
Scheduling as Heuristic Search with State Space
Reduction

Ramiro Varela y Elena Soto

Centro de Inteligencia Artificial.
Universidad de Oviedo. Campus deViesques. E-33271 Gijón. Spain.

Tel. +34-8-5182032. FAX +34-8-5182125.
e-mail: ramiro@aic.uniovi.es

http:\\www.aic.uniovi.es

Abstract. In this paper we confront the Job Shop Scheduling problem by means
of an A* algorithm for heuristic state space searching. This algorithm can
guarantee optimal solutions, i.e. it is admissible, under certain conditions, but in
this case it requires an amount of memory that grows linearly as the search
progresses. We hence start by focusing on techniques that enable us to reduce
the size of the search space while maintaining the ability of reaching optimal
schedules. We then relax some of the conditions that guarantee optimality in
order to achieve a further reduction in the number of states visited. We report
results from an experimental study showing the extent to which this reduction is
worth carrying out in practice.

1 Introduction

State space searching is a classic artificial intelligence technique suited to problems
involving deterministic actions and complete information. It has a number of
interesting properties, such as the ability to guarantee optimal solutions and the
possibility of exploiting domain knowledge to guide the search. Unfortunately, even
when a great amount of knowledge is available at a reasonable computational cost,
the total cost of a search process is prohibitive, since the number of explored nodes
grows linearly with the size of the search space, even for small problem instances. For
this reason, a number of techniques are usually employed to reduce the effective
search space with the subsequent loss of optimality.

In this paper we confront the Job Shop Scheduling (JSS) problem by means of an
A* heuristic search algorithm [6,7]. Firstly, we use a technique that enables us to
restrict the search space to the set of active schedules. This is a subset of feasible
schedules to a given problem that contains at least one optimal solution. In order to do
so, we exploit the strategy of the well-known G&T algorithm [4]. As we will see in
the reported experiments, this technique combined with a classic heuristic can solve
small problem instances to optimality. We then exploit two more methods aimed at
further reducing the number of states expanded during the search. The first one
consists in a reduction of the search space that limits the search to a subset of the
active schedules. The second is a weighted heuristic method that assigns more

reliance to the heuristic estimation during the first stage of the search. It becomes
clear that neither of the aforementioned methods maintains admissibility, i.e. the
guarantee of reaching optimal solutions. However, the effect can be controlled in both
cases by means of parameters. We report results from an experimental study in which
we calculate the value of the parameters that produce the optimal solution at the
lowest cost of the search procedure.

The rest of the paper is organized as follows. In Section 2, we formally describe
the JSS problem. In Section 3, we present a version the G&T algorithm, the so-called
hybrid G&T, and show how this algorithm can be adapted by means of a parameter to
define a search space representing either the whole set or a subset of active schedules.
In Section 4, we summarize the main characteristics of the A* algorithm, as well as
the heuristic strategies that we used in the experiments. In Section 5, we report the
results from our experimental study. Finally, the main conclusions are summarized in
Section 6, where we also propose a number of ideas for further work.

2 The Job Shop Scheduling Problem

JSS requires scheduling a set of jobs {J1,...,Jn} on a set of physical resources or
machines {R1,...,Rq}. Each job Ji consists of a set of tasks or operations {ti1,...,timi} to
be sequentially scheduled. Each task has a single resource requirement and a fixed
duration or processing time duil and a start time stil whose value must be determined.
We assume that there is a release date and a due date between which all the tasks have
to be performed.

Furthermore, the problem presents two non-unary constraints: precedence
constraints and capacity constraints. Precedence constraints, defined by the
sequential routings of the tasks within a job, translate into linear inequalities of the
type: stil + duil ≤ stil+1 (i.e. stil before stil+1). Capacity constraints, which restrict the use
of each resource to only one task at a time, translate into disjunctive constraints of the
form: stil + duil ≤ stjk ∨ stjk + dujk ≤ stil (two tasks that use the same resource cannot
overlap). The most widely used goal is to come up with a feasible schedule such that

t01 R0 t02 R1 t03 R2
4 3

t11 R0 t12 R2 t13 R1
2

3

t11 R2 t22 R0 t23 R23

3

end

1

3

2

start

0

0

0

4

2

4
3

2
3

3
3

3
3

21
2

3

1
3

3
3

Fig. 1. A directed graph representation of a JSS problem instance with three jobs. The
release date is 0 and the due date is 15. The resource requirement of each task is
indicated within the boxes. Arcs are weighted with the processing time of the task at
the outcoming node.

