
A Dynamic Scheduling Algorithm for Real-Time 
Expert Systems 

A. M. Campos 

Department of Informatics 
University of Oviedo 

Campus de Viesques, 1.2.12. Asturias 33271, SPAIN 
Phone 985182518, Fax 985181986 
campos@atc.uniovi.es 

 

D. F. García 

Department of Informatics 
University of Oviedo 

Campus de Viesques 1.2.14, Asturias 33271, SPAIN 
Phone 985182066, Fax 985181986 
daniel@atc.uniovi.es 

Abstract. Computational characteristics of real-time expert systems have been 
the subject of research for more than a decade. The computation time required 
to complete inferences carried out by expert systems present high variability, 
which usually leads to severe under-utilization of resources when the design of 
the schedule of inferences is based on their worst computation times. Moreover, 
the event-based aperiodic activation of inferences increases the risk of transient 
overloads, as during critical conditions of the controlled or monitored 
environment the arrival rate of events increases. The dynamic scheduling 
algorithm presented in this article obtains statistical bounds of the time required 
to complete inferences on-line, and uses these bounds to schedule inferences 
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the subject of research for more than a decade. The computation time required 
to complete inferences carried out by expert systems present high variability, 
which usually leads to severe under-utilization of resources when the design of 
the schedule of inferences is based on their worst computation times. Moreover, 
the event-based aperiodic activation of inferences increases the risk of transient 
overloads, as during critical conditions of the controlled or monitored 
environment the arrival rate of events increases. The dynamic scheduling 
algorithm presented in this article obtains statistical bounds of the time required 
to complete inferences on-line, and uses these bounds to schedule inferences 
achieving highly effective utilization of resources. In addition, this algorithm 
handles transient overloads using a robust approach. During overloads our 
algorithm completes nearly as many inferences as other dynamic scheduling 
algorithms, but shows significantly better effective utilization of resources. 

1. Introducción 

The potential benefits of using expert systems in real-time environments has sparked 
research on algorithms and techniques to fulfill the temporal requirements and 
overcome the limitations of using expert systems in these environments. Various 
research projects have addressed the high variability of time required to complete 
inference processes, and the inexistence of tight bounds for inference time [1], [2], 
[3]. In addition to this formal research, the demand by industry for adequate software 
development tools has motivated the appearance of fast inference engines and 
complete development environments, such as G2 (by Gensym Corp.), Cogsys KBS 
(by Cogsys Ltd.) or Rtie (by Talarian Corp.). Some of these tools are suitable for 
building expert systems for on-line continuous operation or soft real-time expert 
systems. 

The applicability of some of these tools for building real-time expert systems for 
automating or monitoring complex industrial processes has been evaluated. Although 
some of the tools claim to be the definitive solution for developing real-time expert 
systems, most of them do not recognize the concept of a real-time task as a 
computation that must satisfy a time restriction. So, management of temporal 
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requirements in design decisions is complicated. Furthermore, the scheduling policy 
is a key element of the design to fulfill the temporal requirements in real-time 
systems. Few of the commercial tools provide the system designer with any 
scheduling mechanisms. Some of them only allow the application of static priorities 
to the rules, which does not provide sufficient predictability of the system. In 
addition, when a real-time expert application developed with commercial tools must 
co-exist with other applications in the same computer, there is no a clear way of 
knowing how the expert application is using computer resources. This makes it 
impossible to control CPU assignment among all running applications. Clearly, there 
is a need for a specific real-time expert system based on a compact (embeddable) and 
easily connectable architecture, which is perfectly integrated in the operating system, 
and allows scheduling inferences following a well-defined policy. 

The solution presented in this work involves serializing the use of a single 
inference engine by all the tasks in the system. This approach allows the use of a fast, 
general-purpose inference engine without truth maintenance support, because the 
working memory content will not be corrupted by the preemption of one running 
inference by another. In real-time expert systems, data input/output duration can 
usually be considered negligible when compared to inference duration. Thus, the 
behavior of our real-time expert system can be analyzed as the problem of scheduling 
a set of inference tasks, whose main characteristic is a highly variable computation 
time, in a non-preemptive way. The arrival of tasks, associated to changes in the 
environment, is aperiodic. This characteristic, added to the highly variable 
computation time of tasks, makes dynamic scheduling necessary. In addition, event-
based aperiodic arrival of tasks can easily lead to transient overload conditions, 
related to critical conditions of the environment to be monitored or controlled. During 
these transient overloads the performance of a real-time expert system must be 
predictable. In summary, a dynamic, non-preemptive scheduling algorithm for tasks 
with aperiodic arrival and highly variable computation times, with graceful 
degradation during transient overloads, has been developed and evaluated.  

