
Minimal Addition-Subtraction Sequences for Efficient
Pre-Processing in Large Window-Based Modular

Exponentiation Using Genetic Algorithms

Nadia Nedjah and Luiza de Macedo Mourelle

Department of Systems Engineering and Computation, Faculty of Engineering,
State University of Rio de Janeiro – UERJ,

Rua São Francisco Xavier, 524, 5o. andar, Bloco D, Sala 5022,

Maracanã, CEP 20559-900
Rio de Janeiro - RJ, Brazil

Tel: +55 21 2587 7442
Fax: +55 21 2587 7374

{nadia, ldmm}@eng.uerj.br
http://www.eng.uerj.br/~ldmm

Abstract. This paper introduces a novel application of genetic algorithms for
evolving an optimal addition-subtraction chain that allows one to perform pre-
computations necessary in the window modular exponentiation methods. When
the window size is large, the pre-processing step becomes very expensive. The
evolved addition/addition-subtraction sequence is of minimal size so it allows
one to perform exponentiation with a minimal number of multiplication and/or
divisions and hence implementing efficiently the exponentiation operation. We
compare our results with those obtained using Brun’s algorithm. Note that the
latter yields addition chains but not addition-subtraction chains. We use as a
reference because, as far as we know, no work has been done to generate
addition-subtraction sequences.

Keywords. Addition-subtraction chains, addition-subtraction sequences,
genetic algorithms, cryptography

Paper Track

Related Topics. Evolutionary Computation, Genetic Algorithms

Minimal Addition-Subtraction Sequences for Efficient
Pre-Processing in Large Window-Based Modular
Exponentiation Using Genetic Algorithms

Nadia Nedjah and Luiza de Macedo Mourelle

Department of Systems Engineering and Computation, Faculty of Engineering,
State University of Rio de Janeiro,

Rio de Janeiro, Brazil
{nadia, ldmm}@eng.uerj.br

http://www.eng.uerj.br/~ldmm

Abstract. This paper introduces a novel application of genetic algorithms for
evolving an optimal addition-subtraction chain that allows one to perform pre-
computations necessary in the window modular exponentiation methods. When
the window size is large, the pre-processing step becomes very expensive. The
evolved addition/addition-subtraction sequence is of minimal size so it allows
one to perform exponentiation with a minimal number of multiplication and/or
divisions and hence implementing efficiently the exponentiation operation. We
compare our results with those obtained using Brun’s algorithm. Note that the
latter yields addition chains but not addition-subtraction chains. We use as a
reference because, as far as we know, no work has been done to generate
addition-subtraction sequences.

1 Introduction

Public-key cryptographic systems (such as the RSA encryption scheme [7], [13])
often involve raising large elements of some groups fields (such as GF(2n) or elliptic
curves [10]) to large powers. The performance and practicality of such cryptosystems
is primarily determined by the implementation efficiency of the modular
exponentiation. As the operands (the plain text of a message or the cipher (possibly a
partially ciphered) are usually large (i.e. 1024 bits or more), and in order to improve
time requirements of the encryption/decryption operations, it is essential to attempt to
minimise the number of modular multiplications performed.

A simple procedure to compute C = TE mod M based on the paper-and-pencil
method is described in Algorithm 1. This method requires E-1 modular
multiplications. It computes all powers of T: T → T2 → T3 → ... → TE−1 → TE.

Algorithm 1. simpleExponentiationMethod(T, M, E)
 1: C = T;
 2: for i = 1 to E-1 do
 3: C = (C × T) mod M;
 return C
end algorithm.

The paper-and-pencil method computes more multiplications than necessary. For
instance, to compute T31, it needs 30 multiplications. However, T31 can be computed

using only 7 multiplications: T → T2 → T3 → T5→ T10 → T11 → T21→ T31. But if
division is allowed, T31 can be computed using only 5 multiplications and one
division: T → T2 → T4 → T8→ T16 → T32 →− T31, where →− denotes a division.
 Recently, several cryptosystems based on the Abelian group defined over elliptic
curves are proposed. In these crypotosystems, the inverse of element is easily
obtained. Hence for such groups one can compute exponentiations by an interleaved
sequence of multiplications and divisions.

