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Abstract. In this paper we confront the Job Shop Scheduling problem by means 
of an A* algorithm for heuristic state space searching. This algorithm can 
guarantee optimal solutions, i.e. it is admissible, under certain conditions, but in 
this case it requires an amount of memory that grows linearly as the search 
progresses. We hence start by focusing on techniques that enable us to reduce 
the size of the search space while maintaining the ability of reaching optimal 
schedules. We then relax some of the conditions that guarantee optimality in 
order to achieve a further reduction in the number of states visited. We report 
results from an experimental study showing the extent to which this reduction is 
worth carrying out in practice. 

1  Introduction 

State space searching is a classic artificial intelligence technique suited to problems 
involving deterministic actions and complete information. It has a number of 
interesting properties, such as the ability to guarantee optimal solutions and the 
possibility of exploiting domain knowledge to guide the search. Unfortunately, even 
when a great amount of knowledge is available at a reasonable computational cost, 
the total cost of a search process is prohibitive, since the number of explored nodes 
grows linearly with the size of the search space, even for small problem instances. For 
this reason, a number of techniques are usually employed to reduce the effective 
search space with the subsequent loss of optimality. 

In this paper we confront the Job Shop Scheduling (JSS) problem by means of an 
A* heuristic search algorithm [6,7]. Firstly, we use a technique that enables us to 
restrict the search space to the set of active schedules. This is a subset of feasible 
schedules to a given problem that contains at least one optimal solution. In order to do 
so, we exploit the strategy of the well-known G&T algorithm [4]. As we will see in 
the reported experiments, this technique combined with a classic heuristic can solve 
small problem instances to optimality. We then exploit two more methods aimed at 
further reducing the number of states expanded during the search. The first one 
consists in a reduction of the search space that limits the search to a subset of the 
active schedules. The second is a weighted heuristic method that assigns more 



reliance to the heuristic estimation during the first stage of the search. It becomes 
clear that neither of the aforementioned methods maintains admissibility, i.e. the 
guarantee of reaching optimal solutions. However, the effect can be controlled in both 
cases by means of parameters. We report results from an experimental study in which 
we calculate the value of the parameters that produce the optimal solution at the 
lowest cost of the search procedure. 

The rest of the paper is organized as follows. In Section 2, we formally describe 
the JSS problem. In Section 3, we present a version the G&T algorithm, the so-called 
hybrid G&T, and show how this algorithm can be adapted by means of a parameter to 
define a search space representing either the whole set or a subset of active schedules. 
In Section 4, we summarize the main characteristics of the A* algorithm, as well as 
the heuristic strategies that we used in the experiments. In Section 5, we report the 
results from our experimental study. Finally, the main conclusions are summarized in 
Section 6, where we also propose a number of ideas for further work. 

2  The Job Shop Scheduling Problem 

JSS requires scheduling a set of jobs {J1,...,Jn} on a set of physical resources or 
machines {R1,...,Rq}. Each job Ji consists of a set of tasks or operations {ti1,...,timi} to 
be sequentially scheduled. Each task has a single resource requirement and a fixed 
duration or processing time duil and a start time stil whose value must be determined. 
We assume that there is a release date and a due date between which all the tasks have 
to be performed. 

Furthermore, the problem presents two non-unary constraints: precedence 
constraints and capacity constraints. Precedence constraints, defined by the 
sequential routings of the tasks within a job, translate into linear inequalities of the 
type: stil + duil ≤ stil+1 (i.e. stil before stil+1). Capacity constraints, which restrict the use 
of each resource to only one task at a time, translate into disjunctive constraints of the 
form: stil + duil ≤ stjk ∨ stjk + dujk ≤ stil (two tasks that use the same resource cannot 
overlap). The most widely used goal is to come up with a feasible schedule such that 
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Fig. 1. A directed graph representation of a JSS problem instance with three jobs. The 
release date is 0 and the due date is 15. The resource requirement of each task is 
indicated within the boxes. Arcs are weighted with the processing time of the task at 
the outcoming node. 



the completion time of the whole set of tasks, i.e. the makespan, is minimized. 
In the following, a problem instance will be represented by a directed graph G = 

(V, A∪E). Each node of the set V represents a task of the problem, with the exception 
of the dummy nodes start and end, which represent tasks with processing time 0. The 
set of arcs A represents the precedence constraints and the set of arcs E represents the 
capacity constraints. The set E is decomposed into subsets Ei with E=∪i=1..mEi, such 
that there is one Ei for each resource Ri. The subset Ei includes an arc (v,w) for each 
pair of tasks requiring the resource Ri. Figure 1 depicts an example with three jobs 
{J0,J1,J2} and three physical resources {R0,R1,R2}. Solid arcs represent the elements of 
the set A, whereas dotted arcs represent the elements of the set E. The arcs are 
weighted with the processing time of the task at the source node. The dummy task 
start is connected to the first task of each job; and the last operation of each job is 
connected to the node end. 

