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Abstract. In this paper we present a new pruning mechanims for C4.5
decision trees. The idea is to select rules that are going to be applied
by means of a minimal distance (or partial-matching) criterion. To illus-
trate its advantages, we have built an algorithm based on the skeleton of
the C4.5-rules, though including several modifications to induce partial-
matching rules. The modifications consist in replacing the MDL-based
method with a pruning process whose performance relies on an estima-
tion of the quality of the rules. Empirical results show that, in general,
inducing partial-matching rules yields more compact rule sets without
degrading performance, no matter which estimation is used. If this esti-
mation is done by means of the impurity level or the Laplace correction,
our experiments show that both the accuracy and size of the rule sets
are significantly improved.

1 Introduction

There are two possibilities when using a set of classification rules. Given a new
case, to return a class label we can use the conclusion of the rule whose conditions
are completely fulfilled by case values, or instead we can follow the rule whose
conditions are the nearest to case values. Usually we refer to these procedures
as full and partial matching respectively.

In this paper, we illustrate the advantages of partial matching. First, it should
be mentioned that the kind of knowledge induced when we are planning to use
distances is distinct. Learning algorithms must concentrate on selecting clusters
of near training examples that belong to the same class. In contrast, when full
matching is involved, learning algorithms must cover all the attribute space.

An advantage of partial matching is the possibility of adapting the decision
areas of rules to regions with wavy frontiers. In general, although it is possible
to find rule learners that obtain oblique rule conditions, such as OC1 [19], the
geometry of Voronoi regions is much richer.
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Moreover, when we are supported by a distance criterion, we generally obtain
less classification rules than when we require a full match to apply them. We can
simply observe that full matching is a particular case of partial matching, where
all minimal distances are zero. Therefore, the output of partial-matching learners
seems to be more readable for human users, since it is generally acknowledged
that a reduced size of rule sets improves comprehensibility.

We used a divide-and-conquer template to implement a family of partial-
matching learners and discuss the scores obtained with a number of experiments
carried out to compare their performance with respect to the accuracy and size
of the rule sets induced.

The basic structure used is Quinlan’s well-known and well-reputed C4.5-rules
[21], which produces rules passing through decision trees. Breslow and Aha [4]
present a framework to categorize different approaches for simplifying decision
trees. On the basis of their framework, our work can be placed into two cate-
gories: algorithms that modify the test search by means of new selection mea-
sures; we used a number of different heuristics, such as the Laplace correction,
Gini index [3], G index [9] or impurity level [7, 15, 16] instead of using Shannon’s
information-based measures.

The other category is composed of algorithms using alternative data struc-
tures, specifically rules, obtained by new pruning methods [15] applied to induced
trees. Worth of mention are some previous works related to pruning, like Wilson
and Martinez’s [25] survey on reduction techniques for instance-based learners,
including their original contribution, the family of DROPx algorithms. Smyth
and McKenna [23] stressed the need to reach a trade-off between efficiency and
competence, that is a reduced set of selected cases, to correctly solve problems
in CBR-based approaches. Pfahringer [20] also suggests an alternative MDL-
based formula to reduce the size of the rule sets produced by C4.5-rules without
degrading performance.

We define the alternative measures for test selection used in this paper in Sec-
tion 3, while Section 4 details the algorithm template based on these measures.
To close the paper, we report the results found when comparing the partial-
matching learners amongst themselves and with respect to their full matcher
counterpart, C4.5-rules. The conclusion we reach is that simple heuristic mea-
sures give rise to quite acceptable learners with regard to the accuracy and size
of rule sets. However, in order to achieve significant differences with respect to
C4.5-rules, we must use heuristics like the Laplace correction to improve size
with good accuracy scores, or our impurity level to significantly improve both
the accuracy and size of rule sets.