The basic question is: what is the fewest number of multiplications to compute TE,
given that the only operation allowed is multiplying two already computed powers of
T? Answering the above question is NP-hard, but there are several efficient
algorithms that can find a near optimal ones [12]. However, these algorithms need
some pre-computations that if not performed efficiently can deteriorate the algorithm
overall performance. The pre-computations are themselves an ensemble of
exponentiations and so it is also NP-hard to perform them optimally. In this paper, we
concentrate on this problem and engineer a minimal addition-subtraction chain
perform the necessary pre-computations very efficiently. We do so using evolutionary
computation. We compare our results with those obtained using the Brun’s algorithm
[1]. Note, however, that the latter yields only addition chains. We use it as a reference
because, as far as we know, no work has been done to generate addition-subtraction sequences.

 Evolutionary algorithms are computer-based solving systems, which use
evolutionary computational models as key element in their design and
implementation. A variety of evolutionary algorithms have been proposed. The most
popular ones are genetic algorithms [3], [5]. They have a conceptual base of
simulating the evolution of individual structures via the Darwinian natural selection
process. The process depends on the performance of the individual structures as
defined by its environment. Genetic algorithms are well suited to provide an efficient
solution of NP-hard problems [3], [5], [12].

This paper will be structured as follows: in Section 2, we present the window
methods; in Section 3, we give an overview on genetic algorithms concepts; in
Section 4, we explain how these concepts can be used to compute a minimal addition-
subtraction chain to perform efficiently necessary pre-computations in the window
methods. In Section 5, we present some useful results. Finally,, we conclude in
Section 6.

2 Window Methods

Generally speaking, the window methods for exponentiation [6] may be thought of as
partitioning in k-bits windows the binary representation of the exponent E, pre-
computing the powers in each window one by one, squaring them k times to shift
them over, and then multiplying by the power in the next window.

There are several partitioning strategies. The window size may be constant or
variable. For the m-ary methods, the window size is constant and the windows are
next to each other. On the other hand, for the sliding window methods the window
size may be of variable length. It is clear that zero-windows, i.e. those that contain
only zeros, do not introduce any extra computation. So a good strategy for the sliding
window methods is one that attempts to maximise the number of zero-windows. The

details of m-ary methods are exposed in Section 2.1 while those related to sliding
window methods are given in Section 2.2.

2.1 M-ary Methods

The m-ary methods [3] scans the digits of E form the less significant to the most
significant digit and groups them in partitions of equal length log

2
m, where m is a

power of two.In general, the exponent E is partitioned into p partitions, each one
containing l = log

2
m successive digits. The ordered set of the partition of E will be

denoted by ℘(E). If the last partition has less digits than log
2
m, then the exponent is

expanded to the left with at most log
2
m −1 zeros. The m-ary algorithm is described in

Algorithm 2, wherein Vi denotes the decimal value of partition Pi.
Algorithm 2. m-aryMethod(T, M, E)
 Partition E into p l-digits partitions;
 1: for i = 2 to m
 2: Compute Ti mod M;
 3: C = 1-pVT mod M;
 4: for i = p-2 downto 0
 5: C =

l2C mod M;
 6: if Vi≠0 then
 7: C = C× iVT mod M;
 return C;
end algorithm.

2.2 Sliding Window Methods

For the sliding window methods the window size may be of variable length and hence
the partitioning may be performed so that the number of zero-windows is as large as
possible, hence reducing the number of modular multiplication necessary in the
squaring and multiplication phases. Furthermore, as all possible partitions have to
start (i.e. in the right side) with digit 1, the pre-processing step needs to be performed
for odd values only. The sliding method algorithm is presented in Algorithm 3,
wherein d denotes the number of digits in the largest possible partition and Li the
length of partition Pi.

Algorithm 3. slidingWindowMethod(T, M, E)
 1: Partition E using the given strategy;
 2: for i = 2 to 2d –1 step 2 Compute Ti mod M;
 3: C = 1-pPT mod M;
 4: for i = p-2 downto 0

 5: C = iL2T mod M;
 6: if Vi≠0 then C = C× iVT mod M;
 return C;
end algorithm.

