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concept of a Genetic Algorithm. These biologically and sociologically inspired
interrelated hybrids aim to make the algorithm more open for scalability on
the one hand, and to retard premature convergence on the other hand with-
out necessitating the development of new coding standards and operators for
certain problems. Furthermore, the corresponding Genetic Algorithm is unre-
strictedly included in all of the newly proposed hybrid variants under special
parameter settings. The experimental part of the paper discusses the new al-
gorithms for the Traveling Salesman Problem as a well documented instance
of a multimodal combinatorial optimization problem achieving results which
signi�cantly outperform the results obtained with a conventional Genetic Al-
gorithm using the same coding and operators.

1 Introduction

Many problems that are treated by Genetic Algorithms belong to the class of NP-
complete problems. The advantage of Genetic Algorithms when being applied to such
problems lies in the ability to search through the solution space in a broader sense
than heuristic methods that are based upon neighborhood search. Nevertheless, also
Genetic Algorithms are frequently faced with a problem which, at least in its impact,
is quite similar to the problem of stagnating in a local but not global solution. This
drawback, called premature convergence in the terminology of Genetic Algorithms,
occurs when the population of a Genetic Algorithm reaches such a suboptimal state
that the genetic operators can no longer produce o�spring that outperform their par-
ents (e.g. [7]).
During the last decades plenty of work has been investigated to introduce new cod-
ing standards and operators in order to overcome this essential handicap of Genetic
Algorithms. As these coding standards and the belonging operators often are quite
problem speci�c, we try to take a di�erent approach and look upon the concepts of
Genetic Algorithms as an arti�cial self organizing process in a biologically and soci-
ologically inspired generic way in order to improve the global convergence behaviour
of Genetic Algorithms independently of the actually employed implementation.
In doing so we have introduced an advanced selection model for Genetic Algorithms
that allows adaptive selective pressure handling in a way quite similar to Evolution
Strategies. Based upon this enhanced GA-model two further generic extensions are
discussed:

(1) The concept of segregation and reuni�cation of subpopulations aims to assure
an independent development of building blocks in very di�erent regions of the search
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space in order to improve global convergence. The algorithm divides the population
into subpopulations. These evolve independently until their �tnesses stagnate. By
this approach of width-search, building blocks, which would disappear early in case
of standard Genetic Algorithms, are evolved in di�erent regions of the search space at
the beginning and during the evolutionary process. In contrast to the Island Models
for Genetic Algorithms[19], in our case the single subpopulations grow together again
in case of stagnating �tness in order to end up with a �nal population containing as
much essential building blocks as possible.

(2) The second newly introduced concept allows the dynamic usage of multiple crossover
operators in parallel in order to somehow imitate the parallel evolution of a variety of
species that are struggling for limited resources. This strategy seems very adopted for
problems which consider more than one crossover operator - especially if the proper-
ties of the considered operators may change as evolution proceeds.

As an important property of all the newly introduced hybrids it has to be pointed out
that under special parameter settings the corresponding GA/GAs is/are unrestrict-
edly included in the new hybrids.
The experimental part discusses the new algorithms for the Traveling Salesman Prob-
lem as a very well documented instance of a multimodal combinatorial optimization
problem. In contrast to all other evolutionary heuristics known to the author that do
not use any additional problem speci�c information, we obtain solutions close to the
best known solution for all considered benchmarks (symmetric as well as asymmetric
benchmark problems).

