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Abstract. This paper introduces a novel application of genetic algorithms for 
evolving an optimal addition-subtraction chain that allows one to perform pre- 
computations necessary in the window modular exponentiation methods. When 
the window size is large, the pre-processing step becomes very expensive. The 
evolved addition/addition-subtraction sequence is of minimal size so it allows 
one to perform exponentiation with a minimal number of multiplication and/or 
divisions and hence implementing efficiently the exponentiation operation. We 
compare our results with those obtained using Brun’s algorithm. Note that the 
latter yields addition chains but not addition-subtraction chains. We use as a 
reference because, as far as we know, no work has been done to generate 
addition-subtraction sequences. 

1 Introduction 

Public-key cryptographic systems (such as the RSA encryption scheme [7], [13]) 
often involve raising large elements of some groups fields (such as GF(2n) or elliptic 
curves [10]) to large powers. The performance and practicality of such cryptosystems 
is primarily determined by the implementation efficiency of the modular 
exponentiation. As the operands (the plain text of a message or the cipher (possibly a 
partially ciphered) are usually large (i.e. 1024 bits or more), and in order to improve 
time requirements of the encryption/decryption operations, it is essential to attempt to 
minimise the number of modular multiplications performed. 

A simple procedure to compute C = TE mod M based on the paper-and-pencil 
method is described in Algorithm 1. This method requires E-1 modular 
multiplications. It computes all powers of T: T → T2 → T3 → ... → TE−1 → TE. 

Algorithm 1. simpleExponentiationMethod(T, M, E) 
  1: C = T; 
  2: for i = 1 to E-1 do 
  3:  C = (C × T) mod M; 
  return C 
end algorithm. 

The paper-and-pencil method computes more multiplications than necessary. For 
instance, to compute T31, it needs 30 multiplications. However, T31 can be computed 



  

using only 7 multiplications: T → T2 → T3 → T5→ T10 → T11 → T21→ T31. But if 
division is allowed, T31 can be computed using only 5 multiplications and one 
division:  T → T2 → T4 → T8→ T16 → T32 →− T31, where →− denotes a division.  
 Recently, several cryptosystems based on the Abelian group defined over elliptic 
curves are proposed. In these crypotosystems, the inverse of element is easily 
obtained. Hence for such groups one can compute exponentiations by an interleaved 
sequence of multiplications and divisions. 

The basic question is: what is the fewest number of multiplications to compute TE, 
given that the only operation allowed is multiplying two already computed powers of 
T? Answering the above question is NP-hard, but there are several efficient 
algorithms that can find a near optimal ones [12]. However, these algorithms need 
some pre-computations that if not performed efficiently can deteriorate the algorithm 
overall performance. The pre-computations are themselves an ensemble of 
exponentiations and so it is also NP-hard to perform them optimally. In this paper, we 
concentrate on this problem and engineer a minimal addition-subtraction chain 
perform the necessary pre-computations very efficiently. We do so using evolutionary 
computation. We compare our results with those obtained using the Brun’s algorithm 
[1]. Note, however, that the latter yields only addition chains. We use it as a reference 
because, as far as we know, no work has been done to generate addition-subtraction sequences. 

 Evolutionary algorithms are computer-based solving systems, which use 
evolutionary computational models as key element in their design and 
implementation. A variety of evolutionary algorithms have been proposed. The most 
popular ones are genetic algorithms [3], [5]. They have a conceptual base of 
simulating the evolution of individual structures via the Darwinian natural selection 
process. The process depends on the performance of the individual structures as 
defined by its environment. Genetic algorithms are well suited to provide an efficient 
solution of NP-hard problems [3], [5], [12].  

This paper will be structured as follows: in Section 2, we present the window 
methods; in Section 3, we give an overview on genetic algorithms concepts; in 
Section 4, we explain how these concepts can be used to compute a minimal addition-
subtraction chain to perform efficiently necessary pre-computations in the window 
methods. In Section 5, we present some useful results. Finally,, we conclude in 
Section 6. 
 

2 Window Methods 

Generally speaking, the window methods for exponentiation [6] may be thought of as 
partitioning in k-bits windows the binary representation of the exponent E, pre-
computing the powers in each window one by one, squaring them k times to shift 
them over, and then multiplying by the power in the next window. 

