which the observerz ∈ Z shall discriminate:

e(z, D) =
∑

ι∈Iz

Pz(ι|D) · logr|D ∩ κ(z, ι)|, (3)

wherer = |Iz |. The minimization of Equation (3) overZ yields the most informative observer
for a look-ahead of1. By a recursive application of Equation ( 3) to the remaining sets of
diagnosesD ∩ κ(z, ι), the observation horizon is enlarged—until a unique fault classification
is achieved. Each recursion step corresponds to a new observation.

Given a number of observations allowed,k, we define thediscrimination effort for a sys-
tem as the number of observations that must additionally be made to discriminate between
all diagnoses. Clearly, this makes sense only if thek observations are optimum with respect
to the expected information gain. The following definition fulfills this property; it provides a
lower bound for the expected number of additional observations.

Definition 1 (Expected Discrimination Effort). Let S be a system that is characterized by
an interval database CI . CI defines the set of diagnoses D, the set of possible observers Z , the
conditional probabilities Pz , and the function κ. Then the expected discrimination effort of S
with respect to a maximum number of observations k > 0 is defined as

ê(D, k) =






min
z∈Z

(
∑

ι∈Iz

Pz(ι|D) · ê(D ∩ κ(z, ι), k − 1)

)

, if k > 0 and |D| > 1

logr(|D|), if k = 0 or |D| = 1

where Iz comprises the intervals of an observer z, z ∈Z , r = |Iz |, and the function κ returns
for an observer z and an interval ι ∈ Iz the set of complying diagnoses.

When settingk = 1 and employing the relative frequency instead of the conditional prob-
ability, ê(D, k) becomes the original formula of Forbus and de Kleer [7].
Remarks.The definition of the expected discrimination effort implies several assumptions.
(1) The set of diagnoses,D, is complete, (2) the diagnoses inD are equally distributed, and
(3) the available observers,Z, are independent from each other. The presented formula uses
the same resolutionr for all observers but can easily be extended to allow for observer-specific
resolutionsrz .
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4 Quantifying a System’s Diagnosability

There is the interesting question of how to assess the difficulty to diagnose a system. In the
following we will present the necessary considerations and develop such measure. Starting
point is the formula for the expected discrimination effort,ê(D, k).

If k = 1 then ê(D, k) = minz∈Z

(∑
ι∈Iz

P (ι|D) · logr(|κ(z, ι)|)). The term
∑

ι∈Iz

P (ι|D) · logr(|κ(z, ι)|) becomes minimum if the diagnoses are distributed equally amongst
ther intervals inIz . This, in turn, allows us to factor out the termlogr(|κ(z, ι)|), andê(D, 1)
simplifies tologr(|κ(z, ι)|) ·∑ι∈Iz

P (ι|D) = logr(
|D|
r ).

Repeating the same assumptions fork = 2 yields:

ê(D, k)= min
z∈Z

(
∑

ι∈Iz

P (ι|D) · ê(κ(z, ι), 1)

)

= ê(κ(z, ι), 1) = logr(
|κ(z, ι)|

r
)

= logr(
|D|
r2 )

Note that the minimum number of observations totally required depends on both the ob-
servers’ resolution, say, their number of intervals,r, and the number of diagnoses|D|. The infi-
mum number of observations necessary to discriminate between each diagnosis is�log r |D|�.
It is used to specifyE∗, the accumulated ideal discrimination effort of a system as follows.

Definition 2 (Accumulated Ideal Discrimination Effort). The accumulated ideal discrimi-
nation effort of a system S with respect to a set of diagnoses D and an observer resolution r
is defined as

E∗(D) :=
�logr |D|�∑

i=1

logr

|D|
ri

The difference between the accumulated expected and the accumulated ideal discrimina-
tion effort can be used as a measure for the difficulty to diagnose a system. The larger this
difference is the more does a faulty system behave agnostic. Note that this measure gives an
estimation that is independent of the number of possible observers, thus providing a system-
specific characteristic. At the best, the difference between the expected and the ideal discrim-
ination effort is zero. Figure 3 illustrates the difference between the discrimination efforts
pictorially; the accumulated difference is called discrimination entropy here.

Discrimination entropy
Ideal discrimination effort

Number of
observations

Discrimination
effort

Expected discrimination effort

1 2 3 ...

Figure 3. Discrimination entropy: The difference between the accumulated expected and the ideal dis-
crimination effort.

Definition 3 (Discrimination Entropy). The discrimination entropy E of a system S with
respect to a set of diagnoses, D, is defined as

E :=

( ∞∑

k=1

ê(D, k)

)

− E∗(D)
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5 Conclusions

Our work shows that the model compilation paradigm can be applied to generate working
diagnosis models for complex systems such as hydraulic plants. However, the construction
process is fairly involved and employs methods from learning theory, statistics, information
theory, and data mining.

Perhaps more interesting are the presented “by-products” of model compilation: A glob-
ally optimum measurement strategy and a diagnosability measure, called discrimination en-
tropy. Given a database with simulation records of some—possibly unknown—system, the
concept of discrimination entropy allows us to quantify the diagnosis effort that can be ex-
pected.

Especially with respect to the design of a system both considerations may be important: A
perfect measurement strategy provides guidance to place sensor devices optimally; the concept
of discrimination entropy can be used to construct systems with respect to their maintenance
effort.
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