2 The Variable Selective Pressure Model

The handling of selective pressure in the context of Genetic Algorithms mainly de-
pends on the choice of a certain replacement scheme[11]. 'Generational replacement',
for example, replaces the entire population by the next one, whereas 'elitism replace-
ment' keeps the best individuals of the last generation and only replaces the rest and
therefore usually performs faster. On the other hand, elitism likely causes too homoge-
neous populations, i.e. little population diversity, and therefore might cause unwanted
premature convergence. Anyway, there exists no manageable model for controllable
selective pressure handling within the theory of Genetic Algorithms[14]. Therefore, we
introduce some kind of intermediate step (a 'virtual population') into selection which
provides a handling of selective pressure very similar to that of Evolution Strategies
[2], [4]. As we will exemplarily point out, the most common replacement mechanisms
can easily be implemented in this intermediate selection step. Furthermore, this Evo-
lution Strategy like variable selective pressure will help us to steer the degree of
population diversity on the one hand and, on the other hand, it will act as a basic
model for a new hybrid metaheuristics based upon Genetic Algorithms as being pro-
posed in section 3.
Actually, all modi�cations that are and will be taken into account use exactly the
same operators for crossover and mutation as a corresponding Genetic Algorithm. As
no further problem speci�c information is used, the new hybrids should be appliable to
a huge number of problems - namely all problems Genetic Algorithms can be applied
to.

2.1 Formal Integration of the Variable Selective Pressure Model

Similar to any other conventional Genetic Algorithm (e.g.[11]) we use a population of
�xed size that will evolve to a new population of the same size by selection, crossover,



3

and mutation.
What we additionally have done is to introduce an intermediate step in terms of a
so-called virtual population of variable size where the size of the virtual population
usually has to be greater than the population size. This virtual population is created
by selection, crossover, and mutation in the common sense of Genetic Algorithms.
But like in the context of Evolution Strategies, only a certain percentage of this in-
termediate population will survive.
This handling of selective pressure in our context is mainly motivated by (�; �)-
Evolution Strategies where � parents produce � descendants from which the best �
survive. Within the framework of Evolution Strategies, selective pressure is de�ned as
s = �

�
, where a small value of s indicates high selective pressure and vice versa (for a

detailed description of Evolution Strategies see for instance [14]). Even if the interac-
tion between the variable selective pressure within our new model and the notion of
temperature within the scope of Simulated Annealing is quite di�erent in detail, we
have adopted this notation. Applied to our new Genetic Algorithm, this means that
from jPOP j (population size) number of parents jPOP j � T ((size of virtual popula-
tion) > jPOP j, i.e. T > 1) descendants are generated by crossover and mutation from
which the best jPOP j survive as illustrated in Fig. 1. Obviously we de�ne selective

Fig. 1. Evolution of a new population with selective pressure s = 1

T
for a virtual population

built up in the sense of a (�; �)-Evolution Strategy.

pressure as s =
jPOP j
jPOP j�T = 1

T
, where a small value of s, i.e. a great value of T , stands

for high selective pressure and vice versa. Equipped with this enhanced GA-model it
is quite easy to adopt further extensions based upon a controllable selective pressure,
i.e. it becomes possible either to reset the temperature up/down to a certain level or
simply to cool down the temperature in the sense of Simulated Annealing during the
evolutionary process in order to steer the convergence of the algorithm.
Biologically interpreting this (�; �)-Evolution Strategy like selective pressure han-
dling, for Genetic Algorithms this means, that some kind of 'infant mortality' has been
introduced in the sense that a certain ratio of the population (jPOP j � T � jPOP j =
jPOP j � (T � 1)) will never become procreative, i.e. this weaker part of a popula-
tion will not get the possibility of reproduction. Decreasing this 'infant mortality',
i.e. reducing the selective pressure during the evolutionary process also makes sense
in a biological interpretation because also in nature stronger and higher developed
populations su�er less from infant mortality.
From the point of view of optimization, decreasing the temperature during the op-
timization process means that a greater part of the search space is explored at the
beginning of evolution - whereas at a later stage of evolution, when the average �tness
is already quite high, a higher selective pressure is quite critical in that sense that
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it can easily cause premature convergence. Operating with a temperature converging
to zero, this (�; �)-Evolution Strategy like selective pressure model for Genetic Algo-
rithms acts like the corresponding Genetic Algorithm with generational replacement.
Moreover, implementing the analogue to the (� + �)-Evolution Strategy denotes the
other extreme of immortal individuals. However, also the implementation of this strat-
egy is quite easy to handle with our model by just copying the old population into
the virtual population . Other replacement mechanisms, like elitism or the goldcage-
model for example, are also easy to implement by just adding the best individuals
respectively the best individual of the last generation to the virtual population.

