OPEAL: Evolutionary algorithms in Perl

Juan Julidn Merelo Guervés!t, Francisco Javier Garcia Castellano!, Pedro
Castillo Valdivieso!, and Maribel Garcia Arenas’

GeNeura Team, Depto. Arquitectura y Tecnologi’a de Computadores
Escuela Técnica Superior de Ingenierfa Informdtica
C/ Daniel Saucedo Aranda, s/n
Universidad de Granada (Spain)
tutti@geneura.ugr.es, http://geneura.ugr.es

Abstract. This paper describes OPEAL, a module for implementing
evolutionary computation problems in the Perl programming language.
It is shown how it leverages Perl features, and how it has been applied
to several problems, dealing mainly with interfacing with text files, the
world wide web and databases, in the context of the organization of an
evolutionary computation conference.

1 Introduction

In this paper we will try to make a introduction to the OPEAL (original Perl
evolutionary algorithm library) module, a set of classes for writing evolutionary
algorithms in Perl.

Per]l might not seem the right language for doing evolutionary computation,
since it is an interpreted language, and EC applications usually require high
performance (mainly in the fitness evaluation stage). However, Perl has another
quality that makes it ideal for EC (and, obviously, many other applications):
it is ideal as glue, that is, as a way of interfacing many different things, proto-
cols, applications, file formats. Perl features an exhaustive collection of modules
(which correspond roughly to libraries in other languages) for interfacing with
databases, the world wide web, handling complex data structures, and even
writing Perl programs in Latin (Lingua::Romana::Perligata, written by Damien
Conway). Other features make it outstanding among other languages: the qual-
ity of the references available for it, specially the Camel Book [1], the Liama book
[2], and others such as [3]; the quality of its technical support, with highly knowl-
edgeable user communities in almost any country and in any human language;
and, finally, the portability of its implementation: all Perl interpreters compile
from the same source, so a program that runs in a platform can run in almost
any other machine with a Perl interpreter (a class that includes all machine/OS
combinations with a decent C compiler).

In the case of evolutionary algorithms, we were mainly interested in handling
XML (eXtensible Markup Language) documents [4—6]. One of the objectives
of OPEAL was to be able to describe an evolutionary algorithm using XML;

having programs that parse the XML file and run a genetic algorithm, and
using the same XML format as a persistent object facility (that is, a way to
permanently store the state of an evolutionary algorithm). The language that
describes Evolutionary Algorithms has been called EvoSpec, and its specification
by a DTD (Data Type Dictionary) or XSchema (equivalent way of describing
an XML dialect using XML itself) [7]. Every class in OPEAL has an alternative
syntax in XML, and all classes have a constructor that creates an object from
its XML description.

The rest of the paper is organized as follows: next section (section 2) shows
the state of the art in Perl evolutionary algorithmss. Right next (section 3) de-
scribes the OPEAL evolutionary computation library, its design decisions, and
how it can be used. Section 4 a simple application of this library generation of
easily recalled passwords, and, briefly, other applications such as paper assign-
ment. The paper finishes with some discussion, conclusions and future work.

2 State of the art

As of may 2002, there is no comprehensive Perl evolutionary algorithm module
uploaded to CPAN (http://www.cpan.org, the site for all Perl modules), or
available on the WWW; and by comprehensive we mean multiparadigm and
easily extensible. Most published modules deal with genetic programmingin Perl.
Since Perl is an interpreted language, it is very easy to evaluate Perl expressions
from a Perl program (or script). The first (as claimed by the author) paper
published on the subject seems to be one by Baldi et al. [8], but the source code
itself was not published, and no hypothesis can be done on its features. From
that moment on, there are several papers that describe Perl implementation
of evolutonary algorithms: Kunken [9] recently describes an application that
evolves words that “look like they were English”, or fake english words, by trying
to evolve them using the same letter patterns than english uses. One of the
application presented in this paper tries to be a reimplementation of this method,
but using a different method to score the “englishness” of a word. The same
application is also mentioned by Zlatanov in [10], who implements a genetic
programming system, with source code available, to solve the same problem.

There are several papers about doing genetic programming in Perl: the first
one was written by Murray and Williams [11], which, despite its title, actually
describes a genetic programming system, similar to another mentioned in the
PerlMonks site ([12]; http://www.perlmonks.org is a meeting place for practi-
tioners). Another module that implements a canonical genetic algorithm was
released [13], but it cannot be easily extended or adapted to new paradigms.