2.3 Adaptive Window Methods

In adaptive methods [8] the computation depends on the input data, such as the
exponent E. M-ary methods and window methods compute all possible partitions,
knowing that the partitions of the actual exponent may or may not include all possible
partitions. Thus, the number of modular multiplication in the pre-processing step can
be reduced if partitions of E do not contain all possible windows.
 Let ℘(E) be the list of partitions obtained from the binary representation of E.
Assume that the list of partition is non-redundant and ordered according to the
ascending value of the partitions contained in the expansion of E. As before let p be
the number of the partition of E and recall that Vi and Li are the decimal value and the
number of digits of partition Pi. The generic algorithm for describing the computation
of TE mod M using the window methods is given in Algorithm 4.

Algorithm 4. AdaptiveWindowMethod(T, M, E)
 Partition E using the given strategy;
 1: for each partition in ℘(E)
 2: Compute iVT mod M;
 3: C = 1-bVT mod M;
 4: for i = p-2 downto 0
 5: C = iL2T mod M;
 6: if Vi ≠ 0 then
 7: C = C× iVT mod M;
 return C;
end algorithm.

In Algorithm 2 and Algorithm 3, it is clear how to perform the pre-computation
indicated in lines 1 and 2. For instance, let E = 1011001101111000. The pre-
processing step of the 4-ary method needs 14 modular multiplications (T→T×T=T2→
T×T2=T3→ … →T×T14=T15) and that of the maximum 4-digit sliding window method
needs only 8 modular multiplications (T→T×T=T2→T×T2=T3→T3×T2=T5→ T5×T2=T7

→ … →T13×T2=T15). However the adaptive 4-ary method would partition the
exponent as E = [1011][0011][0111][1000] and hence needs to pre-compute the
powers T3, T7, T8 and T11 while the method maximum 4-digit sliding window method
would partition the exponent as E = [1][0][11][00][11][0][1111][000] and therefore
needs to pre-compute the powers T3 and T15. The pre-computation of the powers
needed by the adaptive 4-ary method may be done using 6 modular multiplications
(T→T×T=T2→T×T2=T3→T2×T2=T4→T3×T4=T7→T7×T=T8→T8×T3=T11) while the pre-
computation of those powers necessary to apply the adaptive sliding window may be
accomplished using 5 modular multiplications (T→T×T=T2→T×T2=T3→T2×T3=T5→
T5×T5=T10→T5×T10=T15). Algorithm 4 does not suggest how to compute the powers
needed to use the adaptive window methods. Finding the best way to compute them is
a NP-hard problem [4], [8].

3 Addition-subtraction chains and addition-subtraction sequences

An addition-subtraction chain of length l for an positive integer N is a list of positive
integers (a0, a1, a2, ..., al) such that a0 = 1, al = N and ak = ai ± aj, 0 ≤ i ≤ j < k ≤ l.
Finding a minimal addition-subtraction chain for a given positive integer is an NP-
hard problem. It is clear that a short addition-subtraction chain for exponent E yields a
fast algorithm to compute TE mod M as we have if ak = ai + aj then jaiaka TTT ×=

and if ak = ai − aj then jaiaka TTT /= . The adaptive window methods described
earlier use a near optimal addition-subtraction chain to compute TE mod M. However
these methods do not prescribe how to perform the pre-processing step (lines 1 and 2
of Algorithm 4). In the following we give show how to perform this step with
minimal number of modular multiplications.

3.1 Addition-subtraction sequences

There is a generalisation of the concept of addition-subtraction chains, which can be
used to formalise the problem of finding a minimal sequence of powers that should be
computed in the pre-processing step of the adaptive window method.
 An addition-subtraction sequence for the list of positive integers V0, V1, …, Vp
such that V0>V1> …>Vp is an addition-subtraction chain for integer Vp, which
includes all the remaining integers V0, V1, …, Vp of the list. The length of an addition-
subtraction sequence is the numbers of integers that constitute the chain. An addition-
subtraction sequence for a list of positive integers V0, V1, …, Vp will be denoted by
S(V0, V1, …, Vp).
 Hence, to optimise the number of modular multiplications needed in the pre-
processing step of the adaptive window methods for computing TE mod M, we need to
find an addition-subtraction sequence of minimal length (or simply minimal addition-
subtraction sequence) for the values of the partitions included in the non-redundant
ordered list ℘(E). This is an NP-hard problem and we use genetic algorithm to solve
it. General principles of genetic algorithms are explained in the next section.