3 Hybrid GA-Concepts Based Upon the Variable Selective
Pressure Model

When applying Genetic Algorithms to complex problems, one of the most frequent
diÆculties is premature convergence. Roughly speaking, premature convergence oc-
curs when the population of a Genetic Algorithm reaches such a suboptimal state that
the genetic operators can no longer produce o�spring that outperform their parents
(e.g. [7]).
Several methods have been proposed to combat premature convergence in the con-
text of Genetic Algorithms (e.g. [5], [6], or [8]). These include the restriction of the
selection procedure, the operators and the according probabilities as well as the mod-
i�cation of �tness assignment. However, all these methods are heuristic in nature.
Their e�ects vary with di�erent problems and their implementation strategies need
ad hoc modi�cations with respect to di�erent situations.
A critical problem in studying premature convergence is the identi�cation of its oc-
currence and the characterization of its extent. Srinivas and Patnaik [16], for example,
use the di�erence between the average and maximum �tness as a standard to measure
premature convergence and adaptively vary the crossover and mutation probabilities
according to this measurement. As in the present paper, the term 'population diver-
sity' has been used in many papers to study premature convergence (e.g. [15]) where
the decrease of population diversity is considered as the primary reason for prema-
ture convergence. Therefore, a very homogeneous population, i.e. little population
diversity, is considered as the major reason for a Genetic Algorithm to prematurely
converge.
The following generic extensions that are built up upon the variable selective pressure
model primarily aim to avoid or at least to retard premature convergence in a general
way.

3.1 Segregative Genetic Algorithms (SEGA)

In principle, our new SEGA introduces two enhancements to the general concept of
Genetic Algorithms. The �rst is to bring in a variable selective pressure, as described
in section 2, in order to control the diversity of the evolving population. The second
concept introduces a separation of the population to increase the broadness of the
search process and joins the subpopulation after their evolution in order to end up
with a population including all genetic information suÆcient for locating the region
of a global optimum.
The aim of dividing the whole population into a certain number of subpopulations
(segregation) that grow together in case of stagnating �tness within those subpop-
ulations (reuni�cation) is to combat premature convergence which is the source of
GA-diÆculties. This segregation and reuni�cation approach is a new technique to
overcome premature convergence [1], [3].
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Whereas Island Models for Genetic Algorithms (e.g. in [19]) are mainly driven by the
idea of using simultaneous computer systems, SEGA attempts to utilize migration
more precisely in order to achieve superior results in terms of global convergence.
The principle idea is to divide the whole population into a certain number of subpop-
ulations at the beginning of the evolutionary process. These subpopulations evolve
independently from each other until the �tness increase stagnates because of too sim-
ilar individuals within the subpopulations. Then a reuni�cation from n to (n � 1)
subpopulations is done. Roughly spoken this means, that there is a certain number of
villages at the beginning of the evolutionary process that are slowly growing together
to bigger cities, ending up with one big town containing the whole population at the
end of evolution. By this approach of width-search, building blocks in di�erent regions
of the search space are evolved at the beginning and during the evolutionary process,
which would disappear early in case of standard genetic algorithms and whose genetic
information could not be provided at a later date of evolution when the search for
global optima is of paramount importance.
Again, like in the context of the variable selective pressure model which is included
in SEGA as well, it should be pointed out that a corresponding Genetic Algorithm
is unrestrictedly included in the SEGA when the number of subpopulations (villages)
and the cooling temperature are both set to 1 at the beginning of the evolutionary
process. Moreover, the introduced techniques also do not use any problem speci�c
information.