the completion time of the whole set of tasks, i.e. the makespan, is minimized.
In the following, a problem instance will be represented by a directed graph G =

(V, A∪E). Each node of the set V represents a task of the problem, with the exception
of the dummy nodes start and end, which represent tasks with processing time 0. The
set of arcs A represents the precedence constraints and the set of arcs E represents the
capacity constraints. The set E is decomposed into subsets Ei with E=∪i=1..mEi, such
that there is one Ei for each resource Ri. The subset Ei includes an arc (v,w) for each
pair of tasks requiring the resource Ri. Figure 1 depicts an example with three jobs
{J0,J1,J2} and three physical resources {R0,R1,R2}. Solid arcs represent the elements of
the set A, whereas dotted arcs represent the elements of the set E. The arcs are
weighted with the processing time of the task at the source node. The dummy task
start is connected to the first task of each job; and the last operation of each job is
connected to the node end.

A feasible schedule is represented by an acyclic subgraph Gs of G, Gs=(V,A∪H),
where H=∪i=1..mHi, Hi being a Hamiltonian selection of Ei. The makespan of the
schedule is the cost of a critical path. A critical path is a longest path from node start
to node end. When this value is less than or equal to the due date, the schedule is a
solution to the problem. Therefore, finding a solution can be reduced to discovering
compatible Hamiltonian selections, i.e. orderings for the tasks requiring the same
resource or partial schedules, that translate into a solution graph Gs without cycles
whose critical path does not exceed the due date. Figure 2 shows a graph representing
a feasible solution to the problem of Figure 1.

2 The G&T Algorithm and the State Space for the JSS Problem

This is the well-known algorithm proposed by Giffler and Thomson in [4]. Here we
present a variant called hybrid G&T that is based on a chromosome-decoding schema
proposed by Bierwirth and Mattfeld in [2] within the framework of a Genetic
Algorithm. This schema is in turn inspired by a proposal made by Storer, Wu and
Vaccari in [11] for state space searching. In principle, the G&T is a greedy algorithm

t01 R0 t02 R1 t03 R2
4 3

t11 R0 t12 R2 t13 R1
2

3

t21 R1 t22 R0 t23 R23

3

end

1

3

2

start

0

0

0

2

4

3

2

3
3

Fig. 2. A feasible schedule for the problem of Figure 1. The boldface arcs show the
critical path whose length, i.e. the makespan, is 12. Hence it is actually a solution to
the problem, because this value is less that 15, the due date.

that builds up a schedule for a given problem by scheduling one task at a time. In each
iteration, a subset of tasks B is determined such that no matter how a task is selected
from B to be scheduled next, the resulting schedule is active. Active schedules are a
subset of feasible schedules in which no operation could be started earlier without
delaying some other operation. It is easy to prove that the set of active schedules
contains at least one optimal schedule. Thus, a search constrained to the whole set of
active schedules is exhaustive, while keeping the size of the search space much
smaller than a search over the whole set of feasible schedules.

Figure 3 shows the hybrid G&T algorithm. This is a variant of the genuine G&T in
which a narrowing mechanism is introduced that enables a reduction of set B in each
iteration. This is controlled by a reduction parameter δ∈[0,1]; when δ=1, sentence 6
has a null narrowing effect and hence we have the original G&T algorithm. In this
case, it is possible to envisage a non-deterministic sequence of operation selections
that gives rise to an optimal schedule. Otherwise, i.e. if δ<1, the search is restricted to
a subset of the active schedules; thus guaranteeing the existence of such a sequence is
no longer possible. As pointed out in [2], the algorithm produces a non-delay schedule
at the extreme δ=0. Non-delay scheduling means that no resource is kept idle when it
could start processing some operation.

Given its non-deterministic nature, the G&T algorithm can be particularized in
many ways by fixing a selection criterion at step 7. For example, it has been widely
used in the context of Genetic Algorithms as a decoding schema and is usually
combined with some dispatching rule to design a greedy, non-optimal algorithm.

