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Abstract. Estimating Prediction Risk is important for providing a way of 
computing the expected error for predictions made by a model, but it is also an 
important tool for model selection. This paper addresses an empirical 
comparison of model selection techniques based on the prediction risk 
estimation, with particular reference to the structure of nonlinear regularized 
neural networks. To measure the performance of the different model selection 
criteria a large-scale small-sample simulation is conducted for feedforward 
neural networks.  

1 Introduction 

The choice of a suitable model is very important to balance the complexity of the 
model with its fit to the data. This is especially critical when the number of data 
samples available is not very large and/or is corrupted by noise. Model selection 
algorithms attempt to solve this problem by selecting candidate functions from 
different function sets with varying complexity, and specifying a fitness criterion, 
which measures in some way the lack of fit. Then, the class of functions that will 
likely optimize the fitness criterion is selected from that pool of candidates. 

In regression models, when the fitness criterion is the sum of the squared 
differences between future observations and models forecasts, it is called Prediction 
Risk. While estimating Prediction Risk is important for providing a way of 
estimating the expected error for predictions made by a model, it is also an important 
tool for model selection [11].  

Despite the huge amount of network theory and the importance of neural networks 
in applied work, there is still little published work about the assessment on which 
model selection method works best for nonlinear learning systems. The aim of this 
paper is to present a comparative study of different model selection techniques based 
on the Minimum Prediction Risk principle in regularized neural networks.  



Section 2 studies the generalized prediction error for nonlinear systems introduced 
by Moody [7] which is based upon the notion of the effective number of parameters. 
Since it cannot be directly calculated, algebraic or resampling estimates are reviewed 
taking into account regularization terms in order to control the appearance of several 
local minima when training with nonlinear neural networks.  

Results varying the number of hidden units, the training set size and the function 
complexity are presented in the Simulation results section. Conclusions follow up. 

2 Model Selection Techniques 

The appearance of several local minima in nonlinear systems suggests the use of 
regularization techniques, such as weight decay, in order to reduce the variability of 
the fit, at the cost of bias, since the fitted curve will be smoother than the true curve 
[9]. Regularization adds a penalty Ω to the error function ε to give: 

 

Ω+= λεε̂  (1) 

 
where the decay constant λ controls the extent to which the penalty term Ω 
influences the form of the solution.  

In particular, weight decay consists of the sum of the squares of the adaptive 
parameters in the network where the sum runs over all weights and biases:  
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It has been found empirically that a regularizer of this form can lead to 

significant improvements in network generalization.[1] 
Prediction Risk measures how well a model predicts the response value of a 

future observation. It can be estimated either by using resampling methods  or 
algebraically, by using the asymptotic properties of the model. 

Algebraic estimates are based on the idea that the resubstitution error εRes is a 
biased estimate of the Prediction Risk εPR, thus the following equality can be stated: 

 

εPR = εRes + Penalty_Term (3) 

 
where the penalty-term represents a term which grows with the number of free 
parameters in the model. Thus, if the model is too simple it will give a large value 
for the criterion because the residual training error is large, while a model which is 
too complex will have a large value for the criterion because the complexity term is 



large. The minimum value for the criterion represents a trade-off between bias and 
variance. 

According to this statement different model selection criteria have appeared in 
the statistics literature for linear models and unbiased nonlinear models, such as 
Mallow’s CP estimate, the generalized cross-validation (GCV) formula, Akaike’s 
final prediction error (FPE) and Akaike’s information criteria (AIC) [5], etc. For 
general nonlinear learning systems which may be biased and may include weight 
decay or other regularizers Moody [7] was the first to introduce an estimate of 
prediction risk, the Generalized Prediction Error (GPE), which for a data sample of 
size n can be expressed as: 
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where 2σ̂ is an estimate of the noise variance on the data and the regularization 
parameter λ controls the effective number of parameters peff(λ) of the solution. As 
suggested in [6] it is not possible to define a single quantity which expresses the 
effective number of weights in the model. peff(λ) usually differs from the true number 
of model parameters p and depends upon the amount of model bias, model 
nonlinearity, and our prior model preferences as determined by λ and the form of the 

regularizer. See [6] for a detailed determination of peff(λ) and 2σ̂  . 
The effective number of parameters can then be used in a generalization of the 

AIC for the case of additive noise, denoted by Murata as NIC (Network Information 
Criterion) [8]. The underlying idea of NIC is to estimate the deviance for a data set 
of size n, compensating for the fact that the weights were chosen to fit the training 
set:  
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Alternatively, data resampling methods, such as k-fold Cross-validation (kCV) or 
bootstrap estimation make maximally efficient use of available data, but they can be 
very CPU time consuming for neural networks. A nonlinear refinement of CV is 
called 10NCV [7].  

In both, kCV and kNCV, the dataset is randomly split into k mutually exclusive 
folds or subsets of approximately equal size. The training process is repeated k times, 
each time leaving out one of the k subsets to test, but kNCV uses as starting point 
weights of a network trained on all available data rather than random initial weights 
for retraining on the k subsets.  

We consider that models which minimize GPE, NIC, kCV and kNCV are optimal 
in the average loss sense. We can use these criteria to select a particular model from 
a set of possible models.  



3 Simulation Results 

This paper focuses on feedforward neural networks with a single layer of units with 
hyperbolic tangent activation functions. Architectures considered are limited to 
single hidden layer networks because of their proven universal approximation 
capabilities and to avoid further increasing complexity. 