3.2 Brun’s algorithm

Now we describe briefly, Brun’s algorithm [1] to compute relatively short addition
sequences. The algorithm is a generalisation of the continued fraction algorithm [1].
Assume that we need to compute the addition sequence S(V0, V1, …, Vp). Let

Q =

−1p

p

V
V

 and let B(Q) be the addition chain for Q using the binary method (i.e.

Algorithm 2 with l = 1). Let R = Vp − Q×Vp−1. By induction we can construct an
addition sequence S(V0, V1, …, R, …, Vp−1). Then obtain

S(V0, V1, …, Vp) = S(V0, V1, …, R, …, Vp−1) ∪ Vp−1 × B(Q)\{1} ∪ {Vp}

Example. Let us compute the addition sequence S(47, 117, 343) using Brun’s
algorithm. We proceed inductively as follows:

S(47, 117, 343) = S(47, 109, 117)∪117×{2}∪{343}
 = S(47, 109, 117)∪{234, 343}
 = S(8, 47, 109)∪{117, 234, 343}
 = S(8, 15, 47) ∪47×{2}∪{109, 117, 234, 343}
 = S(8, 15, 47) ∪{94, 109, 117, 234, 343}
 = S(8, 15, 17) ∪15×{2}∪{47, 94, 109, 117, 234, 343}
 = S(8, 15, 17) ∪{30, 47, 94, 109, 117, 234, 343}
 = S(2, 8, 15) ∪{17, 30, 47, 94, 109, 117, 234, 343}
 = S(2, 7, 8) ∪{15, 17, 30, 47, 94, 109, 117, 234, 343}
 = S(1, 2, 7) ∪{8, 15, 17, 30, 47, 94, 109, 117, 234, 343}
 = S(1, 2) ∪2×{2, 3}∪{7, 8, 15, 17, 30, 47, 94, 109, 117, 234, 343}
 = {1, 2, 4, 6, 7, 8, 15, 17, 30, 47, 94, 109, 117, 234, 343}

So the Brun’s addition sequence for 47, 117, 343 is (1, 2, 4, 6, 8, 15, 17, 30, 47, 94,
109, 117, 234, 343). This addition sequence allows us to perform the pre-computation
step with 13 modular multiplications.

4 Principles of genetic algorithms

Genetic algorithms are now a well-known technique to solve NP-hard problems. They
maintain a population of individuals that evolve according to selection rules and other
genetic operators, such as mutation and recombination. Each individual receives a
measure of fitness. Selection focuses on individuals, which shows high fitness.
Mutation and crossover provide general heuristics that simulate the reproduction
process. Those operators attempt to perturb the characteristics of the parent
individuals as to generate distinct offspring individuals.

Genetic algorithms are implemented through the following generic algorithm
described by Algorithm 5, wherein parameters popSize, fit and genNum are the
population maximum size, the expected fitness of the expected individual and the
maximum number of generation allowed respectively.

Algorithm 5. GA(popSize,fit,genNum):individual;
 1: generation = 0;
 2: population = initialPopulation();
 3: fitness = evaluate(population);
 4: do parents = select(population);
 5: population= reproduce(parents);
 6: fitness = evaluate(population);
 7: generation= generation + 1;
 8: while(fitness[i]<fit, ∀ i∈population)
 and (generation < genNum);
 return fittestIndividual(population);
end algorithm.

In Algorithm 5, function intialPopulation returns a valid random set of individuals
that would compose the population of first generation, function evaluate returns the
fitness of a given population storing the result into fitness. Function select chooses
according to some criterion that privileges fitter individuals, the individuals that
should be used to generate the population of the next generation and function
reproduction implements the crossover and the mutation process to actually yield the
new population. The processes of reproduction including the mutation and crossover
processes will be described succinctly in the next section while customised to fit in
our application.