There are several partitioning strategies. The window size may be constant or 
variable. For the m-ary methods, the window size is constant and the windows are 
next to each other. On the other hand, for the sliding window methods the window 
size may be of variable length. It is clear that zero-windows, i.e. those that contain 
only zeros, do not introduce any extra computation. So a good strategy for the sliding 
window methods is one that attempts to maximise the number of zero-windows. The 



  

details of m-ary methods are exposed in Section 2.1 while those related to sliding 
window methods are given in Section 2.2.  

2.1 M-ary Methods 

The m-ary methods [3] scans the digits of E form the less significant to the most 
significant digit and groups them in partitions of equal length log

2
m, where m is a 

power of two.In general, the exponent E is partitioned into p partitions, each one 
containing l = log

2
m successive digits. The ordered set of the partition of E will be 

denoted by ℘(E). If the last partition has less digits than log
2
m, then the exponent is 

expanded to the left with at most log
2
m −1 zeros. The m-ary algorithm is described in 

Algorithm 2, wherein Vi denotes the decimal value of partition Pi. 
Algorithm 2. m-aryMethod(T, M, E) 
 Partition E into p l-digits partitions; 
  1: for i = 2 to m    
  2:   Compute Ti mod M; 
 3: C = 1-pVT  mod M; 
  4: for i = p-2 downto 0  
 5: C = 

l2C mod M;  
 6: if Vi≠0 then  
 7:  C = C× iVT mod M;  
 return C; 
end algorithm. 

2.2 Sliding Window Methods 

For the sliding window methods the window size may be of variable length and hence 
the partitioning may be performed so that the number of zero-windows is as large as 
possible, hence reducing the number of modular multiplication necessary in the 
squaring and multiplication phases. Furthermore, as all possible partitions have to 
start (i.e. in the right side) with digit 1, the pre-processing step needs to be performed 
for odd values only. The sliding method algorithm is presented in Algorithm 3, 
wherein d denotes the number of digits in the largest possible partition and Li the 
length of partition Pi.  

Algorithm 3. slidingWindowMethod(T, M, E) 
 1: Partition E using the given strategy; 
 2: for i = 2 to 2d –1 step 2 Compute Ti mod M; 
 3: C = 1-pPT  mod M; 
 4: for i = p-2 downto 0 

 5:  C = iL2T mod M; 
 6:  if Vi≠0 then C = C× iVT  mod M; 
 return C; 
end algorithm. 



  

2.3 Adaptive Window Methods 

In adaptive methods [8] the computation depends on the input data, such as the 
exponent E. M-ary methods and window methods compute all possible partitions, 
knowing that the partitions of the actual exponent may or may not include all possible 
partitions. Thus, the number of modular multiplication in the pre-processing step can 
be reduced if partitions of E do not contain all possible windows. 
 Let ℘(E) be the list of partitions obtained from the binary representation of E.  
Assume that the list of partition is non-redundant and ordered according to the 
ascending value of the partitions contained in the expansion of E. As before let p be 
the number of the partition of E and recall that Vi and Li are the decimal value and the 
number of digits of partition Pi. The generic algorithm for describing the computation 
of TE mod M using the window methods is given in Algorithm 4. 

Algorithm 4. AdaptiveWindowMethod(T, M, E) 
 Partition E using the given strategy; 
 1: for each partition in ℘(E) 
  2:   Compute iVT  mod M; 
 3: C = 1-bVT  mod M; 
 4: for i = p-2 downto 0  
 5:  C = iL2T mod M; 
 6:  if Vi ≠ 0 then 
 7:      C = C× iVT  mod M; 
 return C; 
end algorithm. 

In Algorithm 2 and Algorithm 3, it is clear how to perform the pre-computation 
indicated in lines 1 and 2. For instance, let E = 1011001101111000. The pre-
processing step of the 4-ary method needs 14 modular multiplications (T→T×T=T2→ 
T×T2=T3→ … →T×T14=T15) and that of the maximum 4-digit sliding window method 
needs only 8 modular multiplications (T→T×T=T2→T×T2=T3→T3×T2=T5→ T5×T2=T7 