2 Partial-matching rules

The materials that we will use throughout the paper are examples and rules; all
are described by set of attributes whose values can be either numeric or symbolic.
While the examples have a fixed number of attributes plus the class, rules have
antecedents or conditions represented by a variable number of literals, and a



conclusion naming one class. Our rules look like those found by C4.5-rules; for
instance,

R : class← (x ≤ 5.6) ∧ (y > 89.34) ∧ (color = blue). (1)

In partial-matching environments, a case is classified following a nearest-
neighbor principle, so we need a function to compute distances between rules
and cases. For this purpose we use a HEOM-like [24] metric defined as:

distance(R, c) :=

√√√√ m∑
a=1

difference2
a(Ra, ca) (2)

where m is the number of attributes describing the examples, Ra is the condition
on attribute a in rule R and ca is the actual value of attribute a in case c.
For every attribute a, in turn, differences are calculated using the normalized
Euclidean distance if a takes continuous values, or using the overlap function
(likewise HEOM) if a is a symbolic attribute.

differencea(Ra, ca) =
{

overlap(Ra, ca), if a is symbolic
norm eucl(Ra, ca), if a is numeric (3)

The overlap metric [24] yields a difference of 1 when the symbolic value of
the attribute is different than the value mentioned in the condition of the rule,
and 0 otherwise. For numerical attributes we use

norm eucl(Ra, ca) =
{

0, if ca fulfills Ra
|ca−valuea|

4σa
, otherwise

(4)

where Ra may be of the form “a ≤ valuea”, or “a > valuea”, or “a ∈ I”, and
valuea is the nearest border of interval I to ca. Differences are normalized by
means of a commonly used [24] large value: four times the standard deviation,
σa, of the observed attribute values.

To completely specify the distance function we must define how to deal with
missing values. Whenever Ra is missing means that no particular value of a is
required to apply R, i.e. the value of a makes no difference. A missing ca means
that the value of a is unknown in case c. In both cases our difference function
will return a value of 0 to make the value of a have no influence in the distance
computation. RISE [10] deals with missing numerical values in the exact same
way.

3 Purity measures

The core for building a partial-matching rules learner is a measure capable of
testing whether a selected group of training examples is coherent enough to
somehow become a classification rule. Usually, these measures are called purity
measures, and they will act as a heuristic to build our partial-matching learners.



To define these measures formally, let us consider a subset of training examples
E (the whole set is TS) and a class C.

For ease of reference, we call e+ the number of examples in E of class C
(positive examples), e− the number of examples in E of a class different than C
(negative examples), p the success probability, i.e. p = e+

e++e− , n the number of
examples in subset E, i.e. n = e+ + e− and #c the number of classes in training
set TS. Then the heuristic purity functions are the following:

Trivial T = p; Minimum M = min{p, 1− p};
Difference D = e+ − e−; Gini index Gini = 1− (p2 + (1− p)2);
Laplace Lap = e++1

e++e−+#c ; G index G = 2
√
p(1− p);

The most basic heuristic is the trivial one, which coincides with the success
probability when we predict class C for all the examples in the subset E. The
difference is just the balance of positive and negative examples in E when we
are concluding class C too. This heuristic can be considered as a simplification
of the accuracy function used by Muggleton [18] and by Fürnkranz and Widmer
[12]; see [11] for details. The Laplace measure was used in CN2 [5] and RISE
[10]. The Gini index is the heuristic of CART [3]. The G index was proposed
by Diettrich et al. in [9] as an alternative to the information-based measures of
C4.5. The minimum heuristic is also mentioned in this last paper.

The heuristic that achieves the best results is the impurity level [7, 15, 16].
It explicitly takes into account not only the success probability p, but also the
difficulty of attaining that amount of examples of class C.