 Algortithm G&T hybrid
 1. A = set containing the first task of each job;
 while A ≠∅ do
 2. Determine the task θ’∈A with the shortest completion time if
 scheduled in the current state, that is tθ’+duθ’≤ tθ + duθ, ∀θ∈A;
 3. Let M’ be the resource required by θ’, and B the subset of A
 whose tasks require M’;
 4. Delete from B every task that cannot start at a time lower than
 tθ’+duθ’;
 5. Determine task θ’’∈B with the lowest possible start time, let tθ’’
 be this time;
 /* the least start time of every operation in B, if it is selected next, is
 a value of the interval [tθ’’, tθ’+duθ’] */
 6. Reduce the set B such that
 B = { θ∈B / tθ < tθ’’ +δ((tθ’+duθ’) - tθ’’) }, δ∈[0,1]};
 /* now the interval is reduced to [tθ’’, tθ’’ +δ((tθ’+duθ’) - tθ’’] */
 7. Select θ*∈ B and schedule it at its lowest possible start time to
 build a partial schedule corresponding to the next state;
 8. Delete θ* from A and insert the next task of θ* in this set if θ*
 is not the last task of its job;
 endwhile;

Fig. 3. The hybrid G&T algorithm; tθ stands for the start time of operation θ and duθ for its
processing time.

In this paper, we use the G&T algorithm to define a search space that can be
explored by a conventional state space search algorithm such as backtracking or best
first (BF). This idea was used for instance in [5] and consists in the following two
steps, bearing in mind that the initial state s represents a null partial schedule PS∅:

1. At a state n representing a partial schedule PST for a set of tasks T, calculate a set B

as done by the G&T algorithm in an analogous situation.
2. For each task t∈B, generate a successor n’ of n with a partial schedule PST’, T’

being T∪{t}, by scheduling t at its lowest start time from the partial schedule PST.

Hence the branching factor of the state space is given by the average value of the

cardinality of set B over the whole set of states. This branching factor is expected to
be much lower than the one obtained with other approaches like, for example, those
proposed in [9] and [1], which might be found to be impractical for an admissible
search, even for a small problem instance. On the other hand, the cost c(n,n’) is given
by the difference Cmax(PST’) – Cmax(PST), where Cmax(PST) is the maximum completion
time of a task in the partial schedule PST. It is easy to prove [10] that the state space
generated in this way is a tree.

The state space proposed in [9] consists in selecting an unscheduled operation at a
given state and then considering all the possible starting times compatible with the
current partial schedule. For each one of these start times, a new partial schedule is
built by scheduling the current task at this time. This strategy requires the
establishment of a due date for each job so that the current set of possible start times
could be restricted to a finite set. This set is initially determined from the release and
due dates and the precedence constraints and is further reduced as long as the search
continues.

On the other hand, the state space proposed in [1] consists in reductions of the
constraint graph of the problem by means of various types of commitments that can
be asserted and retracted; for example, fixing a start time of an operation or posting a
precedence constraint between activities. In this case, the approach generalizes the
JSS problem to other situations where, for example, one goal might be to minimize
the number of resources used. In both cases, good experimental results are achieved
using a backtracking search guided by means of smart, powerful heuristics. However,
it becomes clear that both of the cited schemas are not suitable for an admissible
search like A*, due to the fact that the branching factor is so high that it is impractical
to store all the states required.

4 The A* Algorithm

The A* algorithm is a general BF heuristic search for graphs [6,7], though the
algorithm is much simpler if the state space is a tree. It starts from an initial state s, a
set of goal nodes and a transition operator SCS such that for each node n of the search
space, SCS(n) provides the set of successor states of n. Each transition from a node n
to a successor n’ has a positive cost c(n,n’). The algorithm searches for a solution path
from the node s to one of the goal states. At any one time, there is a set of candidate

nodes to be expanded which are maintained in an ordered list OPEN; this list is
initialized with the node s. Then in each iteration, the node to be expanded is always
the one in OPEN with the lowest value of the evaluation function f, defined as
f(n)=g(n)+h(n); where g(n) is the minimal cost known to date from the node s to the
node n, (of course if the search space is a tree, the value of g(n) does not change,
otherwise this value has to be updated as long as the search progresses) and h(n) is a
heuristic positive estimation of the minimal distance from n to the nearest goal.