→ … →T13×T2=T15). However the adaptive 4-ary method would partition the 
exponent as E = [1011][0011][0111][1000] and hence needs to pre-compute the 
powers T3, T7, T8 and T11 while the method maximum 4-digit sliding window method 
would partition the exponent as E = [1][0][11][00][11][0][1111][000] and therefore 
needs to pre-compute the powers T3 and T15. The pre-computation of the powers 
needed by the adaptive 4-ary method may be done using 6 modular multiplications 
(T→T×T=T2→T×T2=T3→T2×T2=T4→T3×T4=T7→T7×T=T8→T8×T3=T11) while the pre-
computation of those powers necessary to apply the adaptive sliding window may be 
accomplished using 5 modular multiplications (T→T×T=T2→T×T2=T3→T2×T3=T5→ 
T5×T5=T10→T5×T10=T15). Algorithm 4 does not suggest how to compute the powers 
needed to use the adaptive window methods. Finding the best way to compute them is 
a NP-hard problem [4], [8].  



  

3 Addition-subtraction chains and addition-subtraction sequences 

An addition-subtraction chain of length l for an positive integer N is a list of positive 
integers (a0, a1, a2, ..., al) such that a0 = 1, al = N and ak = ai ± aj, 0 ≤ i ≤ j < k ≤ l. 
Finding a minimal addition-subtraction chain for a given positive integer is an NP-
hard problem. It is clear that a short addition-subtraction chain for exponent E yields a 
fast algorithm to compute TE mod M as we have if ak = ai + aj then jaiaka TTT ×=  

and if ak = ai − aj then jaiaka TTT /= . The adaptive window methods described 
earlier use a near optimal addition-subtraction chain to compute TE mod M. However 
these methods do not prescribe how to perform the pre-processing step (lines 1 and 2 
of Algorithm 4). In the following we give show how to perform this step with 
minimal number of modular multiplications. 

3.1 Addition-subtraction sequences 

There is a generalisation of the concept of addition-subtraction chains, which can be 
used to formalise the problem of finding a minimal sequence of powers that should be 
computed in the pre-processing step of the adaptive window method. 
 An addition-subtraction sequence for the list of positive integers V0, V1, …, Vp 
such that V0>V1> …>Vp is an addition-subtraction chain for integer Vp, which 
includes all the remaining integers V0, V1, …, Vp of the list. The length of an addition-
subtraction sequence is the numbers of integers that constitute the chain. An addition-
subtraction sequence for a list of positive integers V0, V1, …, Vp will be denoted by 
S(V0, V1, …, Vp). 
 Hence, to optimise the number of modular multiplications needed in the pre-
processing step of the adaptive window methods for computing TE mod M, we need to 
find an addition-subtraction sequence of minimal length (or simply minimal addition-
subtraction sequence) for the values of the partitions included in the non-redundant 
ordered list ℘(E). This is an NP-hard problem and we use genetic algorithm to solve 
it. General principles of genetic algorithms are explained in the next section.  

3.2 Brun’s algorithm 

Now we describe briefly, Brun’s algorithm [1] to compute relatively short addition 
sequences. The algorithm is a generalisation of the continued fraction algorithm [1]. 
Assume that we need to compute the addition sequence S(V0, V1, …, Vp). Let  

Q = 












−1p

p

V
V

 and let B(Q) be the addition chain for Q using the binary method (i.e. 

Algorithm 2 with l = 1). Let R = Vp − Q×Vp−1. By induction we can construct an 
addition sequence S(V0, V1, …, R, …, Vp−1). Then obtain   

S(V0, V1, …, Vp) = S(V0, V1, …, R, …, Vp−1) ∪ Vp−1 × B(Q)\{1} ∪ {Vp} 
 
Example. Let us compute the addition sequence S(47, 117, 343) using Brun’s 
algorithm. We proceed inductively as follows: 



  

S(47, 117, 343) = S(47, 109, 117)∪117×{2}∪{343}  
   = S(47, 109, 117)∪{234, 343} 
   = S(8, 47, 109)∪{117, 234, 343} 
   = S(8, 15, 47) ∪47×{2}∪{109, 117, 234, 343} 
   = S(8, 15, 47) ∪{94, 109, 117, 234, 343} 
   = S(8, 15, 17) ∪15×{2}∪{47, 94, 109, 117, 234, 343} 
   = S(8, 15, 17) ∪{30, 47, 94, 109, 117, 234, 343} 
   = S(2, 8, 15) ∪{17, 30, 47, 94, 109, 117, 234, 343} 
   = S(2, 7, 8) ∪{15, 17, 30, 47, 94, 109, 117, 234, 343} 
   = S(1, 2, 7) ∪{8, 15, 17, 30, 47, 94, 109, 117, 234, 343} 
   = S(1, 2) ∪2×{2, 3}∪{7, 8, 15, 17, 30, 47, 94, 109, 117, 234, 343} 
   = {1, 2, 4, 6, 7, 8, 15, 17, 30, 47, 94, 109, 117, 234, 343} 