To define the impurity level we previously need to compute the confidence
interval of p when predicting class C in subset TS. For this purpose we use the
following expresion

CI(TS,C) =


p+ z2

2n − z
√

p(1−p)
n + z2

4n2

1 + z2

n︸ ︷︷ ︸
CIl(TS,C)

,
p+ z2

2n + z
√

p(1−p)
n + z2

4n2

1 + z2

n︸ ︷︷ ︸
CIh(TS,C)

 (5)

where n is the number of cases in TS and z is a constant obtained from a normal
distribution table which depends on the confidence level used (by default 95%,
hence z is 1.96). An analogous calculation is done for CI(E,C). The impurity
level of E is defined as the overlapping percentage of both confidence intervals,

IL(R) =
CIh(TS,C)− CIl(E,C)
CIh(E,C)− CIl(E,C)

× 100 (6)

This heuristic is based on Aha’s mechanism in IB3 [1] for selecting a set of
representative instances from a set of training examples.

4 The learner purity-rules

In this section, we describe the template used in the experiments reported in
the next section. As previously stated, this is a sketch of C4.5-rules in which we



substitute the information gain ratio by a heuristic of those listed in the previous
section. These heuristics are used to evaluate the quality of different pieces of
induced knowledge and, in general, this quality is better with higher values of
the heuristic (i.e. the gain ratio). However some other measures, likewise the
impurity level, point to a better quality with lower values. Thus, for the purpose
of simplification, we will use the term purity in the following, provided that a
higher purity value means, in some cases, a lower value of the actual heuristic.

The learner that will be called purity-rules has two stages. In the first one,
it builds a decision tree that will become a rule set at the end of the second
stage. To build the tree, the algorithm follows a greedy process, trying in each
step to discover the test about the values of an attribute that leads more directly
to a decision about the class of the examples involved.

Thus, if E is a subset of training examples, and X is an attribute whose values
in E split the set into subsets (Ei : i = 1, . . . , n), a measure of the convenience
of the test concerning X is given by

convenience(E,X) =
n∑
i=1

|Ei|
|E|
· purity(Ei, X) (7)

where purity is the gain ratio in C4.5; purity-rules, however, use any of the
heuristics mentioned in Section 3.

Decision trees thus obtained are usually too big and complex. This yields an
overfitting of training data and consequently leads to poor classification accuracy
on unseen cases. Additionally, decision trees are not as intuitive and human-
readable as classification rules [21]. Hence, C4.5-rules transforms the decision
trees induced by C4.5 into pruned rule sets by means of the MDL (Minimum
Description Length) principle. These induced rules are applied following a full-
matching strategy.

Our purity-rules differs in the purity measure used in building the trees, as
stated above, but the main difference from the master full-matching learner is
in the second stage, the rule generation process. Here, we follow the steps of our
previous systems: Fan [22], Inner [17], and Bets [8]. The idea is to explicitly
use the guidelines of the heuristic measure. First, purity-rules tries to clean the
antecedents or conditions list from each rule; this is called qualification. Then,
the algorithm selects the most promising subset of classification rules. These
processes have some similarities with the approach followed by IREP* [6], a
modified version of Fürnkranz and Widmer’s IREP [12], although using different
quality estimators and stopping criteria. In the following we briefly describe our
pruning processes.

The qualification tries to drop the redundant or unnecessary conditions. In
order to reduce the number of possibilities to consider, we first order the condi-
tions according to the purity heuristic. Thus, if purity returns higher values to
better rules, we have

R : C← cond1 ∧ cond2 ∧ . . . ∧ condn (8)
purity(C← cond1) ≥ purity(C← cond2) ≥ . . . ≥ purity(C← condn) (9)



Once the conditions have been ordered, the process starts with an empty set
of descriptions and progressively adds partial descriptions of the original rule
being qualified. These descriptions are of the form:

Ri : C ← cond1 ∧ . . . condi; i = 1 . . . n (10)

Only those descriptions with a success probability higher than an acceptance
threshold are saved. Furthermore, if a partial description with no errors is found,
no more descriptions are added.

Once a set of partial descriptions has been obtained, the best of them is se-
lected, namely Rbest; more partial descriptions are added by sequentially deleting
each antecedent, from the penultimate to the first one. Only descriptions with
higher success probability than Rbest are added. The whole set of obtained de-
scriptions is finally filtered, removing those with purity lower than 90% of the
highest purity found.

