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Abstract. This paper presents an attempt to learn the rotation action
a robot should perform while crossing doors, using ultrasonic sensor in-
formation. Bayesian networks are used as learning technique. A Bayesian
net structure is proposed based on the topological configuration of the
sensors around the robot. Also, the K2 structural learning algorithm is
used in order to look for a better network. This algorithm is combined
with three different net evaluation metrics. Because of the large range of
values the sensors provide, the minimum description length principle cut
entropy-based discretization is applied to the readings in order to use
them to learn and/or test the Bayesian networks. Some of the obtained
nets are used to implement door crossing behavior in a Pioneer robot.

1 Introduction

Navigation is a basic behavior that any mobile robot needs in order to perform
useful tasks. Within the context of autonomous systems, navigation can be de-
fined as the capability of going from one objective to the next one, avoiding
the obstacles that can interfere in the robot trajectory. Therefore, navigation
includes not only obstacle avoidance but also objective recognition. [13] reviews
and classifies, from a biological viewpoint, the navigation behaviors implemented
on real mobile robots in the past years.

Indoor semi-structured environments are full of corridors that connect dif-
ferent offices and laboratories. Often it is necessary to cross the doors to enter
into a room. Following a corridor can be approached by the task of equilibrating
the free space at the right and left hand sides of the robot, and door crossings
can be considered as short and very narrow passages. Our experience is that this
approach does not give good results when the robot must cross a door; sensor
readings can be misleading because of the panels that define the door, and the
door blade also affects sensor values.

There are some references to the problem of door identification. [10] and [22]
make use of visual information to identify doors. In [18] door crossing is com-
bined together with some other behaviors in a control architecture, but doors
are located in a map.
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In the work described here the aim is to implement a behavior that will
allow the robot to cross the doors smoothly and without bumping into the door
panels when traveling towards the objective. The robot is a Pioneer 2de dual
drive holonomous robot from ActivMedia Robotics. The doors that she will find
in her way are 70 cm wide and her swing radius is 26 cm. We assume that the
door is within the perceptual range of the ultrasonic sensor belt the robot has.

We tackle the problem as a supervised classification one [14], using Bayesian
Networks. The ultrasonic sensor readings will determine the action to perform.
We identify three actions: turn left, turn right and go straight. Thereupon, the
action will define the sign of the rotational velocity of the robot at each moment.

In the remainder of this paper we firstly present a brief introduction to
Bayesian networks, structural learning techniques and evidence propagation sche-
mes. Subsequently, discretization of continuous data is described. Section 4 ex-
plains the experimental methodology and section 5 shows the results obtained
over the cross validated data set. Next section explains how the door crossing
behavior has been implemented on the robot and finally, in section 7 the main
conclusions derived from the experimentation and future work are drawn.

2 Bayesian Networks

Bayesian networks are probabilistic graphical models represented by directed
acyclic graphs in which nodes are variables and arcs show the conditional (in)
dependencies among the variables [3][11].

There are different ways of establishing the Bayesian network structure. It
can be the human expert who designs the network taking advantage of his/her
knowledge about the relations among the variables. It is also possible to learn the
structure by means of an automatic learning algorithm. A combination of both
systems is a third alternative, mixing the expert knowledge and the learning
mechanism.

Within the supervised classification area, learning is performed using a train-
ing datafile but there is always a special variable, namely the class, i.e. the one
we want to deduce. Some structural learning approaches take into account the
existence of that special variable [9][21], but most of them do consider all the vari-
ables in the same manner and use an evaluation metric to measure the appropri-
ateness of a net given the data [2]. Hence, a structural learning method needs two
components: the learning algorithm and the evaluation measure (score+search).

