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Abstract. An open web{based tool for automatic discovery in elemen-

tary Euclidean geometry, webDiscovery, is described. It is based in recent

�ndings in automatic discovery in geometry. A user{de�ned geometric

construction is uploaded to a Java Servlet server, where two computer

algebra systems, CoCoA and Mathematica, return the discovered facts

about the construction. webDiscovery can be e�ciently used in mathe-

matics education, linkage design and testing and computer aided geomet-

ric design. The system can be tested at rosalia.uvigo.es/sdge/web/2D.

1 Introduction

Since the birth of Arti�cial Intelligence research, considerable attention has been

paid to develop computer programs for automatic geometry reasoning. First

attempts [9, 20, 22] were based on the synthetic approach, while from the 80's

onwards the algebraic approach (mainly Wu's method and the Groebner basis

method) [25, 6, 13] and the geometric invariant approach [7] revived interest in

the �eld.

Two new interactive environments for learning geometry [17, 12] appeared

also in the 80's and de�ned a �eld of computer aided instruction referred to

as dynamic geometry. Dynamic geometry software (see also [23, 8, 1]) refers to

computer programs where accurate construction of geometric con�gurations can

be done. The key characteristic of this software is that unconstrained parts of

the construction can be moved and, as they do, all other elements automatically

self{adjust, preserving all dependent relationships and constraints [16]. Dynamic

geometry environments have been considered as instruments for theorem proving

and discovery [18, 11, 19].

In this paper, an open web{based tool for automatic discovery in elementary

Euclidean geometry is proposed. Section 2 explains what is understood by au-

tomatic discovery and gives an overall description of the mathematical bases of

the approach. The implementation on the server's side is discussed in Section

3, and some examples and limitations of the proposal are given in Section 4.

Finally, some ways for further development are proposed.



2 Automatic Discovery in Euclidean Geometry

While automatic proving deals with verifying geometric statements, and auto-

matic derivation relates to �nding geometric formulae holding among prescribed

geometric magnitudes, automatic discovery refers to �nding complementary hy-

potheses for arbitrary statements to become true [21], or, in other words, to

�nding the missing hypotheses so that a given conclusion follows from a given

incomplete set of hypotheses [15].

Our program follows an algebraic approach. It performs automatic discovery

in Euclidean geometry via algorithmic commutative algebra and algebraic ge-

ometry using Groebner bases [4]. An in{depth description of the mathematical

framework used can be found in [14, 21, 3].

Roughly speaking, the procedure is as follows. A statement (a �nite set of

hypotheses and a thesis) of the subclass of geometric constructions expressed

using the concepts of parallelism, incidence and congruence, is considered, where

the conclusion does not follow from the hypotheses. Symbolic coordinates are

assigned to the points of the construction (where every free point gives up two

new free variables ui; ui+1, and every bounded point gives up two new dependent

variables xj ; xj+1), and the hypotheses h1; : : : ; hn and the thesis t are rewritten

as polynomials in Q[u;x]. Since the geometric information of the construction

is contained in the polynomial system, any Groebner basis of the system will

contain the same knowledge. Thus, eliminating the dependent variables in the

ideal (hypotheses; thesis), the vanishing of every element in the elimination ideal

(hypotheses; thesis)\Q[u] is a necessary condition for the statement to hold.

Fig. 1. When is O on side BC?

In order to illustrate the approach, we use a simple example showing that a

necessary condition for the alignment of the circumcenter of a triangle on one

of its sides is the rightness of the triangle. The geometric construction of Fig. 1

consists of three free points A(0; 0), B(1; 0), C(u1; u2), (there is no restriction

in assuming A and B as origin and unit points), the perpendicular bisectors of

sides AB and AC de�ned by means of their midpoints D(x1; x2), E(x3; x4), and



the circumcenter O(x5; x6) lying on both lines. Thus, the polynomials are x1 �

1=2; x2; x3�u1=2; x4�u2=2; x5�x1; u2(x6�x4)�u1(x5�x3). Adding as condition

the collinearity of O;B;C, (that is, the polynomial x6(u1�x5)�(u2�x6)(x5�1)),

the elimination of dependent variables returns 1=2u31 + 1=2u1u
2
2 � u

2
1 + 1=2u1,

a polynomial whose zeros are those of u1 (note that in this case A;B;C are

collinear, that is, the triangle is degenerated), or those of u21 + u
2
2 � 2u21 + 1,

which can be understood as a perpendicularity condition between sides AB and

AC.