Segregation and Reuni�cation: Monitoring the behaviour of a Genetic Algorithm
when applied to optimization problems shows that the average �tness as well as the
�tness of the best member of the actual population often stagnates at a certain point
of the evolution process even if the actual �tness is wide o� the mark of a poten-
tially best or at least a best-known solution (premature convergence). It appears
that Genetic Algorithms prematurely converge to very di�erent regions of the solu-
tion space when repeatedly running a Genetic Algorithm. Moreover it is known from
GA-theory[11], that extending the population size does not help to avoid premature
convergence. In fact, depending on the problem-type and the problem-dimension there
is a certain population size, where exceeding this population size doesn't e�ect any
more improvements in the quality of the solution.
Motivated by these observations, we have developed an extended approach to Genetic
Algorithms where the total population is split into a certain number of subpopulations
or villages, all evolving independently from each other (segregation) until a certain
stage of stagnation in the �tness of those subpopulations is reached. Then, in order
to bring some new genetic information into each village, the number of villages is
reduced by one which causes new overlapping-points of the villages. Fig. 2 shows a
schematic diagram of the described process. This process is repeated until all villages
are growing together ending up in one town (reuni�cation). The variable selective
pressure is of particular importance if the number of subpopulations is reduced by
one because this event brings new diversi�cation into the population. In this case a
higher selective pressure is reasonable, i.e. if reunifying members of neighboring vil-
lages, the temperature is reset to a higher level in order to cool down to 1 as the
new system of subpopulations evolves. While the number of villages decreases during
evolution, it is recommended to reset the selective pressure to a higher level because
the genetic diversity of the emerging greater subpopulations is growing.
For �ghting premature convergence, the main advantage of the described strategy is
that building-blocks in di�erent regions of the search space are evolved independently
from each other at the beginning of the evolutionary process. The aim is that the best
building-blocks survive during the recombination phase, yielding in a �nal population
(if the number of villages is 1) containing all essential building-blocks for the detec-
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Fig. 2. Evolution of a new population for the instance that four subpopulations are merged
to three.

tion of a global optimum. In case of conventional Genetic Algorithms, building blocks
that disappear early and which may be important at a later stage of the evolutionary
process, when the search for global optima is of paramount importance, can hardly
ever be reproduced (premature convergence).

The Algorithm: With all strategies described above, �nally the new genetic algo-
rithm is stated as follows:
The segregative genetic algorithm

procedure SEGA

initialize population size|POP|

initialize number of iterations nrOfIterations 2 IN

initialize number of villages nrOfVillages 2 IN

initialize temperature T 2 [1, 1 [

initialize adaptive cooling factor � 2 ]0, 1]

generate initial population POP0 = (I1; ::::; IjPOP j)

for i:=1 to nrOfIterations do

if (i = dateOfReunification) then

nrOfVillages:=nrOfVillages-1

reset temperature

end if

POPi:=calcNextGeneration(POPi�1, T, nrOfVillages, |POP|)

T:=max(T;T � �)

next i

Function "calcNextGeneration" implements the evolution of the next generation of subpopulations.

function calcNextGeneration: (POPi�1, T, nrOfVillages, |POP|)

villagePopulation=
jPOP j

nrOfV illages

for i:=(0 to (nrOfVillages-1)) do

for j:=(i*villagePopulation) to ((i+1)*villagePopulation) do

calculate fitnessj of each member of the village population (like in standard GA).

next j

|virtualPopulation|=|villagePop|*T
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for k:=0 to |virtualPopulation| do

generate individuals of virtual population Ik 2 S from the members of the village.