The A* algorithm has a number of interesting properties, most of which depend on
the heuristic function h. First of all, the algorithm is complete. Moreover, if the
heuristic function underestimates the actual minimal cost, h*(n), from n to the goals,
i.e. h(n)≤h*(n), for all nodes, the algorithm is admissible, i.e. the return of an optimal
solution is guaranteed. The heuristic function h(n) represents knowledge about a
specific problem domain, therefore if complete knowledge were available at an
assumable computational cost (at most polynomial on the problem size), i.e.
h(n)=h*(n), the best solution could be found by expanding the lowest number of
nodes possible. Unfortunately, this is rarely the case, and in practical cases we have to
look for the best underestimation whose computational cost is assumable. This is
because another interesting property of the algorithm is that if we have two admissible
heuristics h1 and h2, such that h1(n)<h2(n), h2 is said to be more informed than h1
and it can be proved that in this case every node expanded by h2 is also expanded by
h1. It is then said that the algorithm using h2 dominates the one using h1.

The most common technique for discovering admissible heuristics is problem
relaxation [7]. This consists in relaxing some of the problem constraints so as to
obtain a relaxed problem that can be solved to optimality, or at least a good
underestimation can be made, in polynomial time. Then the solution cost of the
relaxed problem is taken as the real problem cost estimation. In the case of the JSS
problem, the constraints that can be relaxed are precedence and capacity constraints.
Two problem relaxations are common: in the first, every capacity constraint is
relaxed; whereas in the second, every precedence constraint is relaxed. It is easy to
see that the cost of the optimal solution in the first case can be calculated in linear
time. In the second case, however, the relaxed problem has a similar complexity to
that of the original problem, although a reasonably good underestimation of its
optimal cost can also be calculated in linear time. It is clear that the two
aforementioned relaxations are quite strong, hence the relaxed problem is actually
much simpler than the original one and the resulting heuristic is thus not too
informed. Unfortunately, as far as we know, lower relaxed versions of the problem
cannot be solved in an acceptable amount of time. Even though the heuristics
obtained from the two relaxations mentioned above cannot be strictly compared, they
are both expected to perform similarly in square problems, i.e. problems with an equal
number of jobs and resources. However, the second heuristic will probably perform
better for problem instances with much more jobs than resources, whereas in the
opposite case, the first heuristic will probably do so.

In the experimental study described in the next section we consider the first of the
aforementioned heuristics, which is calculated for a state n corresponding to a partial
schedule PST of a subset of tasks T, as follows:

() ()

()
()Tmax

JUS
T

J
maxJOBSJp PSCduPSCMAXnh −









+= ∑
∈

∈
θ

θ
, (1)

where JOBS is the set of jobs of the problem instance, ()T
J
max PSC is the completion

time of the last scheduled task of job J at node n, ()nJUS , is the set of unscheduled
tasks of job J at node n and θdu is the processing time of task θ.

Although the heuristic hp is clearly an underestimation of the optimal cost, the
difference h*(n)-hp(n) is not expected to be uniform for all nodes along the search
process. Nevertheless, this difference is expected to be quite large at the beginning of
the search, subsequently decreasing as the search progress and tends to be null at the
end. This leads us to use the following dynamic weighted heuristic technique: a
weighting factor P(n) is introduced into the h component of the evaluation function f,
so that this function is f(n)=g(n)+P(n)h(n). The value of P(n) depends on the depth of
the node n. In this paper, we propose the following value:

() () 1+









∗
∗−=

MN
ndepthKKnP , (2)

where K≥0 is the weighting parameter, depth(n) is the number of tasks scheduled at
state n, N is the number of jobs and M is the number of resources. It is clear that for
values of K>0, the aforementioned function f is not guaranteed to be admissible, since
the component P(n)h(n) might overstimate the value of h*(n). However, for some
value of K, this component is expected to be a good aproximation of h*(n). Weighted
heuristic search is widely used; for instance, a dynamic weighted method is proposed
in [8] that guarantees that the cost of the solution does not worsen more that a factor ε
with respect to the optimal. In [3], a static method is proposed that uses a constant
weighting factor W for planning problems; this method guarantees a worsening factor
not higher than W. And a dynamic method similar to ours is used in [5] for the JSS
problem in conjuntion with a limited memory schema and a non-admissible heuristic
obtained from a classic dispatching rule that overestimates the optimal cost.