So the Brun’s addition sequence for 47, 117, 343 is (1, 2, 4, 6, 8, 15, 17, 30, 47, 94, 
109, 117, 234, 343). This addition sequence allows us to perform the pre-computation 
step with 13 modular multiplications. 

4 Principles of genetic algorithms 

Genetic algorithms are now a well-known technique to solve NP-hard problems. They 
maintain a population of individuals that evolve according to selection rules and other 
genetic operators, such as mutation and recombination. Each individual receives a 
measure of fitness. Selection focuses on individuals, which shows high fitness. 
Mutation and crossover provide general heuristics that simulate the reproduction 
process. Those operators attempt to perturb the characteristics of the parent 
individuals as to generate distinct offspring individuals. 

Genetic algorithms are implemented through the following generic algorithm 
described by Algorithm 5, wherein parameters popSize, fit and genNum are the 
population maximum size, the expected fitness of the expected individual and the 
maximum number of generation allowed respectively.  

Algorithm 5. GA(popSize,fit,genNum):individual; 
 1: generation  = 0; 
 2: population  = initialPopulation(); 
 3: fitness = evaluate(population); 
 4: do  parents   = select(population); 
 5:  population= reproduce(parents); 
 6:  fitness   = evaluate(population); 
 7:  generation= generation + 1; 
 8: while(fitness[i]<fit, ∀ i∈population) 
              and (generation < genNum); 
 return fittestIndividual(population); 
end algorithm.  



  

In Algorithm 5, function intialPopulation returns a valid random set of individuals 
that would compose the population of first generation, function evaluate returns the 
fitness of a given population storing the result into fitness. Function select chooses 
according to some criterion that privileges fitter individuals, the individuals that 
should be used to generate the population of the next generation and function 
reproduction implements the crossover and the mutation process to actually yield the 
new population. The processes of reproduction including the mutation and crossover 
processes will be described succinctly in the next section while customised to fit in 
our application.  

5 Addition-subtraction sequence minimisation problem 

It is perfectly clear that the shorter the addition-subtraction sequence is, the faster 
Algorithm 5. We propose a novel idea based on genetic algorithm to solve this 
minimisation problem.  The addition-subtraction sequence minimisation problem 
consists of finding a sequence of numbers that constitutes an addition-subtraction 
sequence for a given ordered list of n positive integers, say Vi for 1 ≤ i ≤ n-1. The 
addition-subtration sequence should be of a minimal length. 

5.1 Individual Encoding 

Encoding of individuals is one of the implementation decisions one has to take in 
order to use genetic algorithms. It very depends on the nature of the problem to solve. 
There are several representations that have been used with success: binary encoding 
which is the most common mainly because it was used in the first works on genetic 
algorithms, represents an individual as a string of bits; permutation encoding mainly 
used in ordering problem, encodes an individual as a sequence of integer; value 
encoding represents an individual as a sequence of values that are some evaluation of 
some aspect of the problem [9], [11].  

In our implementation, an individual represents an addition sequence. We use the 
binary encoding wherein 1 implies that the entry number is a member of the addition 
sequence and 0 otherwise. Let V1 = 3, V2 = 7 and V3 = 13, be the exponent, the 
encoding of Fig. 1 represents the addition-subtraction chain (1, 2, 4, 6): 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1 1 1 1 0 0 1 0 0 0 0 0 1 1 

Fig. 1.  Addition-subtraction sequence encoding 

5.2 The genetic algorithm 

Consider Algorithm 5. Besides the parameters popSize, fit and genNum which 
represent the population maximum size, the fitness of the expected result and the 
maximum number of generation allowed, the genetic algorithm has several other 
parameters, which can be adjust by the user so that the result is up to his or her 
expectation. The selection is performed using some selection probabilities and the 



  

reproduction, as it is subdivided into crossover and mutation processes, depends on 
the kind of crossover and the mutation rate and degree to be used.  