A feasible schedule is represented by an acyclic subgraph Gs of G, Gs=(V,A∪H), 
where H=∪i=1..mHi, Hi being a Hamiltonian selection of Ei. The makespan of the 
schedule is the cost of a critical path. A critical path is a longest path from node start 
to node end. When this value is less than or equal to the due date, the schedule is a 
solution to the problem. Therefore, finding a solution can be reduced to discovering 
compatible Hamiltonian selections, i.e. orderings for the tasks requiring the same 
resource or partial schedules, that translate into a solution graph Gs without cycles 
whose critical path does not exceed the due date. Figure 2 shows a graph representing 
a feasible solution to the problem of Figure 1. 

2  The G&T Algorithm and the State Space for the JSS Problem 

This is the well-known algorithm proposed by Giffler and Thomson in [4]. Here we 
present a variant called hybrid G&T that is based on a chromosome-decoding schema 
proposed by Bierwirth and Mattfeld in [2] within the framework of a Genetic 
Algorithm. This schema is in turn inspired by a proposal made by Storer, Wu and 
Vaccari in [11] for state space searching. In principle, the G&T is a greedy algorithm 
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Fig. 2. A feasible schedule for the problem of Figure 1. The boldface arcs show the 
critical path whose length, i.e. the makespan, is 12. Hence it is actually a solution to 
the problem, because this value is less that 15, the due date. 



that builds up a schedule for a given problem by scheduling one task at a time. In each 
iteration, a subset of tasks B is determined such that no matter how a task is selected 
from B to be scheduled next, the resulting schedule is active. Active schedules are a 
subset of feasible schedules in which no operation could be started earlier without 
delaying some other operation. It is easy to prove that the set of active schedules 
contains at least one optimal schedule. Thus, a search constrained to the whole set of 
active schedules is exhaustive, while keeping the size of the search space much 
smaller than a search over the whole set of feasible schedules. 

Figure 3 shows the hybrid G&T algorithm. This is a variant of the genuine G&T in 
which a narrowing mechanism is introduced that enables a reduction of set B in each 
iteration. This is controlled by a reduction parameter δ∈[0,1]; when δ=1, sentence 6 
has a null narrowing effect and hence we have the original G&T algorithm. In this 
case, it is possible to envisage a non-deterministic sequence of operation selections 
that gives rise to an optimal schedule. Otherwise, i.e. if δ<1, the search is restricted to 
a subset of the active schedules; thus guaranteeing the existence of such a sequence is 
no longer possible. As pointed out in [2], the algorithm produces a non-delay schedule 
at the extreme δ=0. Non-delay scheduling means that no resource is kept idle when it 
could start processing some operation. 

Given its non-deterministic nature, the G&T algorithm can be particularized in 
many ways by fixing a selection criterion at step 7. For example, it has been widely 
used in the context of Genetic Algorithms as a decoding schema and is usually 
combined with some dispatching rule to design a greedy, non-optimal algorithm. 

 Algortithm G&T hybrid 
   1. A = set containing the first task of each job; 
      while A ≠∅ do 
          2. Determine the task θ’∈A with the shortest completion time if 
               scheduled in the current state, that is tθ’+duθ’≤ tθ + duθ, ∀θ∈A; 
          3. Let M’ be the resource required by θ’, and B the subset of A 
              whose tasks require M’; 
          4. Delete from B every task that cannot start at a time lower than 
              tθ’+duθ’; 
          5. Determine task θ’’∈B with the lowest possible start time, let tθ’’ 
              be this time; 
         /*  the least start time of every operation in B, if it is selected next, is 
             a value of  the interval [tθ’’, tθ’+duθ’] */ 
          6. Reduce the set B such that 
                    B = { θ∈B / tθ < tθ’’ +δ(( tθ’+duθ’) - tθ’’) }, δ∈[0,1]}; 
          /* now the interval is reduced to [tθ’’, tθ’’ +δ(( tθ’+duθ’) - tθ’’] */ 
          7. Select θ*∈ B and schedule it at its lowest possible start time to 
              build a partial schedule corresponding to the next state; 
          8. Delete θ* from A and insert the next task of θ* in this set if θ* 
              is not the last task of its job; 
      endwhile; 

 

Fig. 3. The hybrid G&T algorithm; tθ  stands for the start time of operation θ and duθ for its 
processing time. 