3 System Description

Since the main topic in this paper is geometric theorem discovery and web{

availability, it is necessary to emphasize the way it works on the server's side.

webDiscovery uses webMathematica, a Java servlet technology allowing remote

access to the symbolic capabilities of Mathematica. Furthermore, CoCoA [5], an

e�cient system specialized in operations over commutative rings of polynomi-

als, is used to perform computationally expensive tasks such as factoring and

Groebner bases computations. A sketch of the main tasks in webDiscovery is

shown in Fig. 2.

Fig. 2. The architecture and main tasks of webDiscovery

The �rst step in discovery consists in uploading the geometric construction

into the server. This is done via a plain text �le written by the user or generated

by a dynamic geometry environment. The text �le contains the polynomial and

linguistic knowledge about the construction, and its structure is illustrated as

follows for the case of the circumcenter (where an * denotes an optional line):

Points

C(u[1],u[2])

B(1,0)

A(0,0)

D(x[1],x[2])

E(x[3],x[4])

O(x[5],x[6])

(blank line)

Properties



(x[1]-(1+0)/2)

(x[2]-(0+0)/2)

(x[3]-(u[1]+0)/2)

(x[4]-(u[2]+0)/2)

((0-u[2]))*(x[6]-x[4])+((0-u[1]))*(x[5]-x[3])

((0-0))*(x[6]-x[2])+((0-1))*(x[5]-x[1])

(blank line)

Conditions

(x[6]-0)*(u[1]-x[5])-(u[2]-x[6])*(x[5]-1)

(blank line)

LingProperties

Midpoint(D,B,A)*

Midpoint(E,C,A)*

Perpendicular(BA,OD)*

Perpendicular(CA,OE)*

(blank line)

LingConditions

Aligned(B,O,C)*

(blank line)

LocusPoint

Fig. 3. The necessary conditions for the alignment of the circumcenter



Although it is possible to write by hand this �le or similar ones, there is

a dynamic geometry program, webREX [24], which can export geometric con-

structions in this format. The use of a well{known dynamic geometry envi-

ronment, The Geometer's Sketchpad [12], for performing automatic discovery

through the web has also been investigated, and preliminary results can be found

at http://193.146.36.49/Discovery.

Once the �le has been uploaded into the server, a Mathematica Server Page

is launched. It reads the �le, initializing variables and deciding which class of

task (general or locus discovery) is needed. An initialization �le for CoCoA, con-

taining the ideal generated by the properties and conditions polynomials, is also

written out, and CoCoA, launched inside Mathematica, computes a Groebner

basis of this ideal. For the case of the circumcenter, the basis ideal, as returned by

CoCoA, is Ideal(1/2u[1]^3 + 1/2u[1]u[2]^2 - u[1]^2 + 1/2u[1]). Each

generator is factored (a task also done by CoCoA), and a process of logical ex-

pansion is performed on the conjunction of the generators in order to remove

repeated factors. Each element in the �nal conjunctive normal form is matched

against a database of linguistic predicates, returning a compound proposition of

elementary geometric facts and/or equations, if the pattern matching has not

succeeded for any of the factors (Fig. 3).

If we were trying to discover a locus, the returned factors would be classi�ed

as points, lines, conics or general curves. Additionally, the Mathematica graphic

abilities are used to plot the locus.

4 Examples and Limitations

webDiscovery can be used to discover (or rediscover) a vast class of Euclidean

properties. The following examples illustrate its abilities.

4.1 General Discovery

Example 1 (Simson Steiner theorems). Given a triangle ABC and a point X on

its plane, which are the necessary conditions for the collinearity of the perpen-

dicular projections M;N;P of X on the triangle sides? (Fig. 4)

Selecting A as origin and B as unit, and imposing the alignment of M;N;P ,

the system �nds Aligned(A;B;C)_OnCircle(A;B;C;X) as necessary conditions

for the statement to become true. Note that the triangle being not degenerated,

the well{known thesis of Simson Wallace theorem has been found.