The algorithm used in the experimentation here described is the K2 algo-
rithm [5]. This algorithm assumes an order has been established for the variables
so that the search space is reduced. The fact that Xy, X, ---, X, is an ordering
of the variables implies that only the predecessors of X}, in the list can be its
parent nodes in the learned network. The algorithm also assumes that all the
networks are equally probable, but because it is a greedy algorithm it can not
ensure that the net resulting from the learning process is the most probable one
given the data.
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The original algorithm used the K2 Bayesian metric to evaluate the net while
it is being constructed:
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where: P(D|S) is a measure of the goodness of the S Bayesian net defined over
the D dataset; n is the number of variables; r; represents the number of values
or states that the i-th variable can take; ¢; is the set of all possible configurations
for the parents of variable i; IV;j;, is the frequency with whom variable ¢ takes
i
the value k while its parent configuration is j; Ny = ZNijk; and N is the
=1
number of entries in the database ’
In addition to this metric, we have tried two more measures in combination
with the algorithm.
The Bayesian Information Criterion [19] (BIC) includes a term that penalizes
complex structures:
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where f(N) = 1log N is the penalization term.
The well known entropy [20] metric measures the disorder of the given data:
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Evidence propagation or probabilistic inference consists of, given an instan-
tiation of some of the variables, obtaining the a posteriori probability of one ore
more of the non-instantiated variables. It is known that this computation is a
NP-hard problem, even for the case of a unique variable.

There are different alternatives to perform the propagation methods. Exact
methods calculate the exact a posteriori probabilities of the variables and the
resulting error is only due to the limitations of the computer where the calcu-
lation is performed. The computational cost can be reduced looking over the
independence of the nodes in the net. The HUGIN [1] library used for part of
the experimentation uses an exact propagation method.

Approximated propagation methods are based on simulation techniques that
obtain approximated values for the probabilities needed. [15] proposes a stochas-
tic simulation method known as the Markov Sampling Method. In the case all

the Markov Blanquet! of the variable of interest is instantiated there is no need
of the simulation process to obtain the values of the non-evidential variables

n qi

P(D|S) = Z

! The Markov Blanquet of a node is the set of nodes formed by its parents, its children
and the parents of those children



4 Lazkano et al.

and thereby, P(z|w,) can be calculated using only the probability tables of the
parents and children of the node, i.e. using the parameters saved in the model
specification. The method becomes for that particular case an exact propagation
method and therefore, gives the same results as HUGIN.

3 Discretization of Continuous Attributes

Many classification algorithms require the classifying variables to be discretized,
either because they need nominal values, or in order to reduce the computational
cost and to accelerate the induction process. Discretization of the variables does
not necessarily affect negatively the learning process, even more, the performance
of a classifier can be improved with the discretization. [7] makes a comparison of
several discretization methods. The results show that for most of the cases the
discretization process improves the performance of the classifiers.

Many discretization methods can be found in the literature (see [16] and
chapter three of [17] for a review). Entropy-based discretization methods have
proved to be very effective for different problems. This methods pretend to divide
the set of data in k subsets of minimal entropy. Given a dataset and a variable
to discretize, the entries are ordered according to the values of the variable and
the value that minimizes the entropy in the generated subsets is selected as a
breakpoint. This criterion is applied recursively in each of the new subsets. The
D-2 discretization [4] uses some stopping criteria -minimum number of instances
in a region, maximum number of regions of minimal information gain— during
the recursive partitioning of an attribute. Fayyad and Iranni [8] use a recursive
entropy minimization heuristic together with the Minimum Description Length
Principle Cut (MDLPC) to control the number of intervals generated.

The MDLPC method stands out in the results shown in [7]. This is the reason
why we decided to try the MDLPC discretization for our experimentation.

4 Experimental Methodology

The aim of this experiment is to apply Bayesian networks to the navigation
model of the robot in order to improve her behavior while crossing doors. The
robot has a ring of 16 sonar sensors. During the experimentation phase the
operator is always at the back of the robot. For that reason only 10 ultrasonic
sensors situated in the front and left and right hands of the robot (see figure 1)
have been considered.

