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Abstract. The purpose of this paper is to show a new approximation
to manage complex constraints in the framework of CSP problems. Con-
cretely we propose the use of a labelled-CSP to specify complex temporal
constraints, as a particular case of constraints. This framework allows us
to specify and solve the constraint set associated to several types of CSP
problems in an integrated manner. The complex constraints that we can
manage are represented by a set of non-disjunctive and disjunctive con-
straints. We can also associate a cost with the constraints, that can affect
to the obtained solution. So, the advantages of this framework are its ex-
pressiveness, that allows to specify very complex constraints which are
present in real problems, and the fact that all constraints are processed
in the same way.3

1 Introduction

A CSP problem (Constraint Satisfaction Problem) is specified providing a set of
variables, a domain for each variable defining the values to which each variable
may be assigned, and a set of constraints on the variables. Solving an instance of
a CSP problem consists in assigning values to variables such that all constraints
are satisfied simultaneously [1].

Each constraint is defined over some subset of the original set of variables and
limits the combinations of values that the variables in this subset can take. The
number of affected variables is the arity of the constraint. Any n-ary constraint
can be expressed in terms of binary constraint. Hence, in some sense, binary
CSPs are representative of all CSPs. For a comprehensive overview on the CSP
see [2]. An exhaustive study can also be found in [3].

In a CSP problem we can stablish a neat distinction between:

– A precise definition of the constraints that define the problem to be solved.
– The algorithms and heuristics enabling the selection, ordering and cancella-

tion of decisions to solve the problem.
3 This work has been partially supported by the projects DPI2001-2094-C03-03 of the

M.C.yT. (Spain) and UPV-20010980
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The quality of the obtained solutions depends on the resolution method used,
but it is also influenced by the representation model considered [4]. Several repre-
sentations have been used to specify the constraints of a CSP problem depending
on the method used to solve it. Van Hentenryck [5] and Cohen [6] tackle the CSP
from a constraint logic programming viewpoint. Zhou [7] defines a constraint lan-
guage, named NCL, and uses it to to solve several CSP problems, [8]. Dechter
uses a temporal constraint network based representation [9].

In this paper we propose a new framework to specify and solve complex
constraints in several CSP problems. We use a labelled temporal network repre-
sentation (labelled TCSP) [10] that allows us to handle metric and disjunctive
information (each edge can be labelled with multiple temporal intervals). The
advantages of this representation over previous approaches are:

– It provides more expressiveness to specify complex constraints. So, we can
specify constraints derived from disjunctive constraints and conditional con-
straints.

– Also, it can include cost information that can be managed in an integrated
manner with the resolution method.

– It provides more flexible solutions, that is, the partial solutions are more
easy to repair in the case of problem changes.

2 The TCSP Labelled Model

The labelled TCSP (Temporal Constraint Satisfaction Problem) model has been
proposed in [10] . It extends the notion of Temporal Constraint Network from
Dechter in [9], introducing the concept of labelled constraint, and the named
I-set as the set of inconsistence-sets (I-L-sets). This results in a labelled point-
based disjunctive metric temporal algebra, which gives rise to a labelled-TCN
(LTCN).

The labelled disjunctive constraints and the I-L-set are defined as follows:
Definition 1 (labelled canonical constraints). A labelled canonical con-

straint lecij.k, between the temporal points ti and tj , is a canonical constraint
ecij.k associated to a set of labels {labelij.k}, where each ecij.k is an interval
[dij.k, Dij.k], and each labelij.k is a symbol.

lecij.k ≡ (ecij.k{labelij.k}), ecij.k = [dij.k, Dij.k], dij.k ≤ Dij.k

The canonical constraint ecij.k limits the temporal distance between the tem-
poral points ti and tj , and indicates that dij.k ≤ tj − ti ≤ Dij.k

Definition 2 (labelled constraints). A labelled constraint lcij is a disjunc-
tive set of labelled canonical constraints {lecij.k}. That is, lcij ≡ {lecij.1, lecij.2, ...,
lecij.l}

Each label in a labelled-TCN can be considered as a unique symbol.
Definition 3 (Inconsistent-Label-Sets). An Inconsistent-Label-Set (I-L-

Set) is a set of labels {labeli} and represents a set of inconsistent canonical
constraints. That is, they cannot all simultaneously hold.
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Definition 4 (Inconsistence-Set). An Inconsistence-Set (I-Set) is a set of
Inconsistent-Label-Sets associated to a set of constraints C. It represents a set
of overall inconsistent canonical constraints of C.