Selection. The selection function as described in Algorithm 6, returns two 
populations: one represents the population of first parents, which is parents[1][] and 
the other consists of the population of second parents, which is parents[2][].  

Algorithm 6. select(population pop):population[] 
 1: population[] parents[2]; 
 2: for i = 1 to popSize  
 3:  n1 = random(0,1); n2 = random(0,1); 
 4:  for j = 1 to popSize do 
 5:   parents[1][i]= parents[2][i]= parents[popSize]; 
 6:   if SelectionProbabilities[j] ≥ n1 then 
 7:    parents[1][i] = pop[j] 
 8:   else if SelectProbabilities[j] ≥ n2 then 
 9:      parents[2][i]=pop[j]; 
 return parents; 
end algorithm. 

The selection proceeds like this: whenever no individual that attends to the 
selection criteria is encountered, one of the last individuals of the population is then 
chosen, i.e. one of the fitter individuals of population. Note that the population from 
which the parents are selected is sorted in decreasing order with respect to the fitness 
of individuals, which will be described later on. The array selectionProbabilities is set 
up at initialisation step and privileges fitter individuals. 

Reproduction. Given the parents populations, the reproduction proceeds using 
replacement as a reproduction scheme, i.e. offspring replace their parents in the next 
generation. Obtaining offspring that share some traits with their corresponding 
parents is performed by the crossOver function. There are several types of crossover 
schemes. These will be presented shortly. The newly obtained population can then 
suffer some mutation, i.e. some of the individuals (addition-subtraction chains) of 
some of the genes (power numbers). The crossover type, the number of individuals 
that should mutated and how far these individuals should be altered are set up during 
the initialisation process of the genetic algorithm. 

Crossover. There are many ways how to perform crossover and these may depend on 
the individual encoding used [9]. We present crossover techniques used with 
permutation representation. 

Single-point crossover consists of choosing randomly one crossover point, then, 
the part of the integer sequence from beginning of offspring till the crossover point is 
copied from one parent, the rest is copied from the second parent as depicted in  
Fig. 2(a). Double-points crossover consists of selecting randomly two crossover 
points, the part of the integer sequence from beginning of offspring to the first 



  

crossover point is copied from one parent, the part from the first to the second 
crossover point is copied from the second parent and the rest is copied from the first 
parent as depicted in Fig. 2(b). Uniform crossover copies integers randomly from the 
first or from the second parent. Finally, arithmetic crossover consists of applying 
some arithmetic operation to yield a new offspring. 

(a) Single-point crossover 

 

(b) Double-points crossover 

 

Fig. 2. Single-point vs. double-points crossover 

The single point and two points crossover use randomly selected crossover points 
to allow variation in the generated offspring and to avoid premature convergence on a 
local optimum [2], [9]. In our implementation, we tested all four-crossover strategies.  

Mutation. Mutation consists of changing some genes of some individuals of the 
current population. The number of individuals that should be mutated is given by the 
parameter mutationRate while the parameter mutationDegree states how many genes 
of a selected individual should be altered.  

The mutation parameters have to be chosen carefully as if mutation occurs very 
often then the genetic algorithm would in fact change to random search [2]. 
Algorithm 7 describes the mutation procedure used in our genetic algorithm. 

When either of mutationRate or mutationDegree is null, the population is then kept 
unchanged, i.e. the population obtained from the crossover procedure represents 
actually the next generation population. 

Algorithm 7. mutate(population pop, int mutationDegree, 
int mutationRate):population; 

  1: if(mutationRate≠0)and(mutationDegree≠0)then  
  2:  for a = 1 to PopSize do  
  3:   n = random(0,1); 
  4:   if n ≤ mutationRate then 
  5:     for i = 1 to mutationDegree do 
  6:      gene = random(2, n-1); 
  7:      pop[a][gene] = (pop[a][gene]+1) mod 2; 
  return pop; 
end algorithm. 



  

When mutation takes place, a number of genes are randomised and mutated: when 
the gene is 1 then it becomes 0 and vice-versa. The parameter mutationDegree 
indicates the number of gene to be mutated. 

Fitness. This step of the genetic algorithm allows us to classify the population so that 
fitter individuals are selected more often to contribute in the constitution of a new 
population. 