5 Experimental Results

In this section we report results from an experimental study on a set of JSS problems
instances. We used the prototype implementation proposed in [10], which is coded in
C++ language and developed in Builder C++ 5.0 for Windows. The hardware
platform was a Pentium III at 900 Mhz. and 125 Mbytes of RAM. The first problem
of the test bed was problem FT06; this is a small problem obtained from the OR
library (http://www.ms.ic.ac.uk/info.html). The remaining problem instances were
generated by us, as the problem instances from the OR library and other conventional
repositories are too large to be solved to optimality by our implementation in an
acceptable amount of time.

Table 1 shows the results obtained with problem FT06, running the algorithm with
the heuristics h0 and hp and considering values of the parameter δ ranging in the
interval [0.0,1.0]. As expected, heuristic h0 is unable to solve the problem. On the

other hand, heuristic hp can solve the problem to optimality, even with a space
reduction given by δ=0.3. In this case, we can observe a significant reduction in the
number of expanded and generated nodes, the branching factor and the running time,
as long as the parameter δ decreases from 1.0 to 0.3. For values of δ under 0.3, the
number of expanded nodes is higher in some cases, as the search space does not
contain an optimal solution.

Figure 4 shows the evolution of the branching factor over the depth of the search
space for 2 values of the parameter δ. As we can see, a value of δ=0.3 produces a
slightly lower branching factor over the first levels than δ=1.0, which translates into a
lower overall number of both generated and expanded nodes. Here, the branching
factor at depth N is calculated as the quotient of the number of states generated at
depth N+1 and N respectively.

Table 2 shows the reduction in the number of nodes generated and expanded for
increasing values of K. Here we consider the limit values of δ that generate an
exhaustive search space (one containing an optimal solution). As we can see, the
number of generated and expanded nodes clearly decreases while the optimal solution
is still reached, with the exception of value K=0.3, for which a suboptimal solution is
reached.

Table 3 shows the results of an experimental study on a set of 10 problem instances
of size 6×6 with random job sequences and processing times generated at random in
the interval [5,95] from a uniform probability distribution. For each one of the
problems, we report the number of nodes expanded for the limit values of δ and K.
First for values δ=1 and K=0, which are the only values that guarantee optimality.
Then for every instance, we kept K=0 and decreased the parameter δ down to the
lowest value (δmin) that produces an optimal solution. After that, maintaining the
value of δmin, the value of K is augmented to the largest value, Kmax(δmin), that

Table 1. Experimental results from the problem instance FT06 with heuristics h0 and hp.

Heuristic
Reduction

parameter δ

Number of
generated

nodes

Number of
expanded

nodes
Branching

Factor

Cost of the
reached
solution

Run time
(hh:mm:ss)

 0.0 89,129 66,141 1.26 57 09:03:34
0.1 89,129 66,141 1.26 57 09:03:34 h0
0.2 160,575 127,765 1.26 57 57:23:32

 0.3 - - - - >125:00:00
 0.0 4,662 3,651 1.27 57 4
 0.1 4,662 3,651 1.27 57 4
 0.2 9,170 6,797 1.35 57 10
 0.3 5,395 4,007 1.35 55 5

 0.4 8,061 5,702 1.41 55 8
hp 0.5 11,340 7,589 1.49 55 10

 0.6 14,163 9,225 1.54 55 13
 0.7 21,841 13,571 1.61 55 19
 0.8 26,056 15,399 1.69 55 23
 0.9 28,127 16,134 1.74 55 25
 1.0 28,127 16,134 1.74 55 25

produced an optimal solution. And finally, keeping δ=1, the value of K is also
augmented to the largest value, Kmax(δ=1), that produced an optimal solution. As we
can see, the variations of δ and K allowed without loss of optimality are not the same
for all problems and the actual computational cost of obtaining the optimal schedule
varies significantly from one problem to another. In fact, problem instance number 6
could not be solved to optimality. The best solution we were able to obtain was by
running the algorithm with δ=0.9 and K=0.5, after expanding 62328 states.