In order to make the experiments a database of 2831 entries was created.
To collect the data, the robot was pushed along different trajectories in which
the action to be performed was considered to be the same. Figure 2 shows the
data collection process. The easiest place from where the door can be crossed
is the position just in front of the door opening; from here the robot must just
go straight carefully. Thereby, while taking the sonar data we try to show to
the robot how to confront the door guiding her to the point just in front of the
opening.



Door crossing behavior for a mobile robot using Bayesian Networks 5

38cm

(front)

52cm

Fig. 1. Position of the sonars around the robot and variables (nodes) used
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Fig. 2. Data collection process

Taking into account the large amount of values a sonar sensor (variable) can
take, it is necessary to discretize those readings to obtain probability tables of
an acceptable size.

Because the amount of data in the database is not very large, we decided
not to divide it in two subsets, for training and testing respectively, but to use k
fold cross validation [23] to evaluate the performance of the different classifiers
and report the average accuracy measure from the testing k folds. The MDLPC
discretization strategy together with the k fold cross validation sets (with k = 10)
have been obtained with MLC++ [12].

4.1 Bayesian net structure

As explained above, the net structure can be defined by an expert but it can also
be learned using some learning mechanism or a mixed technique can be used.
Our option has been to try all three different approaches.

When learning Bayesian networks two subgoals can be identified. In one hand,
the structure of the network must be fixed and in the other hand, the values of
the probability tables for each node must be established. In this experimental
work the probability tables are always estimated from the training database.

Proposed structure (no learning) A net structure is proposed based on the
sonar configuration on the robot. Figure 3 shows the proposed net structure. In
this net each node or variable is linked to its immediate neighbor. These arcs
aim to represent that neighbor sensors are receiving information from the same
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obstacle or that a sensor can receive echoes as a result of the activation of the
neighborhood. The node corresponding to the class variable (S11) is related to
all the sensor variables because we believe that they all together contribute to
the definition of the class value. It must be noted that the proposed structure
does take into account the classification purpose of the net.

Fig. 3. Proposed net structure. There is no structural learning

Structural learning using different quality metrics In this second approx-
imation, instead of using a fixed net structure the K2 algorithm has been used as
a learning paradigm together with the three different metrics already explained.
This algorithm treats all variables equally and does not consider the classifying
task the net will be used for. The learned net structure depends completely on
the random order generated before the learning process starts. In order to reduce
the impact of the random order in the net structures learned, the experiments
have been repeated 3000 times and the nets with the optimal values have been
selected.

Mixed Technique In this last case, the nets have also been learned using the K2
algorithm in combination with the three different metrics but the order has not
been randomly selected. Instead, a node ordering has been defined that allows the
algorithm to learn the structure proposed: Si1, S10, 59, Ss, 51, 57, 52, 56, 53, S5, S1.
The class node can be parent of the rest of the nodes and thereby, assumes the
classification objective of the net.

4.2 Robot behavior implementation

Figure 4 shows the pseudo code of the implemented behavior. Two things must
be remarked on the algorithm. In one side, before propagation takes place we
need to find the nearest case in the database; otherwise, if no exact match of
the new sonar reading is found in the database the net will return the most
frequent class in the database. The other remark concerns to the motor control
section. We added a small variation factor that allows faster rotations when the
classification is confirmed over time.

5 Results

We distinguish two sets of results. The first subsection refers to the results ob-
tained off-line, that is, the cross validation results. The next subsection reports
on the results obtained on the real robot.