The fitness evaluation of addition-subtraction chain is done with respect to two 
aspects: (i) how much a given addition-subtraction chain adheres to the Definition 1, 
i.e. how many members of the addition-subtraction chain cannot be obtained 
summing up two previous members of the chain; (ii) how far the addition-subtraction 
chain is reduced, i.e. what is the length of the addition-subtraction chain. Algorithm 8 
describes the evaluation of fitness used in our genetic algorithm.  

For a valid addition sequence, the fitness function returns its length, which is 
smaller than the last integer Vn. The evolutionary process attempts to minimise the 
number of ones in a valid addition sequence and so minimise the corresponding 
length. Individuals with fitness larger or equal to Vn are invalid addition-subtraction 
chains. The constant largePenalty should be larger than Vn. With well-chosen 
parameters, the genetic algorithm deals only with valid addition sequences. 

 
Algorithm 8. int evaluate( individual s) 
 1: int fitness = 0; 
  2: for i = 2 to n-1 do 
  3:  if s[i] == 1  
  4:  then fitness = fitness + 1; 
  5:   if i == Vi & s[i]≠1 
   6:  then fitness = fitness + largePenalty; 
  6:   if ∃/  j,k s.t. 1≤j,k≤i & i=j+k|i=j-k & s[i]=s[k]=1 
    then fitness = fitness + largePenalty; 
  return fitness; 
end algorithm. 

6 Implementation results 

In applications of genetic algorithms to a practical problem, it is difficult to predict a 
priori what combination of settings will produce the best result for the problem in a 
relatively short time. The settings consist of the population size, the crossover type, 
the mutation rate and the mutation degree. We investigated the impact of different 
values of these parameters in order to choose the more adequate ones to use. We 
found out that the ideal parameters are: a population of at most 50 individuals; the 
double-points crossover; a mutation rate between 0.4 and 0.7 and a mutation degree 
of about 1% of the value of the last value in sequence Vp.  

The curve of Fig. 3 shows the progress made in the first 500 generations of an 
execution to obtain the addition sequence for the list of numbers 47, 117 and 343. The 
settings used are: a 50 individual per population, double-points crossover, a mutation 
rate of 0.645 and a degree of 50. 



  

The Brun’s algorithm yields (1, 2, 4, 6, 7, 8, 15, 17, 30, 47, 94, 109, 117, 234, 343) 
and the genetic algorithm yield the same addition sequence as well as (1, 2, 4, 8, 10, 
11, 18, 36, 47, 55, 91, 109, 117, 226, 343). Both addition sequences have the same 
length. Using these addition sequences to perform the pre-computation step requires 
14 modular multiplications. The fittest addition-subtraction chain evolved by our 
genetic algorithm for the list partition values 47, 117 and 343 was (1, 2, 3, 5, 7, 12, 
24, 48, 47, 43, 86, 129, 117, 172, 344, 343). It requires 11 multiplications and 4 
divisions.  

 

 

Fig. 3. The genetic algorithm curve for generating S(47, 117, 343). 
 
Finding the best addition-subtraction sequence is impractical. However, we can find 
near-optimal ones. Our genetic algorithm always finds addition sequences far shorter 
than those used by the m-ary method and the sliding windows independently of the 
value of m and the partition strategy used respectively, and as short as the addition 
sequence yield by the Brun’s algorithm. Concerning the addition-subtraction chains, 
we do not know of any previous results to compare ours with.  

7 Conclusions 

In this paper, we presented an application of genetic algorithms to minimisation of 
addition sequences. We first explained how individuals are encoded. Then we 
described the necessary algorithmic solution. Then we presented some empirical 
observations about the performance of the genetic algorithm implementation. 

This application of genetic algorithms to the minimisation problem proved to be 
very useful and effective technique. Shorter addition sequences compared with those 
obtained by the m-ary methods, those obtained for the sliding window methods as 
well as those obtained using Brun’s algorithm (see Table 1 of the previous section) 
can be obtained with a little computational effort. A comparison of the performance 
of the m-ary, sliding window and the Brun’s method vs. the genetic algorithm is 
shown in Fig. 4. A satisfactory addition sequence can be obtained in a 7 seconds to 2 
minutes using a Pentium III with a 256 MB of RAM.   



  

 

Fig. 4. Ratio for the addition sequences yield by the GA vs. Brun’s methods. 
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