5 Addition-subtraction sequence minimisation problem

It is perfectly clear that the shorter the addition-subtraction sequence is, the faster
Algorithm 5. We propose a novel idea based on genetic algorithm to solve this
minimisation problem. The addition-subtraction sequence minimisation problem
consists of finding a sequence of numbers that constitutes an addition-subtraction
sequence for a given ordered list of n positive integers, say Vi for 1 ≤ i ≤ n-1. The
addition-subtration sequence should be of a minimal length.

5.1 Individual Encoding

Encoding of individuals is one of the implementation decisions one has to take in
order to use genetic algorithms. It very depends on the nature of the problem to solve.
There are several representations that have been used with success: binary encoding
which is the most common mainly because it was used in the first works on genetic
algorithms, represents an individual as a string of bits; permutation encoding mainly
used in ordering problem, encodes an individual as a sequence of integer; value
encoding represents an individual as a sequence of values that are some evaluation of
some aspect of the problem [9], [11].

In our implementation, an individual represents an addition sequence. We use the
binary encoding wherein 1 implies that the entry number is a member of the addition
sequence and 0 otherwise. Let V1 = 3, V2 = 7 and V3 = 13, be the exponent, the
encoding of Fig. 1 represents the addition-subtraction chain (1, 2, 4, 6):

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 0 0 1 0 0 0 0 0 1 1

Fig. 1. Addition-subtraction sequence encoding

5.2 The genetic algorithm

Consider Algorithm 5. Besides the parameters popSize, fit and genNum which
represent the population maximum size, the fitness of the expected result and the
maximum number of generation allowed, the genetic algorithm has several other
parameters, which can be adjust by the user so that the result is up to his or her
expectation. The selection is performed using some selection probabilities and the

reproduction, as it is subdivided into crossover and mutation processes, depends on
the kind of crossover and the mutation rate and degree to be used.

Selection. The selection function as described in Algorithm 6, returns two
populations: one represents the population of first parents, which is parents[1][] and
the other consists of the population of second parents, which is parents[2][].

Algorithm 6. select(population pop):population[]
 1: population[] parents[2];
 2: for i = 1 to popSize
 3: n1 = random(0,1); n2 = random(0,1);
 4: for j = 1 to popSize do
 5: parents[1][i]= parents[2][i]= parents[popSize];
 6: if SelectionProbabilities[j] ≥ n1 then
 7: parents[1][i] = pop[j]
 8: else if SelectProbabilities[j] ≥ n2 then
 9: parents[2][i]=pop[j];
 return parents;
end algorithm.

The selection proceeds like this: whenever no individual that attends to the
selection criteria is encountered, one of the last individuals of the population is then
chosen, i.e. one of the fitter individuals of population. Note that the population from
which the parents are selected is sorted in decreasing order with respect to the fitness
of individuals, which will be described later on. The array selectionProbabilities is set
up at initialisation step and privileges fitter individuals.

Reproduction. Given the parents populations, the reproduction proceeds using
replacement as a reproduction scheme, i.e. offspring replace their parents in the next
generation. Obtaining offspring that share some traits with their corresponding
parents is performed by the crossOver function. There are several types of crossover
schemes. These will be presented shortly. The newly obtained population can then
suffer some mutation, i.e. some of the individuals (addition-subtraction chains) of
some of the genes (power numbers). The crossover type, the number of individuals
that should mutated and how far these individuals should be altered are set up during
the initialisation process of the genetic algorithm.

Crossover. There are many ways how to perform crossover and these may depend on
the individual encoding used [9]. We present crossover techniques used with
permutation representation.

Single-point crossover consists of choosing randomly one crossover point, then,
the part of the integer sequence from beginning of offspring till the crossover point is
copied from one parent, the rest is copied from the second parent as depicted in
Fig. 2(a). Double-points crossover consists of selecting randomly two crossover
points, the part of the integer sequence from beginning of offspring to the first

crossover point is copied from one parent, the part from the first to the second
crossover point is copied from the second parent and the rest is copied from the first
parent as depicted in Fig. 2(b). Uniform crossover copies integers randomly from the
first or from the second parent. Finally, arithmetic crossover consists of applying
some arithmetic operation to yield a new offspring.