The rest of the paper is structured as follows. In the next section the system model 
is presented. Section 3 presents the scheduling algorithm. The final sections describe 
the load and performance metrics used and include the results obtained. 

2. System Model 

The real-time expert system is composed of a set of n  tasks, called intelligent tasks, 
},,,{ 21 nτττ K . Intelligent tasks are invoked aperiodically by events (stimulus) 

received from the environment, and produce a corrective reaction to this environment 
through the adequate interface. Arrival times, ia , of events are not known in advance 
(the system is non-clairvoyant), and there is no lower bound on the duration between 
occurrences of the same event. Worst-case computation times, ic , of the intelligent 
tasks are not known in advance (the high variability of execution time makes bounds 
obtained by static analysis very pessimistic), but an on-line estimation of the 
worst-case computation time, iĉ , will be calculated, as is described later. Each 
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intelligent task must meet a time restriction defined by its relative deadline, id . If a 
task does not meet this requirement, the task is said to have failed. Missing a deadline 
would not jeopardize the behavior of the system, although the benefit of executing a 
task that misses its deadline is zero (firm tasks). In this first approach, the benefit (the 
utility) of executing a task before its deadline has been considered constant for each 
task. Thus, an intelligent task, iτ , is defined by the 4-tuple  ),,ˆ,( iiii udca , where ia  
is the arrival time of the event that invokes the task, iĉ  is a estimation of the 
worst-case computation time, id  is the relative deadline of the task and iu  is the 
benefit obtained if the task execution finishes prior to its deadline. 

Intelligent tasks are broken down into three activities: data acquisition, inference 
and actuation. During data acquisition, data from the environment are obtained and 
pre-processed. During inference, conclusions about the environment are obtained 
sharing a single unit resource in exclusive mode, the inference kernel. Only the 
inference activity of one task can be executed by the system at a time. Actuation 
applies corrective actions over the environment if necessary. In general, the resources 
used by acquisition and actuation activities of tasks do not require exclusive access. 
So two or more of these activities of different tasks can use resources concurrently. 
The usage of resources by both data acquisition activities and actuation activities are 
negligible compared with the consumption of resources of the inference activity (in 
particular, the highest consumption of resources, up to 90%, takes place during the 
pattern-matching phase [4] of the inference activity). 

In summary, at a given moment, t , the expert control system can be modeled as a 
set of n  firm aperiodic tasks },,,{ 11 nτττ K , defined by 4-tuples ),,ˆ,( iiii udca , 
which compete for the use of an exclusively usable single unit resource, the inference 
kernel. 

The sum of the utilities of all the tasks in the set is the total value of the task set. 
The task set is said to be feasible when all the tasks of the set can be completed before 
their deadlines. If one or more tasks fail, the system is said to be overloaded. 

3. Scheduling Algorithm 

The goal of an algorithm that schedules the execution of intelligent tasks is to find a 
schedule for a given task set which obtains as high a value as possible, while fulfilling 
the restrictions imposed by the environment and the internal architecture of the expert 
system itself. In this paper we assume that the expert system runs in a uniprocessor 
machine. 

Exclusive access imposed by the inference kernel makes the problem of finding a 
feasible schedule NP-Hard [5]. It is well known that optimal pre-emptive scheduling 
algorithms for uniprocessor systems are not optimal when preemption is not allowed, 
as with Lowest Laxity First algorithm [6], or remain optimal but under more 
restrictive conditions, as with Earliest Deadline First (EDF) algorithm. EDF was 
proven to be optimal in a non-preemptive task model if the processor does not remain 
idle while there are tasks waiting to be executed [7][8]. As the expert system is 
non-clairvoyant, there is no reason to remain idle while there are tasks waiting in the 
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system, so the EDF algorithm is optimal in the sense of feasibility. In addition, 
deadline scheduling means that it is not necessary to know computation times of tasks 
in advance, ratifying the EDF selection. Unfortunately, the performance of EDF is 
dramatically reduced in overload conditions, so the effect of a transient overload can 
be catastrophic [9]. This risk is unacceptable for most real-time applications, and in 
particular for real-time expert systems, as overload conditions are normally related to 
critical conditions in the environment 

Overloads can be handled using two basic techniques [10]. The first technique, 
guarantee, handles overloads by using acceptance tests, and rejecting tasks that makes 
the task set unfeasible. The second technique, robust, is an extension of the first 
technique, in which rejected tasks enter a reject queue from where they can be rescued 
for execution or finally discarded. 