None of the systems mentioned so far wholly use Perl’s capabilities to imple-
ment an object-oriented library, easily adaptable and expandable, which have
been two of the objectives OPEAL’s designers had in mind.

On the other hand, XML and evolutionary algorithms realms have remained
traditionally apart from each other, but there have been a few researchers that
have approached the topic. Among them, we would like to highlight the EAML

language (Evolutionary Algorithm Markup Language, an XML dialect) described
by Veenhuis and others [14]. This language, specified as a set of XML tags with
a defined and fixed semantics, specifies an evolutionary algorithm, from which
C++ code can be generated. EAML attempts to be an exhaustive description
of an evolutonary algorithm, but it does not really achieve its target, since, for
instance, variation operators are tags, instead of being attributes values of a
generic operator tag; this means that adding a new operator (say, a n-ary orgy
operator) would require a redesign of the language’s syntax (defined through a
DTD, or Data Type Dictionnary). Tag attributes can have any value or a con-
strained one (depending on how you define them in the DTD), but validated
XML requires tags to be defined in its DTD first. In any case, for a restricted
form of a evolutionary algorithm it is a valid approach, and it is a step in the
right direction; EvoSpec, which is used by OPEAL, tries to overcome these er-
rors. There are also other languages for evolutionary algorithm description, such
as EASEA [15]; however, this is a language designed to generate C++ and Java
programs from its description, and is not intended as an universal evolutionary
algorithm description language that can be parsed from any other language, or
generate programs in any language. The main objectives of this merging of XML
and evolutionary computation were achieved with the first release of the library,
and are described elsewhere [?]. This paper focuses in the evolutionary compu-
tation aspects of OPEAL, which have been developed since the publication of
that paper.

3 Description of OPEAL, an evolutionary algorithms
Perl library

OPEAL follows a design philosophy very close to that of EO (Evolving Objects,
[16]), that is, flexibility to evolve any data structure, separation of operators
from individuals, expandability to any new data structure and operators needed
to evolve them, and independence of operators applied to groups of individu-
als from the structure of the individuals themselves. This same philosophy has
been applied to JEQ, the evolutionary algorithm library within DREAM ([17],
additional material on DREAM available from http://world-wide-dream.org).
The elements of the OPEAL framework are distributed into two broad classes:
individuals and operators. Individuals are data structures that can be potentially
evolved, and operators are functions that are applied to other elements to change
them; these elements can be individuals as well as groups of individuals, or any
other data structure that includes individuals (lists, arrays, sets). All individuals
subclass the IndiBase base class, while all operators subclass dhe OpBase base
class. All elements are serialized in XML, and have an alternative XML represen-
tation; each element knows how to read and write itself from and to XML. Indi-
viduals use the indi tag while operators use the op tag. The IndiBase tag is the
base class of the individual hierarchy, that includes classes for strings Stringlndi
(with bitstrings, Binarylndi as a subclass of this one). It also includes Vectorlndi,
for vectors of any kind (float or int, for instante) and GPIndi, for tree indi-

viduals, used for Genetic Programming. The operator hierarchy, with OpBase as
base class, includes binary or unary variation operators applied to individuals,
such as mutation (Mutation) or crossover (Crossover), selection, insertion, and
even generations of a whole algorithm and the algorithm itself. Putting them all
in the same hierarchy makes them have an uniform application interface, and
easens up serialization in XML. So far, a canonical evolutionary algorithm (which
can be applied to any kind of individual), a more flexible EasyAlgorithm (which
admits different selection operators and termination conditions) and simulated
annealing (SimAnn) have been implemented.

These two class hierarchies pave the way for extending OPEAL. New indi-
viduals should go to its hierarchy, extending IndiBase or one of its siblings, and
new operators should do the same with OpBase. Writing them is easy enough,
following the pattern of the existing one; the most complicated part is the XML
serialization, but it is not big deal either; just a matter of writing things between
tags and reading them using Perl XML modules, or plain regular expressions.
The only real requirement is that new operators have the apply method, which
is used to make the operator apply itself to any number of individuals, and that
new individuals include the fitness method, which is used to set or get fitness.

The flexibility of OPEAL is shown by integrating several kinds of “chromo-
somes”, or data structures that can be evolved: trees, vectors and strings (which
include as a particular case bitstrings). These data structures can be modified by
using generic operators (for instance, crossover is generic for any data structure
that can be accessed randomly), or specific operators (mutation is usually spe-
cific: bitflip mutation can only be applied to bitstrings, while gaussian random
mutation applies to number vectors).