In this paper, we use the G&T algorithm to define a search space that can be 
explored by a conventional state space search algorithm such as backtracking or best 
first (BF). This idea was used for instance in [5] and consists in the following two 
steps, bearing in mind that the initial state s represents a null partial schedule PS∅: 

 
1. At a state n representing a partial schedule PST for a set of tasks T, calculate a set B 

as done by the G&T algorithm in an analogous situation. 
2. For each task t∈B, generate a successor n’ of n with a partial schedule PST’, T’ 

being T∪{t}, by scheduling t at its lowest start time from the partial schedule PST.  
 
Hence the branching factor of the state space is given by the average value of the 

cardinality of set B over the whole set of states. This branching factor is expected to 
be much lower than the one obtained with other approaches like, for example, those 
proposed in [9] and [1], which might be found to be impractical for an admissible 
search, even for a small problem instance. On the other hand, the cost c(n,n’) is given 
by the difference Cmax(PST’) – Cmax(PST), where Cmax(PST) is the maximum completion 
time of a task in the partial schedule PST. It is easy to prove [10] that the state space 
generated in this way is a tree. 

The state space proposed in [9] consists in selecting an unscheduled operation at a 
given state and then considering all the possible starting times compatible with the 
current partial schedule. For each one of these start times, a new partial schedule is 
built by scheduling the current task at this time. This strategy requires the 
establishment of a due date for each job so that the current set of possible start times 
could be restricted to a finite set. This set is initially determined from the release and 
due dates and the precedence constraints and is further reduced as long as the search 
continues.  

On the other hand, the state space proposed in [1] consists in reductions of the 
constraint graph of the problem by means of various types of commitments that can 
be asserted and retracted; for example, fixing a start time of an operation or posting a 
precedence constraint between activities. In this case, the approach generalizes the 
JSS problem to other situations where, for example, one goal might be to minimize 
the number of resources used. In both cases, good experimental results are achieved 
using a backtracking search guided by means of smart, powerful heuristics. However, 
it becomes clear that both of the cited schemas are not suitable for an admissible 
search like A*, due to the fact that the branching factor is so high that it is impractical 
to store all the states required. 

4 The A* Algorithm 

The A* algorithm is a general BF heuristic search for graphs [6,7], though the 
algorithm is much simpler if the state space is a tree. It starts from an initial state s, a 
set of goal nodes and a transition operator SCS such that for each node n of the search 
space, SCS(n) provides the set of successor states of n. Each transition from a node n 
to a successor n’ has a positive cost c(n,n’). The algorithm searches for a solution path 
from the node s to one of the goal states. At any one time, there is a set of candidate 



nodes to be expanded which are maintained in an ordered list OPEN; this list is 
initialized with the node s. Then in each iteration, the node to be expanded is always 
the one in OPEN with the lowest value of the evaluation function f, defined as 
f(n)=g(n)+h(n); where g(n) is the minimal cost known to date from the node s to the 
node n, (of course if the search space is a tree, the value of g(n) does not change, 
otherwise this value has to be updated as long as the search progresses) and h(n) is a 
heuristic positive estimation of the minimal distance from n to the nearest goal. 

The A* algorithm has a number of interesting properties, most of which depend on 
the heuristic function h. First of all, the algorithm is complete. Moreover, if the 
heuristic function underestimates the actual minimal cost, h*(n), from n to the goals, 
i.e. h(n)≤h*(n), for all nodes, the algorithm is admissible, i.e. the return of an optimal 
solution is guaranteed. The heuristic function h(n) represents knowledge about a 
specific problem domain, therefore if complete knowledge were available at an 
assumable computational cost (at most polynomial on the problem size), i.e. 
h(n)=h*(n), the best solution could be found by expanding the lowest number of 
nodes possible. Unfortunately, this is rarely the case, and in practical cases we have to 
look for the best underestimation whose computational cost is assumable. This is 
because another interesting property of the algorithm is that if we have two admissible 
heuristics h1 and h2, such that h1(n)<h2(n), h2 is said to be more informed than h1 
and it can be proved that in this case every node expanded by h2 is also expanded by 
h1. It is then said that the algorithm using h2 dominates the one using h1.  