Rule qualification is followed by a selection process aimed at reducing the
total number of rules induced so far, since compact rule sets are more compre-
hensible and they usually provide more accurate generalizations.

The selection starts detecting and deleting those rules classifying too spe-
cific peculiarities of data caused by noisy examples. This procedure deletes rules
whose success probability is lower than a noise threshold. Then, the algorithm
determines the purity threshold that yields the better subset of rules, in terms of
accuracy. At this stage rules compete to classify examples, being applied on the
basis of a minimum distance criterion. The resulting subset is revised to elimi-
nate useless rules still undeleted in prior steps. Each rule is considered useless if
there is no accuracy loss when eliminated.

There is a final stage in the rule selection process related to the compre-
hensibility of the resulting rule set. Whenever all the attributes describing the
training examples have symbolic values, the selection is allowed to include a de-
fault rule that will be applied when no other rule is at distance zero. In data sets
with some continuous attributes, the default rule would destroy the benefits of
the application by means of a minimal distance criterion, so purity-rules never
includes a default rule in these cases.

5 Experimental results

In this section we present the scores reached by learners of the type purity-rules,
which apply rules following a partial-matching strategy, in comparison with those
obtained by C4.5-rules (release 8), which uses a full-matching strategy.

To carry out the experiments, we chose the Holte’s [13] problems, a well-
known set of 16 data sets downloaded from the UCI Machine Learning Reposi-
tory [2]. Following the recommendations in [14], we used a 10-fold stratified cross
validation repeated 5 times, ensuring that the algorithms were run on identical
training and test sets.

We tested the accuracy (see Table 1) and size of the induced rule sets, dis-
tinguishing between the number of rules and the average size of these rules, i.e.
the average number of antecedents (see Table 2).



Table 1. Average classification errors for each learner in Holte’s data sets. The partial-
matching learners are named in accordance with the purity measures (see Section 3)
used to build them from the template describe in Section 4. The last row shows the
average errors for all data sets.

data set IL Lap T C4.5-rules D Gini M G

BC 27.63 30.32 30.41 30.84 25.59 29.93 32.44 30.82
CH 2.10 1.93 1.40 0.97 9.57 1.21 1.50 1.30
G2 18.31 21.96 19.21 21.87 23.35 23.10 20.85 21.40
GL 30.57 32.97 30.63 32.22 36.43 32.12 38.63 35.43
HD 17.73 22.15 23.26 20.98 21.91 23.15 25.73 21.88
HE 19.33 15.96 20.87 20.43 17.37 23.19 19.12 18.95
HO 15.82 15.82 14.83 17.45 14.68 19.34 19.13 26.07
HY 0.99 1.30 1.54 0.78 1.08 0.89 1.52 0.95
IR 5.07 5.33 5.33 4.40 7.33 5.47 5.33 5.73
LA 17.80 20.67 18.20 17.00 17.13 22.67 23.00 25.80
LY 22.85 21.09 23.62 23.25 24.60 25.57 28.42 27.43
MU 1.52 0.32 0.55 0.03 4.42 0.57 0.57 0.57
SE 2.25 2.29 2.61 2.35 5.39 2.49 2.57 2.54
SO 0.00 0.00 1.60 2.90 0.00 2.90 2.10 2.90
VO 4.78 4.41 4.74 4.37 4.73 5.80 5.52 5.47
V1 10.71 10.48 9.92 10.16 11.95 10.43 10.15 9.33

Av. 12.34 12.94 13.05 13.13 14.10 14.30 14.79 14.79

The scores shown in Table 1 reflect quite similar learner behavior with re-
spect to data sets, though with different final results. The correlations between
the error columns are very high, with an average of 0.98 and a standard devi-
ation of 0.02, and with a minimum of 0.92 between D and G purity measures.
Another surprising issue is the difference in accuracy between C4.5-rules (13.13)
and trivial-rules (13.05), built with the simple heuristic given by the success
probability.