Fitness functions are handled as references-to-subroutines (similar to a func-
tion pointer in C, or a function reference in C++), which can be used as any
other variable within the Perl program. This way, the fitness function is really
a variable and can be called from the object that evaluates all the population,
generally the evolutionary algorithm object (such as the above mentioned EasyAl-
gorithm). In some cases, this is the only thing the user will have to do: inserting
part of a Perl evaluation function within an XML file.

Finally, OPEAL is freely distributed under the GPL licence, and is available
from http://opeal.sourceforge.net via FTP, HTTP and CVS; latest version is 0.4,
released in May 2002. This 0.4 version numbering reflects the fact that it’s still
at beta stage. In the near future, it will also be made available through CPAN,
the Perl module repository network.

4 Results

In order to show how easy it is to program non-trivial problems using this li-
brary, fake english word generation was chosen. Generating words that look as if
they were written in a given language might seem as a lame thing to do, but, in
fact, it has got many different applications. For starters, it can be used to gen-
erate easy-to-remember passwords. A fake english word such as inenth or itheen

(which are actually words generated by the program) are much easier to remem-
ber for an english-speaking person than rg5tmh (which is an actual, randomly
generated, password used for a PPSN submitter). This obviously saves on cus-
tomer support calls (or emails), even in the case of PPSN, when there are only
a few “customers”. Other possible uses are related to computational linguistics:
generate fake texts or fake poetry; use frequencies to score words to be used in
Scrabble-like games, and apply it to cryptoanalysis, by generating known plain-
text with frequencies similar to those used in real language. Some people have
also suggested generating names for firms and products in a particular language
(or ina mixture of two languages), and, curiously enough, generation of names
for characters and places in role playing games. In fact, two of the applications
of evolutionary algorithms in Perl [10, 9], unknowing of each other, are exactly
that: word generation.

The basis for word generation is the following: each language has a char-
acteristic sound, that depends on how letters are intertwined in, or put at the
beginning, or end, of words. Basque (euskera) language has different letter, two-
letter, and 3-letter combination frequency than other latin-alphabet languages
such as romanian, or tagalog (spoken in Philippines). Analyzing these frequen-
cies, and scoring words depending on them, will accordingly generate words
that “sound” as if they belonged to a particular language; since the words have
a familiar sound, they should be easy to remember. The length of a word is
also characteristic of a language: some languages, like finnish and german, favor
longer words, while english have slightly shorter words.

These frequencies and length were then used to evaluate words, by using the
following formula:

F(I)z@#— > F(n,I) (1)

n=1,2,3

where F(I) = fitness for individual I; L(I) is score due to length, that is, fre-
quency for that language for that particular length; and F'(n,I) is score due
to n-gram frequency, that is, the n-gram frequency averaged over number of
n-grams in the word; n-grams include also beginning and ending of words. The
frequencies for the english language were extracted from the web edition of the
Guardian newspaper, and thus are actual frequencies, not dictionnary frequen-
cies. Frequencies are normalized so that the most frequent item has an 1 score;
all frequencies are relative to that one; for instance most frequent length for
english is 3. In order to make length frequency less important in the evolution,
it is halved. This analysis yields word scores such as the ones shown in table 1
(on the left).

The parameters and operators used in the algorithm are shown in table 1
(right). Several combinations of 4 variation operators were tested. For starters,
mutation, random length-increment and crossover were tested; then, a
permutation operator was added. In a first set of experiments, all operators
were applied with the same application rate; then, the crossover rate was in-
creased so that it was applied as many times as all the rest together. Each com-

Word Score
Two 0.58
One 0.90 Parameter Value
With 0.44 Population Size 100
Eskarrikasko| 0.68 Termination Condition |15 generations w/o change
Guardian 0.66 String length range 5-12
No 0.99 Population renewal rate 40%
Yes 0.85 Selection method Roulette wheel
Gibraltar 0.65
The 0.65

Table 1. On the left, frequency and length based fitness (englishness) for some words.
Different words have different fitness, but some non-English words such as eskarrikasko
has lower fitness than some english words such as two or the, but higher than others
(with); there’s not a clear-cut distinction among english and non-english words. On the
right hand side, parameters used for the evolutionary algorithm. Variation operator
application rate is changes, and is explained on the text.

bination was run 10 times, and average fitness, average number of evaluations
and standard deviations were computed. Results are shown in table 2.