Using again the construction, webDiscovery easily allows a generalization. If

we change the imposed condition to area(M;N;P ) = 1, the system returns as

necessary condition the equation 2u(5)
2
�4u(5)

3
+2u(5)

4
+2u(6)

2
�4u(5)u(6)

2
+

4u(5)
2
u(6)

2
+2u(6)

4
�u(6)

3
u(7)+u(6)

3
u(7)

2
+u(5)u(6)

2
u(8)�u(5)

2
u(6)

2
u(8)�

u(6)
4
u(8) + u(6)

3
u(8)

2
= 0 , that is, X(u7; u8) must lie on a circle. As a simple

calculation shows, this circle is concentric with the circumcircle, thus rediscov-

ering Steiner theorem. webDiscovery does not return any linguistic statement



Fig. 4. Construction for discovering Simson theorem

since there are none in the database involving the free points A;B;C;X that

matches the equation.

Example 2. Given a quadrilateral ABCD and the intersection points of its

diagonals, M , a necessary condition for the equality of the areas of triangles

AMD and BCM is the parallelism of sides AB and CD. (Fig. 5)

Fig. 5. Construction and discovery result for Example 2

4.2 Loci Search

Except for the most simple cases, such as lines, circles and perhaps the conics,

visualizing loci is a hard task due to common di�culties when considering var-

ious objects with di�erent movements. Although there exist dynamic geometry

programs that can plot loci, they are restricted to a narrow class of loci and they

can not in general �nd the analytic expression of loci [2].

Example 3. Recalling Steiner theorem, where only an equation was returned

as the result of discovery, webDiscovery is able to return more speci�c knowl-

edge. Using A and B to de�ne a rectangular coordinate system, the strategy



used substitutes all free points symbolic coordinates, except those of the locus

point (which must be described as such), by their numeric values. Thus, the

equation just involves the coordinates of the locus point. This equation is then

linguistically interpreted as a circle, and the Mathematica abilities to plot im-

plicit equations are used, as shown in Fig. 6. It must be noted that when using

the locus discovery option, no general discovery is performed. For this theorem,

the point C is not a general one, but a �xed point in the plane.

Fig. 6. The locus of X such that the oriented area of triangle MPN is 1

Rede�ning points M;N;P to be the projections on the triangle sides along

three directions, not all three equal, nor parallel to the respective sides, the locus

of points X , such that the oriented area of triangle MNP remains constant, is

a general conic, a result recently proved in [10]. Fig. 7 shows the constructions

and the obtained loci, an ellipse and a hyperbola.

Example 4 (A four bar linkage). Consider a mechanism with four linked bars:

the foundation link AC (taken as unit segment), the input or driver link AB, the

output or driven link CD, and the connecting link BD (Fig. 8, left). A common

way to test the behavior of this linkage consists of obtaining the locus of the

midpoint X of the connecting link. webDiscovery plots the locus of X as shown

in Fig. 8, right, and it �nds that this curve is the sextic
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Fig. 7. Two cases in a generalization of Simson Steiner theorems

Fig. 8. A four bar linkage and the locus of BD midpoint



4.3 Limitations

There are several known limitations in webDiscovery. On a side, just a limited

number of natural language statements (mainly dealing with equality, collinear-

ity and cocircularity of points, and parallelism/perpendicularity of lines) are

managed in the matching process of equations, when not doing loci discovery.

Furthermore, currently unavoidable simpli�cation processes in the symbolic rou-

tines sometimes impede the expression of the discovered conditions in natural

language. The diagonals of a quadrilateral meet at their midpoint if it is a par-

allelogram, but only one condition of parallelism is returned using the Parallel

predicate, the other remaining in equational form.

On the other side, the proposed method is complete only in an algebraically

closed �eld containing Q, C for instance [14]. Nevertheless, the method works

for a surprisingly vast amount of Euclidean constructions. Additionally, some

tricks have been implemented. Consider for example a discovery involving the

zeros of x2 + y
2. Although x

2 + y
2 = 0 ! x = 0; y = 0 is not a theorem in C,

webDiscovery will return the point (0; 0). Another source of imprecision in the

system is due to the internal substitution of expressions involving distances by

their square values, in order to keep the analytic knowledge in polynomial form,

a prerequisite for using CoCoA. This decision will sometimes produce incorrect

results.

5 Conclusion and Further Work

A web{based system for carrying out automatic discovery in the domain of plane

Euclidean geometry has been described. webDiscovery is particularly well suited

for obtaining loci of points that describe algebraic curves, a di�cult task in other

systems for dynamic geometry or of parametric CAD. Ongoing research is being

conducted to extend its domain for dealing with non polynomial equations and

inequalities, thus allowing a consideration of new relations between geometric

elements.
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