The best effort technique is not adequate for real time expert systems with 
non-preemptive restrictions, as it does not predict overloads. If EDF is used running 
without overload prediction, catastrophic situations will result. Nor are guarantee 
techniques adequate because of the high variability of the execution time of intelligent 
tasks. Consequently, using guarantee techniques there is a risk of under-utilization of 
resources. So, only robust-like approaches are able to achieve adequate scheduling for 
this kind of system. 

Our algorithm uses statistical information, obtained on-line, about the intelligent 
tasks in order to detect a system overload. If the system is not overloaded, the 
intelligent task to run is selected following EDF policy. If, on the contrary, an 
overload is detected, the task to execute is selected as a function of the probability of 
success and the expected utility. Tasks remain in the system until they have missed 
their deadlines. 

3.1.  Overload detection 

The high variability of the computation time of intelligent tasks reduces the validity of 
the feasibility analysis of the complete set of tasks in the expert system. It is quite 
normal to have time after executing one intelligent task or to miss a deadline due to an 
unexpectedly long computation, so feasibility analysis loses validity as the number of 
executed tasks of the analyzed set increases. Also, as intelligent tasks can share data 
stored in the working memory of the real-time expert system, the computation time of 
intelligent tasks can be influenced by the computation of previous tasks. The 
aperiodic arrival of new intelligent tasks can also make long feasibility analysis 
invalid. Thus, this work predicts overloads after the execution of every task using all 
the tasks in the system, but considering only one-task-ahead execution, as is explained 
below. 

Let 10, <≤ℜ∈ αα  be the maximum admissible probability of missing a 
deadline, chosen at design time. If iĉ  is an estimator of the worst-case computation 
time of task iτ  with a confidence level of α−1  (that is 

101)ˆ( <≤−≥≤ ααii ccP ), the laxity, iL , of the task iτ , defined in (1), can be 
obtained at any instant, t . 
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tcdaL iiii −−+= ˆ  (1) 

If the laxity of the task is negative, the probability that task iτ  will fail is given by 
(2). 

ατ >⇒< )(0 failsPL ii  (2) 

Before executing a task, the laxities of all the tasks in the system are calculated. If 
the laxity of even one task, i.e. iτ , is negative, the expert system is considered 
overloaded because the probability of failing when executing iτ  is inadmissible. 

Tchebychef’s inequality [11] allows us to estimate the worst-case execution time 
of intelligent tasks using the sample mean and the sample variance of the past 
execution times of the tasks. 

Let iµ̂  and 2ˆ iσ  be the sample mean and the sample variance of task iτ  after 1+n  
samples of ic , obtained recursively using (3) and (4). 
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If both iµ̂  and 2ˆ iσ  are finites, given 1, ≥ℜ∈ kk  Tchebychef’s inequality gives a 
lower bound of the probability that ic  belongs to an interval centered in iµ̂  and with 
radius ikσ̂ , as holds (5). 

2
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(5) 

From (5), (6) and (7) immediately follow. 

2
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As 0)ˆˆ( ≥≤− iii ckP σµ , (8) can be obtained from (7). 
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That is, for each value of 1, ≥ℜ∈ kk , computation time ic  of task iτ  is known to 
be lower than ii kσµ ˆˆ +  with a probability of 2/11 k− . From (8) we also get (9), 
where the value α−1  is the confidence level of the bound. 

10,1111)ˆˆ(
2

<≤≥−=−≥+≤ αασµ k
k

kcP iii  
(9) 

So, the worst-case computation time, iĉ , of task iτ  can be estimated using (10) 
with a confidence level of α−1 . 

iiiii kc σαµσµ ˆˆˆˆˆ 2/1−+=+=  (10) 

Tchebychef’s inequality makes no suppositions about probability distribution of 
computation time, so bounds obtained are usually pessimistic. As (8) also neglects the 
value of )ˆˆ( iii ckP ≤− σµ , bounds are even more pessimistic. Thus, it is not 
necessary to choose high values of k  to obtain bounds of adequate confidence. We 
have determined empirically that a value of 2=k  or, what is the same, a confidence 
level of 75.01 =−α  are adequate for most cases. 

3.2.  Scheduling policy during overloads 

If the system is overloaded, EDF must be replaced by a more adequate scheduling 
policy. We have observed that during overloads the result of executing a task with 
low probability of success is even worse for non-preemptive than for preemptive 
systems. If a task cannot be preempted once scheduled, all the tasks of the system 
may miss their deadlines if their laxity is small. For this reason, during overloads 
tasks are run taking their probability of success into account. 