Operator rates Fitness|Generations
Mut, XOver, Inc 1/3 1.07 £ 0.20 41 + 16
Perm, Mut, XOver, Inc 1/4 1.08 £+ 0.35 37 + 23
Perm, Mut, Inc 1/6; XOver 1/2|1.05 + 0.26 37 + 17
Perm, Mut, Inc 1/8; XOver 5/8|1.01 £ 0.20 34+ 14

Table 2. Results of the evolutionary algorithms for password generation. Different
operator rates and combinations were tested; the fraction indicates the rate of new
individuals generated using that operator. Results are averages over 10 runs. Average
fitness is more or less the same for all combinations, since differences are not significa-
tive. However, the number of generations that it takes to find the optimum is lower
when crossover is applied in the higher proportion.

The conclusion to be drawn from this experiment is that it was quite easy
to program this application with OPEAL, and interface it with the current
PPSN management scripts, which were also written in Perl; each password was
generated in almost real time (on average, each run took less than 2 seconds
on a Duron 700 machine), and meaningless, but familiar-sounding words were
used, reducing technical support time. The whole source code for this appli-
cation is available from the authors, and will be released through the OPEAL
site soon. A slightly different version can also be run online from the address
http://geneura.ugr.es/Mason/EvolveWordsPPSN.html.

Fitness evolution for a typical run

Fi t ness

0.2 - I I I I I
0 5 10 15 20 25 30

Generati ons

Fig. 1. Fitness plot for the fake english word problem, which shows how some words
with a 1.1 fitness (higher than usual english words) are obtained.

In the context of the PPSN2002 conference, OPEAL was also used for as-
signing papers to referees. The fact that it was programmed in Perl made very
easy to interface with the database in which paper and referee data was stored.

So far (May 2002), the program files have been downloaded around 500 times
by users all over the world, and it is widely used within the department for
several evolutionary-computation related projects. One of the most interesting
project is using SOAP (Simple Object Access Protocol) for a ring-shaped parallel
evolutionary computation experiment [18,19] (bot papers are in Spanish). In the
latter paper, several EC populations are placed at different nodes with a ring
topology. Members of the population are only sent to the next node in the ring,
and received from the previous node. Experiments with a few nodes have been
performed, which show that it scales up very well, without a huge increase of
the network load, and allows efficient parallel computation with heterogeneous
nodes.

5 Conclusion, discussion

This paper presents how a Perl evolutionary algorithm library called OPEAL
(or Algorithm::Evolutionary in the future), has been applied to two different task
within the organization of the PPSN 2002 conference. One of then had no major
impact on the conference itself, since it was only a evolutionary algorithm for

Blrroars—— JOR)

. Eile Edit MWiew Search Go Bookmarks Tasks

Q9,0 Q Q oL

.| 4% Home | %5 The Mozilla Qr.. % Latest Build

F s

Evolucidn de palabras

0 == lgafes —= 0.76707 5856877493, —
l=xlgafes —= 0.76707 58665877493,

2 => cdjaese —= 07974039911 55143,
3 => aglten —> 0.82298004 5728495,

4 == eqglten —» 0.85208303672777,

5 == astten —= 0.949901930344385,

& => astten —= 0.9499019303443845;

7 => astten —= 0.9499019303244384;

| 8 =» astten —» 094990 19303244384,

9 == asetes —» 1.01650884571473;

10 == aseten —» 1.01748880238993,

11 == enrntese —» 1. 01935072789225,
12 == esetenc —=> 1 0838883954837,
13 == eseten —» 1.13652 880805785,
14 == eseten — 1.13652 88080574886,
15 == eseten —> 1.1385288080687 88,
la == eseten —> 1,128528808087 88,

17 == eseten —= 113452 88080487 464!]
B (4 OF Ed .l
Fig. 2. Running the “evolve words” problem online (from

http://geneura.ugr.es/Mason/EvolveWords.html), which is but a sample of the
possibilities of running evolutionary algorithms in Perl: in this case, the EA code is
embedded in the web page, and combined with the HTML::Mason module to generate
the web page that is seen in the browser. In this case, the best word in every generation
is shown, together with its fitness. In this case, the words evolved used frequencies for
the Spanish language.

generation of passwords for chairpersons and referees; this problem, however,
allowed us to check the easiness of programming with OPEAL and interfacing
with the current PPSN application. At the same time, this application advanced
a bit the state of the art in fake-english word generation, a subject that has
lately received some attention; in this case, crossover seemed to have a major
role in speeding up password generation.