The general syntax for a constraint is:
(ti{([d1, D1], {label1}), ..., ([dn, Dn], {labeln})}tj), with di ≤ Di, which means:
(tj − ti ≤ [d1, D1]) ∨ ... ∨ (tj − ti ≤ [dn, Dn]).
we will use also the form (ti{[d1, D1]{label1}, ..., [dn, dn]{labeln}}tj). We refer

to the constraint between the temporal points ti and tj as ti.tj .

2.1 Operations on Labelled Constraints

The main operations on labelled constraints are:

– Temporal Inclusion (⊆lc), that takes into account the inclusion of temporal
intervals and the inclusion of associated label sets.

– Temporal Union (∪lc), that performs the disjunctive temporal union of la-
belled constraints as the set-union of their canonical constraints. However,
all labelled canonical constraints whose associated labels are I-L-Sets should
be rejected.

– Temporal Composition (⊗lc), and Temporal Intersection (⊕lc), that are
based on the operation ⊗ of the underlying disjunctive metric point-based
algebra [9].

The operations outlined above are used into a total closure process that infers
new constraints from those explicitly asserted. Given a minimal LTCN as input,
and a new constraint to be asserted, the closure process outputs a new minimal
LTCN [10].

3 Non-Disjunctive and Disjunctive Constraints

We refer as non-disjunctive constraints, those that can be specified using binary
labelled temporal constraints with cardinality equal to 1. Some basic examples
are: duration constraints (when they are done by a single temporal value or
interval), precedence constraints (”a is performed before b”, ”c is done after d,
and start/finish time constraints (when they are done by a single temporal value
or interval, as in ”b must finish between 19:00 and 20:00”.

We use the special temporal points T0 and TF to denote the beginning and
the ending of the world, respectively. In the rest of the paper we use on(a), and
off(a) to denote the start and finish time of an action a.

As an example of non-disjunctive constraints, we can specify that ”the action
a2 can start x time units before a1 finishes, moreover they must start at y time
units and must finish after z time units” as {(off(a1){[−x,∞[{R0}}on(a2)),
(T0{[y,∞[{R0}}on(a1)), (T0{[0, z]{R0}}off(a3))}. If an input (or explicitly as-
serted) constraint lcij has only one canonical constraint, that is, only one dis-
junct, this canonical constraint has the label ’R0’. The labelled Universal Con-
straint is {U{R0}}.
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Disjunctive constraints are those with cardinality greater than 1. This allows
us for example to specify multiple durations for a same action a. We can also
refer to the fact that two actions a1 and a2 can be carried out in only two
possible orders: a1 before a2, or a2 before a1, this occurs for example in a typical
scheduling problem. In this case, we can use the general constraint:

(on(a1){[d1,∞[{R1}, ]−∞, d2]{R2}}on(a2)), in which d1 and d2 are the du-
rations of a1 and a2 respectively.If an input constraint lcij has more than one
canonical constraint, each canonical constraint lecij.k ∈ lcij has a single and ex-
clusive label associated to it.

In the next section we explain how to specify more complex constraints using
disjunctive ones.

4 COST AND MORE COMPLEX CONSTRAINTS

The labels of the model allow us incorporate several additional information that
can be managed in an integrated manner with the reasoning algorithms. This is
important in that we can specify more wide range of problems in the same way
and solve it without change the reasoning algorithms applied. As an example
of this feature, we show how to specify cost associated to resources required to
carry out the corresponding actions depending on the time in which the actions
are carried out. The form of a cost constraint would be: ”The resource rk has a
cost associated of x if it is used between temporal points t1 and t2”.

We denote the cost of use of resource rk by means the labelled temporal
interval [t1, t2]Rck

. In order to incorporate it into the network, we add the con-
straint (t0{[−∞, t1 − 1]{Ra}, [t1, t2]{Rck}, [t2 + 1,∞]{Rb}}TF ), in which Ra and
Rb represent zero cost value. Thus, heuristics applied can use label Rck in order
to calculate the corresponding operation costs.