Ii�jvillagePopulationj:::I(i+1)�jvillagePopulationj 2 POPi�1

due to their fitnesses by crossover and mutation

next k

select the best |villagePopulation| individuals from the virtual population

in order to achieve the new village population

Ii�jvillagePopulationj:::I(i+1)�jvillagePopulationj 2 POPi

of the next generation.

next i

return POPi

SEGA uses a �xed number of iterations for termination. Depending on this total
number of iterations and the initial number of subpopulations (villages), the dates of
reuni�cation may statically be calculated at the beginning of the evolutionary process
as done in the experimental result section. Further improvements, particularly in the
sense of running time, are possible, if, in order to determine the dates of reuni�ca-
tion, a dynamic criterion for the detection of stagnating genetic diversity within the
subpopulations is used.

3.2 Dynamic Habitat Adaptation

Genetic Algorithms as well as its most common variants consider the evolution of a
single species, i.e. crossover can be done between all members of the population. This
supports the aspect of depth-search but not the aspect of width-search. Considering
natural evolution, where a multiplicity of species evolve in parallel, as a role model, we
could introduce a number of crossover operators and apply each one to a certain sub-
population. In order to keep that model realistically it is necessary to choose the size
of those subpopulations dynamically, i.e. depending on the actual success of a certain
species its living space is expanded or restricted. Speaking in the words of Genetic
Algorithms, this means that the size of subpopulations (de�ned by the used crossover
and mutation operators) with lower success in the sense of the quality function is
restricted in support of those subpopulations that push the process of evolution.
But as no Genetic Algorithm known to the author is able to model jumps in the evo-
lutionary process and no exchange of information between the subpopulations takes
place, the proposed strategy would fail in generating results superior to the results
obtained when running the Genetic Algorithms with the certain operators one after
another. Thus, the achieved pro�ts would 'only' concern the performance of the algo-
rithm. Therefore, it seems reasonable to allow also recombination of individuals that
have emerged from di�erent crossover operators, i.e. the total population is taken into
account for each crossover operator and the living space (habitat) of each virtual sub-
population is de�ned by its success during the last iterations as illustrated in Fig. 3.
Exemplarily considering the properties of the OX (order crossover) and the ERX
(edge recombination crossover) operators for crossover it is reported (e.g. in [18] or
[11]) that the OX-operator signi�cantly outperforms the ERX-operator in terms of
speed whereas the ERX-operator surpasses OX in terms of global convergence. Dy-
namically using multiple crossover operators in parallel utilizes the 'fast' OX-operator
for a long evolution period until the performance in terms of solution quality of ERX
outperforms OX at a later stage of evolution. Even more, experiments have shown
that the described strategy signi�cantly surpasses the results obtained when just us-
ing one single operator in terms of solution quality.
Anyway, this dynamic (self-organizing) strategy seems particularly suitable for situ-
ations where a couple of crossover operators whose properties are not exactly known
are taken into account.
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Fig. 3. Evolution of a new population for the instance that four crossover operators are used
in parallel.

4 Experimental Results

In our experiment, all computations are performed on a Pentium III PC with 256
megabytes of main memory. The programs are written in the Java programming lan-
guage.
Even if ongoing experimental research on a variety of problems shows quite similar
results it would go beyond the scope of the present paper to present all these tests.
So we just give a short summary of the results obtained by SEGA on a selection of
symmetric as well as asymmetric TSP benchmark problem instances taken from the
TSPLIB [13] using updated results1 for the best, or at least the best known, solutions.
In doing so, we have performed a comparison of SEGA with a conventional GA using
exactly the same operators for crossover and mutation and the same parameter set-
tings and with the COSA-algorithm [17] as an established and successful ambassador
of a heuristic especially developed for routing problems.
Fig. 4 shows the experimental results for the problem kro124p (100 city problem)
as an example of an asymmetric TSP benchmark. For the tests the parameters of
COSA are set as suggested by the author in [17]. Both, GA and SEGA use a muta-
tion probability of 0.05 and a combination of OX-crossover and ERX-crossover [11]
combined with the golden-cage population model, i.e. the entire population is replaced
with the exception that the best member of the old population survives until the new
population generates a better one (wild-card strategy). Within SEGA, the described
strategies are applied to each subpopulation. The results of a test presented in the
present paper start with 32 villages (subpopulations), each consisting of 64 individu-
als, i.e. the total population size is set to 2048 for SEGA (as well as for COSA and
GA).
Table 1 shows the experimental results of SEGA (with dynamic habitat adaptation),
COSA, and GA concerning various types of problems in the TSPLIB. For each prob-
lem the algorithms were run ten times. The eÆciency for each algorithm is quanti�ed
in terms of the relative di�erence of the best's individual �tness after a given num-
ber or iterations to the best or best-known solution. In this experiment, the relative
di�erence is de�ned as relativeDi�erence = ( Fitness