6 Conclusions

The main conclusion of the experiments reported above is that in real problems it is
possible to reduce the size of the search space as well as to weight the heuristic

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

δ=1.0
δ=0.3

Fig. 4. Evolution of the branching factor over the depth of the search tree for two values of
the parameter δ.

Table 2. Experimental results from the problem instance FT06 with heuristic hp and different
values of δ and K. In every case is the optimal solution reached, except with K=0.3. In this
case, a solution with cost 58 is reached with either value 1.0 or 0.3 of δ.

δ = 0.3 δ = 1.0
K

Number of

Generated Nodes
Number of Expanded

Nodes
Number of

Generated Nodes
Number of Expanded

Nodes

0.00 5,395 4,007 28,127 16,134
0.05 1,715 1,279 9,397 5,472
0.10 1,092 806 5,257 3,013
0.15 812 598 2,545 1,466
0.20 313 237 599 333
0.25 156 109 563 313
0.30 210 165 574 339

evaluation function to some extent up to a certain point given by the values (δmin,
Kmax(δmin)) in such a way that the optimal solution is obtained by expanding a
number of states much lower than the number of states expanded with values (1,0).
Unfortunately, determining the limit values (δmin, Kmax(δmin)) for a given problem
instance is not trivial; it is a new search problem in the two-dimensional space (δ,K).
As future work, we plan to study a systematic way to calculate these values and
experiment with other techniques that reduce the computational cost of the search
procedure.

References

1. Beck, J. Ch., and Fox, M. S. Dynamic problem structure analysis as a basis for constraint-
directed scheduling heuristics. Artificial Intelligence 117, 31-81 (2000).

2. Bierwirth, Ch., and Mattfeld D. C., Production Scheduling and Rescheduling with Genetic
Algoritms. Evolutionary Computation 7 (1), 1-17 (1999).

3. Bonet, B., Geffner, H., Planning as Heuristic Search, Artificial Intelligence 129, 5-33,
(2001).

4. Giffler, B. Thomson, G. L. Algorithms for Solving Production Scheduling Problems.
Operations Reseach 8, 487-503 (1960).

5. Hatzikonstantis, L. and Besant, C. B., Job-Shop Scheduling Using Certain Heuristic Search
Algorithms. Int. J. Adv. Manuf. Tecnol. 7, 251-261 (1992).

6. Nilsson, N., Principles of Artificial Intelligence, Tioga, Palo Alto, CA, 1980.
7. Pearl, J., Heuristics, Morgan Kauffman, San Francisco, CA, 1983.
8. Pohl, I., Practical and theoretical considerations in heuristic search algorithms, Machine

Intelligence 8, Ed. E. W. Elcock and D. Michie, Ellis H. Ltd., Chich., Great Britain, 1977.
9. Sadeh, N., Fox, M.S., Variable and Value Ordering Heuristics for the Job Shop Scheduling

Constraint Satisfaction Problem. Artificial Intelligence 86, 1-41 (1996).
10.Soto, Elena, Resolución de problemas de Satisfacción de Restriciones con el Algoritmo A*.

Proyecto fin de carrera nro. 1012076. ETSII e II de Gijón. Universidad de Oviedo. (2002).
11.Storer, R., and Talbot, F. New search spaces for sequencing problems with application to

job shop scheduling. Management Science 38, 1494-1509 (1992).

Table 3. Experimental results from the set of 10 problem instances

Number of Expanded Nodes Kmax Prob.
Inst. δ=1, K=0 δmin, K=0 δ=1, Kmax δmin, Kmax

δmin
δ=1 δmin

0 14,018 3,373 14,018 3,373 0.4 0.0 0.0
1 1,843 717 1,843 717 0.4 0.0 0.0
2 60,276 32,621 56,953 31,674 0.7 0.1 0.1
3 3,235 280 457 102 0.0 0.2 0.2
4 2,535 543 139 64 0.2 0.3 0.5
5 1,337 219 175 48 0.2 0.2 0.2
6 - - - - - - -
7 11,627 118 11,627 118 0.8 0.0 0.0
8 11,120 481 1776 44 0.0 0.1 0.6
9 55,939 27,268 7,141 5,172 0.7 0.5 0.5