Due to closure process, each derived canonical constraint (it obtained by com-
bining (⊗lc) or intersecting (⊕lc) two labelled canonical constraints) has a set of
labels associated to it. This label set represents the conjunctive support-set of
explicitly asserted canonical constraints. In consequence, this label set can also
represent associated cost-labels. That is, the cost associated to each labelled tem-
poral interval (by unit time) can be calculated as the sum of corresponding cost
values associated to their labels: cost(lecij)⇒

∑
1..n cost(li),∀li ∈ labels(lecij).

Heuristics applied must calculate the cost value of corresponding canonical
constraints to select what of these are maintained or rejected by the resolution
method. Note that we have incorporated the information cost in the constraints
without any change over the syntax of labelled temporal constraints. This will
allow us to use the same resolution method to solve the CSP problem, with or
without associated costs to actions.

It is also possible to know the cost of an operation oij ,that uses the re-
source rk, without needing of introduce any cost label Rck. For example, sup-
pose that oij have a duration denoted by durij First, we retrieve the constraint
between the temporal point T0 and on(oij) denoted by T0.on(oij), that rep-
resents the k possible start times {tst1 , ..., tstk

} of oij . For each start time tst,
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the corresponding cost value is calculated obtaining the temporal intersection:
[tst, tst + duroij

]⊕ [t1, t2] and multiplying the length of resultant interval by the
costx associated to temporal interval [t1, t2]

4.1 Complex disjunctive constraints

In this section, we refer to complex constraints that indicate that the duration
of an action depends on a certain condition (order dependent durations). So,
suppose that we have the non-overlapping actions ax, ay, and az, that can be
carried out in whatever order. We can specify constraints such as: ”The duration
of action ax, denoted by dur(ax), is [5,8] if ay is carried out before az, and
dur(ax) is [12,15], if ay is carried out after az”. In this case, we need a set of
constraints to specify this, (instead an unique constraint), plus extra I-L-Sets.
The resulting constraint set is: {(off(ax){[0,∞[{R1}, ]−∞,−1]{R2}}on(ay)),

(off(ay){[0,∞[{R3}, ]−∞,−1]{R4}}on(ax)),
(off(ax){[0,∞[{R5}, ]−∞,−1]{R6}}on(az)),
(off(az){[0,∞[{R7}, ]−∞,−1]{R8}}on(ax)),
(off(ay){[0,∞[{R9}, ]−∞,−1]{R10}}on(az))
(off(az){[0,∞[{R11}, ]−∞,−1]{R12}}on(ay))},
and the following I-L-Sets: {R9,R11},{R10,R12}. Note that R11 is associated

to ” ay is scheduled after az” and R9 is associated to ”ay is scheduled before
az”.

We can also overlap/not meet order-dependent durations between non over-
lapping actions that can be carried out in whatever order, such as: ”If the action
ax is executed after ay, then ax can be executed 10 minutes after ay finishes”.
The constraint set that reflects this is: {(off(ax){[0,∞[{R1}, ]−∞,−11]{R2}}
on(ay)), (off(ay){[10,∞[{R3}, ]−∞,−1]{R4}}on(ax)), and we need the extra I-
L-Sets:{R2,R4},{R1,R3}. In this case R3 is associated to ”ax is executed ten
minutes after ay” and R2 is associated to ”ax is carried out ay”.

4.2 Relationship to other temporal reasoning formalisms

The constraint class that we study is more expressive than the classes of STP
constraints and TCSP constraints of [9]. For example, the constraints about
multiple durations for a same action cannot be captured by the TCSP model
but can be modelled naturally in our framework.

In [11], that extends the framework of simple temporal problems of [9], the
constraints outlined above can be represented, but it cannot consider, for exam-
ple, any information cost associated with the use of resources by the correspond-
ing actions.

Other constraints solvers with similar expressivity are the LPSAT solver
[12], which integrates propositional satisfiability and linear programming, and
the formalism named TCSPP [13] which allow for reasoning about temporal
preferences: it generalizes the TCSP with the addition of a semiring-based soft
constraint formalism.
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Both, LPSAT and TCSPP formalisms, assume that the problem constraint
set is known in advance. So, the solutions obtained cannot easily changed when
a new constraint have to be considered.