The most common technique for discovering admissible heuristics is problem 
relaxation [7]. This consists in relaxing some of the problem constraints so as to 
obtain a relaxed problem that can be solved to optimality, or at least a good 
underestimation can be made, in polynomial time. Then the solution cost of the 
relaxed problem is taken as the real problem cost estimation. In the case of the JSS 
problem, the constraints that can be relaxed are precedence and capacity constraints. 
Two problem relaxations are common: in the first, every capacity constraint is 
relaxed; whereas in the second, every precedence constraint is relaxed. It is easy to 
see that the cost of the optimal solution in the first case can be calculated in linear 
time. In the second case, however, the relaxed problem has a similar complexity to 
that of the original problem, although a reasonably good underestimation of its 
optimal cost can also be calculated in linear time. It is clear that the two 
aforementioned relaxations are quite strong, hence the relaxed problem is actually 
much simpler than the original one and the resulting heuristic is thus not too 
informed. Unfortunately, as far as we know, lower relaxed versions of the problem 
cannot be solved in an acceptable amount of time. Even though the heuristics 
obtained from the two relaxations mentioned above cannot be strictly compared, they 
are both expected to perform similarly in square problems, i.e. problems with an equal 
number of jobs and resources. However, the second heuristic will probably perform 
better for problem instances with much more jobs than resources, whereas in the 
opposite case, the first heuristic will probably do so. 

In the experimental study described in the next section we consider the first of the 
aforementioned heuristics, which is calculated for a state n corresponding to a partial 
schedule PST of a subset of tasks T, as follows:  



 
( ) ( )

( )
( )Tmax

JUS
T

J
maxJOBSJp PSCduPSCMAXnh −









+= ∑
∈

∈
θ

θ
, (1) 

where JOBS is the set of jobs of the problem instance, ( )T
J
max PSC  is the completion 

time of the last scheduled task of job J at node n, ( )nJUS ,  is the set of unscheduled 
tasks of job J at node n and θdu is the processing time of task θ. 

Although the heuristic hp is clearly an underestimation of the optimal cost, the 
difference h*(n)-hp(n) is not expected to be uniform for all nodes along the search 
process. Nevertheless, this difference is expected to be quite large at the beginning of 
the search, subsequently decreasing as the search progress and tends to be null at the 
end. This leads us to use the following dynamic weighted heuristic technique: a 
weighting factor P(n) is introduced into the h component of the evaluation function f, 
so that this function is f(n)=g(n)+P(n)h(n). The value of P(n) depends on the depth of 
the node n. In this paper, we propose the following value: 
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where K≥0 is the weighting parameter, depth(n) is the number of tasks scheduled at 
state n, N is the number of jobs and M is the number of resources. It is clear that for 
values of K>0, the aforementioned function f is not guaranteed to be admissible, since 
the component P(n)h(n) might overstimate the value of h*(n). However, for some 
value of K, this component is expected to be a good aproximation of h*(n). Weighted 
heuristic search is widely used; for instance, a dynamic weighted method is proposed 
in [8] that guarantees that the cost of the solution does not worsen more that a factor ε 
with respect to the optimal. In [3], a static method is proposed that uses a constant 
weighting factor W for planning problems; this method guarantees a worsening factor 
not higher than W. And a dynamic method similar to ours is used in [5] for the JSS 
problem in conjuntion with a limited memory schema and a non-admissible heuristic 
obtained from a classic dispatching rule that overestimates the optimal cost. 

5 Experimental Results 

In this section we report results from an experimental study on a set of JSS problems 
instances. We used the prototype implementation proposed in [10], which is coded in 
C++ language and developed in Builder C++ 5.0 for Windows. The hardware 
platform was a Pentium III at 900 Mhz. and 125 Mbytes of RAM. The first problem 
of the test bed was problem FT06; this is a small problem obtained from the OR 
library (http://www.ms.ic.ac.uk/info.html). The remaining problem instances were 
generated by us, as the problem instances from the OR library and other conventional 
repositories are too large to be solved to optimality by our implementation in an 
acceptable amount of time.  

Table 1 shows the results obtained with problem FT06, running the algorithm with 
the heuristics h0 and hp and considering values of the parameter δ ranging in the 
interval [0.0,1.0]. As expected, heuristic h0 is unable to solve the problem. On the 



other hand, heuristic hp can solve the problem to optimality, even with a space 
reduction given by δ=0.3. In this case, we can observe a significant reduction in the 
number of expanded and generated nodes, the branching factor and the running time, 
as long as the parameter δ decreases from 1.0 to 0.3. For values of δ under 0.3, the 
number of expanded nodes is higher in some cases, as the search space does not 
contain an optimal solution. 