The scores obtained with respect to the size of the induced rule set exhibit
quite different behavior among learners; with respect to the number of rules, the
average of correlations is 0.61 with a standard deviation of 0.32, which indicates
important differences between some learners. Worth of mention are the scores
obtained by D-rules; said learner achieves a very small size of induced knowledge,
but the price is a lower degree of accuracy: 14.10, almost one point up on C4.5-
rules. The best balance is clearly achieved by the impurity level.

Respect to the percentage of cases classified by rules at distance greater than
zero (uncovered cases), the average for the whole data sets is about 10% for each
purity measure. Obviously, the percentage of uncovered cases mostly depends
on the problem itself, so we have noticed large differences among problems. For
example, there is an average percentage of 21.41% of uncovered cases for the HO
problem and the impurity-rules, while there is only a 0.74% for the CH problem



Table 2. This table shows the average number of rules and antecedents for each learner
in Holte’s data sets.

data IL Lap T C4.5-rules D Gini M G
set rul. ants. rul. ants. rul. ants. rul. ants. rul. ants. rul. ants. rul. ants. rul. ants.

BC 4.6 7.7 7.6 14.4 21.4 53.5 8.2 17.1 3.4 4.3 23.5 66.7 23.5 69.4 22.5 63.6
CH 9.8 36.4 18.4 85.0 23.9 103.1 26.8 100.0 3.0 4.0 26.5 113.3 23.7 110.3 26.0 114.9
G2 6.2 11.4 6.7 13.4 9.7 18.4 8.1 21.0 2.3 3.9 13.8 37.9 12.5 27.5 13.2 35.1
GL 8.7 26.4 6.8 21.3 12.2 34.9 14.1 50.8 6.5 18.0 28.0 87.6 30.8 76.4 30.7 97.6
HD 7.1 17.5 11.5 23.5 19.3 53.6 13.3 35.8 2.1 4.0 23.3 76.3 22.0 72.1 24.1 81.8
HE 5.6 15.3 3.4 8.3 3.7 7.3 7.9 20.5 3.4 6.9 4.6 10.5 5.1 11.4 5.4 12.6
HO 3.8 10.1 4.6 9.1 6.4 15.2 6.0 11.4 2.0 3.0 5.4 15.1 6.7 18.1 4.7 11.9
HY 4.6 10.6 4.2 10.6 2.8 6.5 6.3 13.1 6.8 16.3 3.8 10.6 4.2 14.4 7.8 22.8
IR 3.3 4.2 3.1 3.2 4.8 6.9 4.0 6.1 3.7 3.9 4.1 5.7 3.8 5.4 4.6 6.9
LA 3.6 7.2 2.6 4.4 2.7 5.0 4.0 5.8 2.0 2.3 2.4 6.4 2.5 6.7 1.9 4.8
LY 7.8 14.9 7.4 13.8 17.0 42.8 10.6 23.6 4.1 7.4 16.5 42.6 22.5 63.6 16.9 43.1
MU 4.7 3.9 8.1 11.8 8.9 11.9 17.7 26.4 3.9 4.2 9.0 16.0 9.0 16.0 9.0 16.0
SE 4.5 14.0 3.0 6.1 4.1 12.8 12.7 41.7 3.1 8.7 4.2 11.5 6.0 23.5 18.8 80.9
SO 4.0 4.0 4.0 4.0 4.0 3.9 4.0 5.9 4.0 4.0 4.2 4.5 4.2 4.4 4.2 4.5
VO 2.3 4.3 4.3 8.1 4.8 12.2 6.1 13.8 2.4 2.9 5.3 12.8 4.4 13.7 5.5 14.4
V1 4.3 11.4 6.8 18.4 9.5 29.2 11.2 29.3 3.4 3.9 9.2 29.7 8.5 27.6 10.5 34.1

Av. 5.3 12.5 6.4 16.0 9.7 26.1 10.1 26.4 3.5 6.1 11.5 34.2 11.8 35.0 12.9 40.3

and the same purity measure. Due to the lack of space we can not show a full
comparison table in this paper.