The benefit of executing tasks must also be taken into account, as it can not be the 
same for all tasks. Thus, in some situations it is preferable to execute a task with a 
lower probability of success but which will provide greater benefit if it succeeds. 
Locke [12] observed experimentally that running the tasks with the greatest values of 
the ratio ii cu /  allows the system to achieve a utility at least as high as with any other 
policy. 

The dynamic priority of the tasks, ip , obtained using (11) summarizes both 
factors, and so was chosen as the policy to select tasks to be run during overloads. 
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Tasks with high utility and high (positive) laxity have high values of ip . Tasks 
with low utility and low (negative) laxity have values of ip  near zero: a task remains 
in the system until its deadline is missed, and at that moment 

0ˆˆˆ =+⇒−=−−+= iiiiiii cLctcdaL . 
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4. Results 

The results achieved using the scheduling policy presented in this work are measured 
using two performance metrics, the completed task ratio CTR (the count of tasks 
completed before their deadlines divided by the total number of task arrivals) and the 
effective processor utilization EPU (the time consumed executing tasks completed 
before their deadlines, divided by the total time consumed). Only these two 
measurements have been included as in most cases the number of tasks completed and 
the value of the effective processor utilization is enough to analyze the behavior of a 
system during overloads [16]. The results presented are obtained by assigning the 
same constant utility of 1 to all the tasks in the system. So another broadly used 
metric, the hit value ratio [10], is not included as it coincides with the completed task 
ratio. 

Results are obtained for various sets of tasks, composed of a number of tasks, n , 
of 10, 25 or 50 intelligent tasks. Only results for the case of 10=n  are presented (see 
Fig. 2), as they can be safely extrapolated to the cases of 25 and 50 tasks. 
Computation time of tasks are random variables distributed following an Erlang 
distribution [17], whose probability density function is shown in (12), with 2=k  and 
variable mean value ii kc λ/= . 
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Mean computation time of tasks, ic , varies uniformly from a value of 1 to a value 
of maxc , where maxc  takes the values 1, 10, 25 or 50. Relative deadlines of tasks, id , 
are defined by (13). 

iii ccd ⋅+= 4  (13) 

The mean load of the system, L , (see (14)), ranges from a value of 0.5 to a value 
of 1.5, where if  is the arrival rate of each intelligent task. 

i
i

i fcL ∑=  (14) 

For each value of n , ic  and L  arrival rates of tasks, if , are obtained using (15). 

nc
Lf

i
i ⋅

=  
(15) 

Each intelligent tasks contributes equally to the load of the system with a demand 
value of nL / . 

The results are obtained from simulations of 180000 time units in length, divided 
in 30 batches of 6000 time units each, which assures a significance level of the 
measurements presented greater than 90%. Figures include results obtained by 
scheduling tasks following our scheduling policy, EDF policy and maximum expected 
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ii cu ˆ/  policy (or maximum value density, MVD). EDF has been included for 
reference, and it is very important to take into account the fact that tasks are removed 
from the system when they miss their deadline, which dramatically improves EDF 
performance during overloads. 

Comparing the behavior of the new algorithm with the behavior of the EDF 
algorithm, the validity of overload detection can be affirmed, as the new algorithm 
behaves as well as EDF when the mean load is low, and degrades gracefully when the 
mean load increases. It can also be observed that the new algorithm achieves nearly 
the same value of CTR as the MVD algorithm, while the EPU is always better. 

The better behavior of the MVD can be explained by analyzing the CTR of tasks 
individually for high values of the mean load, shown in Fig. 1. With 10=n , 

10=maxc , and values of mean load 25.1=L  and 5.1=L , MVD shows preference for 
tasks with short computation time (dashed lines), which improves the count on 
completed tasks with respect to the new algorithm (continuous lines), which improves 
the balance between the number of tasks with long and short computation time 
scheduled. 
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Fig. 1. CTR for each task of the set with 25.1=L  (left) and  5.1=L  (right). 

Conclusions 

This work presents a new scheduling algorithm designed to be coupled with a specific 
real-time expert system architecture, whose main characteristic is the serialization of 
inferences. The algorithm exploits the observation that in non-preemptive systems 
deadline misses cause high performance degradation and the well-known properties 
of the MVD scheduling. As its performance analysis shows, the algorithm achieves 
highly effective utilization of resources, and nearly as high a task completion ratio as 
the MVD algorithm. 
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Fig. 2. Performance comparison of the new scheduling algorithm (continuous lines), EDF  
dotted lines) and MVD (dashed lines) for 10=n  tasks. 
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