Future work will mainly concentrate on improving the OPEAL library; prepar-
ing it for inclusion in the CPAN repository, and adding new paradigms, such as
evolution strategies, and testing extensively genetic programming on this new
platform. It will also concentrate on fixing the standards for XML specification
of evolutionary algorithms.

Acknowledgements

This work has been supported in part by INTAS 97-30950. I am also grateful to
the contributors to a discussion on the spanish open source forum http: //barrapunto.com
about possible uses for a word generation algorithm.

References

1. Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl. O Reilly &
Associates, 3rd edition, 2000.

2. Randal L. Schwartz and Tom Phoenix. Learning Perl. O Reilly & Associates, 3rd
edition, 2001.

3. Peter Wainwright; Aldo Calpini; Arthur Corliss; Simon Cozens; Shelley Powers;
JJ Merelo-Guervés; Aalhad Saraf; Chris Nandor. Professional Perl Programming.
Wrox Press Inc, 2001.

4. Elliotte Rusty Harold. XML Bible. IDG Books worldwide, 1991.

5. O’Reilly Networks. @~ XML.com: XML from the inside out. @ Web site at
http://www.xml.com.

6. Erik T. Ray. Learning XML: creating self-describing data. O "Reilly, January 2001.

7. David C. Fallside. Xml schema part 0: Primer. Available from
http://www.w3.org/TR/xmlschema-0/.

8. M. Baldi, F. Corno, M. Rebaudengo, M. Sonza Reorda, and G. Squillero. Telecom-
munications Optimization: Heuristic and Adaptive Computation Techniques by
David Corne (Editor) - George Smith - Martin J. Oates, chapter GA-Based Veri-
fication of Network Protocols Performance. Wiley, 2000.

9. Joshua Kunken. The application of genetic algorithms in english vocabulary gen-
eration. In Proceedings of the Twelfth Midwest Artificial Intelligence and Cognitive
Science Conference 2001. Miami University Press 2001, 2001. Available also from
http://www.ocf.berkeley.edu/~jkunken/glot-bot/.

10. Teodor Zlatanov. Cultured Perl : Genetic algorithms applied with Perl
create your own darwinian breeding grounds. Available from http://www-
106.ibm.com /developerworks/linux/library/Igenperl/, August 2001.

11. Brad Murray and Ken Williams. Genetic algorithms with perl. The Perl Journal,
5(1), Fall 1999. Also available from http://mathforum.org/~ken/genetic/article.html.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

gumpu. Genetic programming or breeding perls. Available from
http://perlmonks.org/index.pl?node_id=31147, September 2001.

Michael K. Neylon. Algorithm::Genetic. Available from
http://perlmonks.org/index.pl?node_id=81678, May 2001.

Christian Veenhuis, Katrin Franke, and Mario Koppen. A semantic model for
evolutionary computation. In Proceedings IIZUKA, 2000.

P. Collet, E. Lutton, M. Schoenauer, and J. Louchet. Take it EASEA. In Marc
Schoenauer, Kalyanmoy Deb, Guenter Rudolph, Xin Yao, and Hans-Paul Schwefel
Evelyne Lutton, Juan Julian Merelo, editors, PPSN VI, number 1917 in LNCS,
pages 891-901. Springer Verlag, 2001.

J. J. Merelo. OPEAL, una librerfa de algoritmos evolutivos en perl. In Sdnchez
[?], pages 54-59.

M. Keijzer; J. J. Merelo; G. Romero; and M. Schoenauer. Evolving objects: a
general purpose evolutionary computation library. Springer-Verlag, October 2001.
M.G. Arenas, L. Foucart, J.J. Merelo, and P. A. Castillo. Jeo: a framework for
evolving objects in java. In Actas Jornadas de Paralelismo [20].

J. J. Merelo, J.G. Castellano, P.A. Castillo, and G. Romero. Algoritmos genéticos
distribuidos usando soap. In Actas Jornadas de Paralelismo [20].

Merelo; Castellano; Castillo. Algoritmos evolutivos P2P usando SOAP. In Sédnchez
[?], pages 31-37.

Actas XII Jornadas de Paralelismo. Universidad Politécnica de Valencia, 2001.

E. Alba; F. Ferndndez; J. A. Gémez; F. Herrera; J. 1. Hidalgo; J. J. Merelo; J. M.
Sénchez, editor. Actas primer congreso espaniol algoritmos evolutivos, AEB02.
Universidad de Extremadura, Febrero 2002.