To appreciate the significance of the aforementioned scores, we elaborated
Tables 3A and 3B with the results of one-tail paired t-tests. In these comparisons,
we can observe that the first place in accuracy is obtained by the impurity
level. The difference with respect to Lap-rules and T-rules is not statistically
significant, although the significance with the latter is in the borderline (94.65%).
We can also see that there are two other groups of measures which present no
significant differences among themselves. The former is composed of Lap, T,
C4.5-rules and D and the latter by D, Gini and M.

With respect to size considerations, we observe that D-rules presents an ob-
vious advantage with respect to all other learners, but suffers from a decrease in
accuracy. In the group of more accurate learners, Lap and impurity level produce
smaller rule sets (with no significant differences between them), followed by T
and then the group composed of C4.5-rules, Gini, M and G, with no significant
differences among them. To save space we do not show the table corresponding
to the t-test for antecedents but the results are very similar to those for number
of rules, except that the difference among C4.5-rules and G-rules is significant
at 99.31% for antecedents.

6 Concluding remarks

We have presented a family of rule learners whose application is carried out
according to a partial-matching mechanism based on minimal distance from rule
conditions and case values. All the learners have a common template based on
Quinlan’s algorithm C4.5-rules; instead of using the information gain ratio to



Table 3. Significant levels of differences found with one-tail paired t-tests. The label
n.s., for non-significant, means that the level found is below 95%. The first table refers
to accuracy while the second considers the number of rules.

Avg. IL Lap T C4.5-rules D Gini M

IL 12.34 · · · · · · · · · · · · · · · · · · · · ·
Lap 12.94 n.s. · · · · · · · · · · · · · · · · · ·
T 13.05 n.s. n.s. · · · · · · · · · · · · · · ·
C4.5-rules 13.13 95.65% n.s. n.s. · · · · · · · · · · · ·
D 14.10 98.69% n.s. n.s. n.s. · · · · · · · · ·
Gini 14.30 99.89% 98.70% 99.44% 99.54% n.s. · · · · · ·
M 14.79 99.71% 99.68% 99.24% 99.09% n.s. n.s. · · ·
G 14.79 99.47% 98.46% 96.64% 97.60% n.s. n.s. n.s.

A) Accuracy

Avg. D IL Lap T C4.5-rules Gini M

D 3.50 · · · · · · · · · · · · · · · · · · · · ·
IL 5.31 99.74% · · · · · · · · · · · · · · · · · ·
Lap 6.41 99.12% n.s. · · · · · · · · · · · · · · ·
T 9.71 99.80% 99.60% 99.70% · · · · · · · · · · · ·
C4.5-rules 10.06 99.97% 99.95% 99.98% n.s. · · · · · · · · ·
Gini 11.48 99.85% 99.74% 99.64% 95.02% n.s. · · · · · ·
M 11.85 99.88% 99.80% 99.57% 95.54% n.s. n.s. · · ·
G 12.87 99.96% 99.94% 99.88% 98.01% n.s. n.s. n.s.

B) Number of rules

construct decision trees, our learners use different purity measures. The same
measure is actively used for pruning the tree to obtain a rule set.

The purity measures used can be described as heuristics capable of quantify-
ing the classification quality of a rule. They range from extremely simple, such
as the success probability (called T, for trivial) or the difference (D) between the
number of positive and negative examples, to slightly more complex heuristics,
such as the Laplace correction, the Gini index or the impurity level. However,
all our purity measures can be computed with simple arithmetic expressions.

A total of seven learners thus built were compared, together with C4.5-rules,
with regard to their accuracy and the size of their induced rule sets. The scores
show that the partial-matching learner built with the assistance of the impurity
level gives rise to the best results in accuracy and in size measures, if we exclude
the learner generated by D, which produces very small rule sets, but with a
substantially inferior degree of accuracy.
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