Door crossing behavior for a mobile robot using Bayesian Networks 7

Input: Bayesian network and database
Output: net structure

Begin:
while(1)

reading = discretize(read_sonars())
nearest_match = find nearest_match(reading, database)
actual_class = propagate(nearest_match, net)
Vieft(t) = Vimin — Vi X class(t) — (class(t — 1) + class(t)) x §V
Vright(t) = Vimin + Vi X class(t) + (class(t — 1) + class(t)) x 6V
set_robot_velocity (Viess(t), Vrigne(t))

End

Fig. 4. Pseudo-code of the door crossing behavior

5.1 Off-line results

Table 1 contains the average performance of the nets after the 10 fold cross
validation. Although the performance differences are not dramatical, the nets
learned with a random order using entropy and K2 measures give better results,
followed by the net proposed by the authors based on the sonar configuration.
In the other side, BIC metric gives the less accurate nets.

||k2-ran|bic-ran|entr-ran|| k2 | bic |entr ||prop|
Perf.]| 99.93 ] 99.07 | 99.96 [|99.75]98.17]99.68]]99.86]
Table 1. Average performance obtained over the 10 folds

Table 2 shows the values we have obtained for the hamming distance between
the proposed net and the learned ones, the total amount of links of the net, the
number of links directly attached to the class node, and the complexity of the
MB of the class node, as an attempt to measure the differences among the nets.
This table reveals that the K2 nets are the most complex ones and the BIC
metric gives the most simple nets because of the penalty factor. This is also
remarked in figure 5 where all the nets learned using the complete database are
shown.

| |k2-rnd|k2-ﬁx|bic-rnd||bic-ﬁx|entr—rnd|entr-ﬁx||pr0p |

hamming 21 17 21 21 18 20 0

links 26 26 16 12 19 20 19

class links 10 10 7 3 10 10 10

links in MB|| 26 26 13 5 18 20 19
Table 2. Hamming distance and links
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Fig. 5. The obtained nets

5.2 Behavior evaluation

It is not obvious how to proceed to evaluate the robot behavior. [6] defines
behavior quality or correctness by means of factors like robustness (capability to
correctly perform tasks with unknown data), adaptability (how the robot reacts
to environmental dynamical changes) and flexibility (variety of tasks the robot
can perform). In this paper only the door crossing problem is being tackled.
Thereby, we think that the most objective way to measure the real-time perfor-
mance is to just average the number of times the robot sucesfully manages to
cross the door from different positions and headings.

Figure 6 show the experimental environment. The experiments were repeated
10 times for every position and for the best three nets obtained during the off-line

phase. Table 3 shows these results.

° 07

°6

Ne

Fig. 6. Positions to measure the real-time performance of the behavior
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6 Conclusions and Future Work

This paper presents the experimentation done as a first attempt to use Bayesian
networks with the objective of performing the navigation behavior of a mobile
robot when confronted to door crossings. A net structure has been proposed
based on the topology of the sonar configuration and also a structural learn-
ing algorithm has been used in order to find a better structure, in combination
with different structure quality measures to evaluate the appropriateness of the
nets. Due to the large amount of values a sonar can provide, sonar data have
bee discretized according to the MDLPC strategy. To alleviate the high com-
putational cost of the exact propagation, a stochastic simulation has been used
that, for this particular case where all the Markov Blanquet of the class node
is instantiated becomes an exact propagation method with less computational
load. Although the “off-line” results were impresive, the real-time execution of
the behavior needs some improvements. Althoug position numbered 4 seems to
be the easiest place from where door can be crossed, this is also the most noisy
point because all the trajectories converge in that point. More data must be
collected in order to behave more properly and, instead of taking into account
only the reading at each time step independently, low filtered data will probably
give more reliable results.

1|234|5(6]7] %
entr-rnd|(10{10|7|8|10(8|7|85.71
k2-rnd |/10| 8 (9|7| 9 |6|5|[77.14
prop 9110(9|5/10|8|9||85.71
Table 3. Real-time performance of the door crossing behavior

Also, when looking for the nearest match something should be done to resolve
ties. We think that applying the K-means algorithm to the database and find
the nearest centroid would help not only resolving ties but also reducing the
computational load. It must be said that the class probabilities can be calculated
off-line and charged in memory.

The motor control must also be improved. We also think that this behavior
must be combined with a door detection module to achieve more robust behavior.
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