Optimal
� 1) � 100%. These examples

demonstrate the predominance of the new SEGA (together with an adaptive steer-
ing of OX and ERX operators) compared to the standard-GA. The preeminence of

1 Updates for the best (known) solutions can for example be found on
ftp://ftp.zib.de/pub/Packages/mp-testdata/tsp/tsplib/index.html
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Fig. 4. Comparison of COSA, SEGA, and GA on the basis of the kro124 benchmark problem:
For each algorithm the average �tness and the �tness of the best member of the population
is diagrammed relatively to the best known solution represented by the horizontal line.

Table 1. Experimental results of COSA, GA (using OX or ERX for crossover) and the new
SEGA together with a dynamic combination of OX- and ERX crossover.

Problem Iter.No. Average di�erence(%)
COSAGAOXGAERXGAnew

eil76(symm.) 5000 6.36 17.56 7.62 0.32
ch130(symm.) 5000 14.76 84.54 32.44 0.35

kroA150(symm.) 5000 20.91 102.40 71.97 0.74
kroA200(symm.) 10000 48.45 95.69 117.11 1.24
br17(asymm.) 200 0.00 0.00 0.00 0.00
ftv55(asymm.) 5000 44.22 41.34 23.52 0.27

kro124p(asymm.) 10000 26.78 30.61 15.49 0.48
ftv170(asymm.) 15000 187.34 87.12 126.22 1.09

SEGA, especially when being compared to the rather problem speci�c COSA heuris-
tic, becomes even more evident, if asymmetric benchmark problems are considered.

5 Conclusion

In this paper an enhanced Genetic Algorithm and two upgrades have been presented
and exemplarily tested on some TSP benchmarks. The proposed GA-based techniques
couple aspects from Evolution Strategies (selective pressure), Simulated Annealing
(temperature, cooling) as well as a special segregation and reuni�cation strategy with
crossover, mutation, and selection in a general way, so that established crossover and
mutation operators for certain problems may be used analogously to the correspond-
ing Genetic Algorithm. The investigations in this paper have mainly focused on the
avoidance of premature convergence and on the introduction of methods which make
the algorithm more open for scalability in the sense of convergence versus running
time.
Concerning the speed of SEGA, it has to be pointed out that the superior perfor-
mance concerning convergence requires a higher running time, mainly because of the
the greater population size jPOP j required. This should allow to transfer already de-
veloped GA-concepts to increasingly powerful computer systems in order to achieve
better results. Using simultaneous computers seems especially suited to increase the
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performance of SEGA. Anyway, under special parameter settings the correspond-
ing Genetic Algorithm is fully included within the introduced concepts achieving a
performance only marginally worse than the performance of the equivalent Genetic
Algorithm. In other words, the introduced models can be interpreted as a superstruc-
ture to the GA model or as a technique upwards compatible to Genetic Algorithms.
Therefore, an implementation of the new algorithm(s) for a certain problem should
be quite easy to do, presumed that the corresponding Genetic Algorithm (coding,
operators) is known.
However, the eÆciency of a variable selective pressure certainly depends on the ge-
netic diversity of the entire population. Ongoing research indicates that it could be a
very fruitful approach to de�ne the actual selective pressure depending on the actual
genetic diversity of the population.
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