5 The Resolution Method

Recently, it has been proposed a new method to solve scheduling problems,
that integrates effectively the CSP process into a limited closure process: not
interleaving them but as a part of the same process [14]. It specifically handles
a set of metric and disjunctive-based labelled temporal point constraints. A
minimal LTCN is maintained as each constraint of the input constraint set is
processed. It is an iterative algorithm, in which we add a new constraint each
time. We generalize it in order to solve more general temporal constraint-based
problems. The resultant model can be tailored by two parameters:

– The maximal number of indecisions (disjuncts) maintained in the network.
– The variable and value heuristics used to prune the search space.

The first parameter allows us to perform as a pure CSP process (if the number
of indecisions is equal to zero), as a pure closure process (if this number is
not limited), or as a convenient mixed closure-CSP method (obtaining a set of
solutions, instead of a unique solution that results of a pure CSP process). The
greater the number of indecisions maintained (disjuncts allowed), more solutions
are also maintained, and fewer backtrackings are needed to obtain a solution.
Moreover, we obtain a more incremental method in that we reduce the need to
know in advance all constraints. This process varies itself automatically with
the number of maintained disjunctions and which disjunctions are maintained
in every moment.

The second parameter, the set of heuristics to apply, provides efficiency to
the method in that they can take better decisions. Each input constraint acts
as a variable, and each disjunction in a constraint represents a possible value
for that variable. So, in each iteration we have to decide the next constraint to
add (by means a variable heuristic), and which disjunctions (by means a value
heuristic) have to be maintained in the network. We can create new heuristics
(that we have named mixed heuristics), that combine the results of several ones,
in order to take advantage of major information derived in the LTCN by the
closure process applied. The value heuristics applied return a value set with a
maximal cardinality indicated by the first parameter. So, we can maintain several
disjunctions at the same time, and delay the corresponding decisions.

The result obtained applying this method allow us to obtain a set of solutions,
instead of a unique solution that results of a pure CSP process.

5.1 Closure-CSP algorithm

The algorithm that implements the method outlined above is the following:
The Closure-CSP (C, ind, hvar, hval)
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1. For each non-disjunctive ci ∈ C do
2. C ← C −ci ; result ← closure(ci);
3. If not result then return Inconsistent end-if;
4. End For;
5. While C 6= ∅ do
6. ci ← detect non disjunct(C);
7. result ← closure(ci);
8. If not result then backtracking end-if;
9. C ← C − ND; nextDisj ← chooseVar (C,hvar);
10. result ← closure(nextDisj);
11. If not result then backtracking end-if;
12. decis ← chooseVal (nextDisj, hval);
13. decis ← validate decision (decis, C);
14. decis ← revise pending decisions (decis);
15. If |decis|> ind then decis ← restrict dec (decis) end-if;
16. result ← closure(decis);
17. end-while
end Closure-CSP

C is the set of input constraints, ind is the maximal number of pending
decisions in the network, hvar and hval are the variable and value heuristics
respectively. Initially, we have an empty LTCN.

The closure process updates the initial LTCN, with the non-disjunctive con-
straints ci (once at a time), obtaining a new minimal LTCN, or false, if it detects
any inconsistency (in this case the problem has no solution). We record all ci

constraints added, and also we record some minimal LTCNs. When a dead-end
is encountered, we returns to last minimal LTCN recorded, and add the cor-
responding ci constraints to the C set (step 8). Initially, we have recorded one
LTCN for each ten ci constraints added to the network.

We apply a process named detect non disjunct (step 6), that detect disjunc-
tive constraints from C that will convert in non disjunctive ones due to new
inferred constraints obtained in step 7.

We use chooseVar in order to decide the next disjunctive constraint to be
added to the network (nextDisj )from the constraint set C, and we use the vari-
able heuristic hvar to choose it (step 9).

Once nextDisj is propagated by the closure process (step 10), it results a false
value, a dead-end is encountered and we realize a chronological backtracking
process.

Next, we choose a value set (that is, a set of disjunctions) from the constraint
added (nextDisj ) using the value heuristic hval (step 12). This heuristic decide
which disjunctions have to be maintained in the network. If the heuristic decides
more of one disjunction, then we have an indecision (that will correspond to
several pending decisions). The resulting decision (decis has to be validated
(step 13). The validate decision process detects possible future inconsistences of
decis with pending disjunctive constraints to add from the C set.
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Next, we revise possible pending ordering decisions in decis from previous
iterations. This is done by revise pending decisions (step 14). We modify the
decision value, removing from decis possible pending decisions, that can be de-
cided now. Moreover, we can maintain during a certain chosen time an indecision
in the network, by fixing a limited number of iterations in order to reduce the
propagation cost.