(a) Single-point crossover

(b) Double-points crossover

Fig. 2. Single-point vs. double-points crossover

The single point and two points crossover use randomly selected crossover points
to allow variation in the generated offspring and to avoid premature convergence on a
local optimum [2], [9]. In our implementation, we tested all four-crossover strategies.

Mutation. Mutation consists of changing some genes of some individuals of the
current population. The number of individuals that should be mutated is given by the
parameter mutationRate while the parameter mutationDegree states how many genes
of a selected individual should be altered.

The mutation parameters have to be chosen carefully as if mutation occurs very
often then the genetic algorithm would in fact change to random search [2].
Algorithm 7 describes the mutation procedure used in our genetic algorithm.

When either of mutationRate or mutationDegree is null, the population is then kept
unchanged, i.e. the population obtained from the crossover procedure represents
actually the next generation population.

Algorithm 7. mutate(population pop, int mutationDegree,
int mutationRate):population;

 1: if(mutationRate≠0)and(mutationDegree≠0)then
 2: for a = 1 to PopSize do
 3: n = random(0,1);
 4: if n ≤ mutationRate then
 5: for i = 1 to mutationDegree do
 6: gene = random(2, n-1);
 7: pop[a][gene] = (pop[a][gene]+1) mod 2;
 return pop;
end algorithm.

When mutation takes place, a number of genes are randomised and mutated: when
the gene is 1 then it becomes 0 and vice-versa. The parameter mutationDegree
indicates the number of gene to be mutated.

Fitness. This step of the genetic algorithm allows us to classify the population so that
fitter individuals are selected more often to contribute in the constitution of a new
population.

The fitness evaluation of addition-subtraction chain is done with respect to two
aspects: (i) how much a given addition-subtraction chain adheres to the Definition 1,
i.e. how many members of the addition-subtraction chain cannot be obtained
summing up two previous members of the chain; (ii) how far the addition-subtraction
chain is reduced, i.e. what is the length of the addition-subtraction chain. Algorithm 8
describes the evaluation of fitness used in our genetic algorithm.

For a valid addition sequence, the fitness function returns its length, which is
smaller than the last integer Vn. The evolutionary process attempts to minimise the
number of ones in a valid addition sequence and so minimise the corresponding
length. Individuals with fitness larger or equal to Vn are invalid addition-subtraction
chains. The constant largePenalty should be larger than Vn. With well-chosen
parameters, the genetic algorithm deals only with valid addition sequences.

Algorithm 8. int evaluate(individual s)
 1: int fitness = 0;
 2: for i = 2 to n-1 do
 3: if s[i] == 1
 4: then fitness = fitness + 1;
 5: if i == Vi & s[i]≠1
 6: then fitness = fitness + largePenalty;
 6: if ∃/ j,k s.t. 1≤j,k≤i & i=j+k|i=j-k & s[i]=s[k]=1
 then fitness = fitness + largePenalty;
 return fitness;
end algorithm.

6 Implementation results

In applications of genetic algorithms to a practical problem, it is difficult to predict a
priori what combination of settings will produce the best result for the problem in a
relatively short time. The settings consist of the population size, the crossover type,
the mutation rate and the mutation degree. We investigated the impact of different
values of these parameters in order to choose the more adequate ones to use. We
found out that the ideal parameters are: a population of at most 50 individuals; the
double-points crossover; a mutation rate between 0.4 and 0.7 and a mutation degree
of about 1% of the value of the last value in sequence Vp.

The curve of Fig. 3 shows the progress made in the first 500 generations of an
execution to obtain the addition sequence for the list of numbers 47, 117 and 343. The
settings used are: a 50 individual per population, double-points crossover, a mutation
rate of 0.645 and a degree of 50.