Figure 4 shows the evolution of the branching factor over the depth of the search 
space for 2 values of the parameter δ. As we can see, a value of δ=0.3 produces a 
slightly lower branching factor over the first levels than δ=1.0, which translates into a 
lower overall number of both generated and expanded nodes. Here, the branching 
factor at depth N is calculated as the quotient of the number of states generated at 
depth N+1 and N respectively. 

Table 2 shows the reduction in the number of nodes generated and expanded for 
increasing values of K. Here we consider the limit values of δ that generate an 
exhaustive search space (one containing an optimal solution). As we can see, the 
number of generated and expanded nodes clearly decreases while the optimal solution 
is still reached, with the exception of value K=0.3, for which a suboptimal solution is 
reached. 

Table 3 shows the results of an experimental study on a set of 10 problem instances 
of size 6×6 with random job sequences and processing times generated at random in 
the interval [5,95] from a uniform probability distribution. For each one of the 
problems, we report the number of nodes expanded for the limit values of δ and K. 
First for values δ=1 and K=0, which are the only values that guarantee optimality. 
Then for every instance, we kept K=0 and decreased the parameter δ down to the 
lowest value (δmin) that produces an optimal solution. After that, maintaining the 
value of δmin, the value of K is augmented to the largest value, Kmax(δmin), that 

Table 1. Experimental results from the problem instance FT06 with heuristics h0 and hp. 

Heuristic 
Reduction 

parameter δ 

Number of 
generated 

nodes 

Number of 
expanded 

nodes 
Branching 

Factor 

Cost of the 
reached 
solution 

Run time 
(hh:mm:ss) 

 0.0 89,129 66,141 1.26 57 09:03:34 
0.1 89,129 66,141 1.26 57 09:03:34 h0 
0.2 160,575 127,765 1.26 57 57:23:32 

 0.3 - - - - >125:00:00 
 0.0 4,662 3,651 1.27 57 4 
 0.1 4,662 3,651 1.27 57 4 
 0.2 9,170 6,797 1.35 57 10 
 0.3 5,395 4,007 1.35 55 5 

 0.4 8,061 5,702 1.41 55 8 
hp 0.5 11,340 7,589 1.49 55 10 

 0.6 14,163 9,225 1.54 55 13 
 0.7 21,841 13,571 1.61 55 19 
 0.8 26,056 15,399 1.69 55 23 
 0.9 28,127 16,134 1.74 55 25 
 1.0 28,127 16,134 1.74 55 25 
   



produced an optimal solution. And finally, keeping δ=1, the value of K is also 
augmented to the largest value, Kmax(δ=1), that produced an optimal solution. As we 
can see, the variations of δ and K allowed without loss of optimality are not the same 
for all problems and the actual computational cost of obtaining the optimal schedule 
varies significantly from one problem to another. In fact, problem instance number 6 
could not be solved to optimality. The best solution we were able to obtain was by 
running the algorithm with δ=0.9 and K=0.5, after expanding 62328 states.  

6 Conclusions 

The main conclusion of the experiments reported above is that in real problems it is 
possible to reduce the size of the search space as well as to weight the heuristic 
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Fig. 4. Evolution of the branching factor over the depth of the search tree for two values of 
the parameter δ.  

Table 2. Experimental results from the problem instance FT06 with heuristic hp and different 
values of δ and K. In every case is the optimal solution reached, except with K=0.3. In this 
case, a solution with cost 58 is reached with either value 1.0 or 0.3 of δ. 

δ = 0.3 δ = 1.0 
K 

 
Number of  

Generated Nodes  
Number of  Expanded 

Nodes  
Number of  

Generated Nodes 
Number of  Expanded 

Nodes 

0.00 5,395 4,007 28,127 16,134 
0.05 1,715 1,279 9,397 5,472 
0.10 1,092 806 5,257 3,013 
0.15 812 598 2,545 1,466 
0.20 313 237 599 333 
0.25 156 109 563 313 
0.30 210 165 574 339 



evaluation function to some extent up to a certain point given by the values (δmin, 
Kmax(δmin)) in such a way that the optimal solution is obtained by expanding a 
number of states much lower than the number of states expanded with values (1,0). 
Unfortunately, determining the limit values (δmin, Kmax(δmin)) for a given problem 
instance is not trivial; it is a new search problem in the two-dimensional space (δ,K). 
As future work, we plan to study a systematic way to calculate these values and 
experiment with other techniques that reduce the computational cost of the search 
procedure. 
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Table 3. Experimental results from the set of 10 problem instances  
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δmin 
δ=1 δmin 
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