We can also modify (restrict) the decision value (decis) depending on maxi-
mal cardinality of the network constraints, indicated by the ind parameter, if it
is necessary. This is done by the restrict dec process in step 15.

Finally, we proceed to closure (step 16) the resultant decision value decis.
The computational cost of the closure process is O(n2l2e), in which n is

the number of nodes in the network, l is the maximal number of disjunctions
of input constraints, and e is the number of input constraints updated in the
previous LTCN. This is the bounded cost of each iteration of the algorithm
Closure-CSP 4. This complexity makes infeasible to solve real problems, so we
have introduced the parameter to maintain a maximal number of indecisions,
and the use of convenient variable and value heuristics.

5.2 Mixed Heuristics

Due to the closure process used, that maintain a minimal LTCN, from a previous
LTCN, more information is derived when we add a new constraint to the network.
This allow us to use more informed heuristics.

Moreover, the value heuristics used can make a decision, several decisions, or
not decide at all, in that we allow that several disjuncts can be maintained in
the network (and decided later).

Considering the facts outlined above, we decide to use new heuristics that
combine the results of several heuristics in order to reinforce or reject, the de-
cision taken by them. Our idea is to take advantage of the major information
propagated, in order to take better decisions avoiding backtrakings. So, we ob-
tain more flexible partial solutions.

Therefore, we can create new heuristics that can be adapted to particular
features of problem considered, or to set of solutions that we aim to obtain. For
example, we can obtain a new heuristic that returns simply the intersection of
the sets returned by two or more heuristics hi. Examples of mixed heuristics can
be found in [14] and [15].

6 Applying the Model

The general framework proposed can be applied to a great variety of problems
that can be considered as CSP problems, such as vehicle routing, planning and
scheduling. We have carried out some work with scheduling problems, and as

4 The best case occurs when the algorithm acts as a pure CSP. Then, the closure
process has a polynomial cost.
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result we have been able of specifying a set of constraints not contemplated
in previous approximations, such as setup and maintenance periods of the re-
sources, consider the cost of use of resources, and others types of scheduling
problems such as production lots [16].

Moreover, we have applied the Closure-CSP algorithm to solve several in-
stances from a known benchmark of scheduling problems, and we have used also
several randomly generated instances in order to analyze the resolution method.
The results have shown that it is able to finding the optimal solution in most of
cases, with a minimal number of backtrackings needed. Furthermore, the use of
mixed heuristics, allows us to obtain better solutions than isolated heuristics.

In Figure 1 we show an experiment to demonstrate the capability of the
proposed model to repair partial solutions when we add new constraints that
are not known from the beginning.

Fig. 1. Constraints re-considered in order to repair partial solutions.

We have used 15 randomly generated 10× 15 job-shop instances (Ii). Each
one of them has a constraint set Ci that contains 130 non-disjunctive and 225
disjunctive constraints. For each instance Ii, we choose 230 randomized con-
straints from the corresponding Ci set, and remove they from Ci, and solve the
partial problem obtained. Next, we add successively 20 randomized constraints
from the other 100 constraints of Ci set. We represent in Figure 1 the averaged
number of constraints previously asserted that can be re-considered for all 15
instances, and for each constraint added. We can observe that this number is
low, and it decreases when we maintain more indecisions in the network.

We have used Common Lisp with a Pentium III Computer and, for example,
the time spent to solve the known ft06 (size 6×6) is 0,1 secs., and to solve ft10
(size 6×6) we spent 0,3 secs. The time spent to solve 30 randomly generated
instances (size 10×5), with a bottleneck resource, and a limited makespan vary
from 1,2 secs to 5 secs, allowing 0 indecisions and five indecisions respectively.

7 Conclusions

We have shown a new approximation to manage complex constraints in the
framework of CSP problems. The labelled-TCSP model proposed handles metric
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and disjunctive temporal constraints. This results in a more expressive model
that allow us to:

The advantages of this representation over previous approaches are:

– Specify complex constraints derived from disjunctive constraints, and con-
ditional constraints.

– Include cost information that can be managed in an integrated manner with
the resolution method.

– Provide more flexible solutions: the partial solutions are easier to repair in
the case of problem changes.
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