The Brun’s algorithm yields (1, 2, 4, 6, 7, 8, 15, 17, 30, 47, 94, 109, 117, 234, 343)
and the genetic algorithm yield the same addition sequence as well as (1, 2, 4, 8, 10,
11, 18, 36, 47, 55, 91, 109, 117, 226, 343). Both addition sequences have the same
length. Using these addition sequences to perform the pre-computation step requires
14 modular multiplications. The fittest addition-subtraction chain evolved by our
genetic algorithm for the list partition values 47, 117 and 343 was (1, 2, 3, 5, 7, 12,
24, 48, 47, 43, 86, 129, 117, 172, 344, 343). It requires 11 multiplications and 4
divisions.

Fig. 3. The genetic algorithm curve for generating S(47, 117, 343).

Finding the best addition-subtraction sequence is impractical. However, we can find
near-optimal ones. Our genetic algorithm always finds addition sequences far shorter
than those used by the m-ary method and the sliding windows independently of the
value of m and the partition strategy used respectively, and as short as the addition
sequence yield by the Brun’s algorithm. Concerning the addition-subtraction chains,
we do not know of any previous results to compare ours with.

7 Conclusions

In this paper, we presented an application of genetic algorithms to minimisation of
addition sequences. We first explained how individuals are encoded. Then we
described the necessary algorithmic solution. Then we presented some empirical
observations about the performance of the genetic algorithm implementation.

This application of genetic algorithms to the minimisation problem proved to be
very useful and effective technique. Shorter addition sequences compared with those
obtained by the m-ary methods, those obtained for the sliding window methods as
well as those obtained using Brun’s algorithm (see Table 1 of the previous section)
can be obtained with a little computational effort. A comparison of the performance
of the m-ary, sliding window and the Brun’s method vs. the genetic algorithm is
shown in Fig. 4. A satisfactory addition sequence can be obtained in a 7 seconds to 2
minutes using a Pentium III with a 256 MB of RAM.

Fig. 4. Ratio for the addition sequences yield by the GA vs. Brun’s methods.

References
1. Begeron, R. Berstel, J, Brlek, S. and Duboc, C., Addition chains using continued fractions,

Journal of Algorithms, no. 10, pp. 403-412, 1989.
2. DeJong, K. and Spears, W.M., An analysis of the interacting roles of the population size

and crossover type in genetic algorithms, In Parallel problem solving from nature, pp. 38-
47, Springer-Verlag, 1990.

3. DeJong, K. and Spears, W.M., Using genetic algorithms to solve NP-complete problems,
Proceedings of the Third International Conference on Genetic Algorithms, pp. 124-132,
Morgan Kaufmann, 1989.

4. Erdös, P., Remarks on number theory III: On addition chain, Acta Arithmetica, pp 77-81,
1960.

5. Haupt, R.L. and Haupt, S.E., Practical genetic algorithms, John Wiley and Sons, New
York, 1998.

6. Knuth, D.E., The Art of Programming: Seminumerical Algorithms, vol. 2. Reading, MA:
Addison_Wesley, Second edition, 1981.

7. Koç, Ç.K., High-speed RSA Implementation, Technical report, RSA Laboratories,
Redwood City, califirnia, USA, November 1994.

8. Kunihiro, N. and Yamamoto, H., New methods for generating short addition chain, IEICE
Transactions, vol. E83-A, no. 1, pp. 60-67, January 2000.

9. Michalewics, Z., Genetic algorithms + data structures = evolution program, Springer-
Verlag, USA, third edition, 1996.

10. Menezes, A.J., Elliptic curve public key cryptosystems, Kluwer Academic, 1993.
11. Neves, J., Rocha, M., Rodrigues, Biscaia, M. and Alves, J., Adaptive strategies and the

design evolutionary applications, Proceedings of the Genetic and the Design of
Evolutionary Computation Conference, Orlando, Florida, USA, 1999.

12. Nedjah, N. and Mourelle, L.M., Minimal addition chains using genetic algorithms,
Proceedings of the Fifteenth International Conference on Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems, Cairns, Australia, (to appear in
Lecture Notes in Computer Science, Springer-Verlag), 2002.

13. Rivest, R.L., Shamir, A. and Adleman, L., A method for obtaining digital signature and
public-key cryptosystems, Communication of ACM, vol. 21, no.2, pp. 120-126, 1978.