The networks were trained by ordinary least-squares using standard numerical 
optimisation algorithms for H hidden units ranging from 1 to M. The training 
algorithm was Levenberg-Marquardt. For a network with H hidden units, the 
weights for the previously trained network were used to initialise H-1 of the hidden 
units, while the weights for the Hth hidden unit were generated from a pseudorandom 
normal distribution. The decay constant λ was fixed to 0.002. 

All simulations were performed 1000 times, each time generating a new different 
data set of size N. Model selection results were averaged to reduce the influence of 
model variability on network size selection by introducing the possibility of escaping 
local minima. 

We used artificially generated data from the following target functions: 
 

y =  1.8*tanh(3.2*x + 0.8)- 2.5*tanh(2.1*x + 1.2)-  0.2*tanh(0.1*x – 0.5)+ξ (6) 
  

y = -5*x5 – 1.8*x4  + 23.27*x3 + 8.79*x2 -15.33*x - 6 + ξ (7) 
 
where x∈[-2,2] and ξ is a Gaussian zero mean, i.i.d. sequence which is independent 
of the input with variance σ=0.5. 

 

 

Fig. 1. Low-noise and noise-free block functions from Donojo-Johnstone benchmarks 

Alternatively, in order to study a case of higher nonlinearity we considered the 
low-noise block function from the Donoho-Jonstone benchmarks (fig. 1).These 
benchmarks have one input, high nonlinearity and random noise can be added to 



produce an infinite number of data sets. Sarle [10] checked that the MLP easily 
learned the block function at all noise levels with 11 eleven hidden units and there 
was overfitting with 12 or more hidden units when training with 2048 samples. 

Tables from 1 to 9 show observed efficiency for different target functions when 
the numbers of training examples are 25, 50 and 100.   

First column shows the number of hidden units, ranging from 1 to 10 hidden units 
for hyperbolic tangent target function (6) and for the 5 degree target function (7), 
and models ranging from 1 to 20 for low-noise block target function. For each of the 
1000 realizations the criteria select a model and the observed efficiency of this 
selection is recorded, where higher observed efficiency denotes better performance.  

Next columns show the counts for the different model selection criteria: NIC, 
10NCV, 10CV, GPE and the Prediction Risk (PR) computed over a sample size of 
2000. These results are one way to measure consistency, and we might therefore 
expect the consistent model selection criteria to have the highest counts. Last two 
rows show the mean observed efficiency and the rank  for each criterion. The 
criterion with the highest averaged observed efficiency is given rank 1 (better) while 
the criterion with the lowest observed efficiency is given rank 4 (lowest of the 4 
criteria considered).  

Tables 1, 2 and 3 show that for experimental function (6) all methods select 
models with 2 and 3 hidden units, 10NCV and 10CV perform almost the same, but 
both are superior to GPE and NIC. In all the experiments NIC averaged observed 
efficiency has the last position on the ranking.  

Table 1. Simulation results for a data sample size of N=25 and target function (6). NIC tends 
to overfitted models 

Models NIC 10NCV 10CV GPE PR 
1 1 10 7 2 4 
2 431 646 653 567 790 
3 158 180 155 156 137 
4 87 63 85 83 28 
5 60 23 24 43 13 
6 39 11 8 27 7 
7 39 11 10 19 5 
8 25 8 12 15 6 
9 29 9 11 19 3 
10 131 39 35 69 7 

Efficiency 0.8080 0.9030 0.9090 0.8480 1.0 
Rank 4 2 1 3  

Table 2. Simulation results for N=50 and target function (6) 

Models NIC 10NCV 10CV GPE PR 
1 0 0 0 0 0 
2 529 713 741 631 851 
3 164 161 132 149 120 
4 86 54 48 65 11 
5 55 29 24 45 6 



6 47 13 13 31 3 
7 22 3 7 13 2 
8 15 4 8 10 1 
9 22 8 10 17 1 
10 60 15 17 39 5 

Efficiency 0.8891 0.9521 0.9520 0.9125 1.0 
Rank 4 1 2 3  

Table 3. Simulation results for N=100 for target function (6). All methods favor architectures 
between 2 and 3 hidden units 

Models NIC 10NCV 10CV GPE PR 
1 0 0 0 0 0 
2 607 702 692 668 873 
3 146 165 168 136 106 
4 74 66 64 66 12 
5 72 33 28 58 4 
6 33 14 12 26 2 
7 23 2 7 15 0 
8 12 5 8 7 0 
9 5 1 9 5 0 
10 28 12 12 19 3 

Efficiency 0.9438 0.9743 0.9716 0.9529 1.0 
Rank 4 1 2 3  

Tables 4, 5 and 6 show that for experimental function (7) observed efficiency 
increases as the sample size grows. 10NCV is the most underfitting method for a 
sample size of 25, while NIC and GPE favor overfitted models.  

Table 4. Simulation results for N=25 and target function (7)  

Models NIC 10NCV 10CV GPE PR 
1 0 56 60 1 44 
2 1 96 77 7 29 
3 18 191 149 62 89 
4 41 222 185 148 233 
5 60 142 151 144 240 
6 63 92 125 125 159 
7 86 71 85 112 75 
8 108 51 67 98 51 
9 178 35 55 127 37 
10 445 44 46 176 43 

Efficiency 0.6820 0.7782 0.7573 0.7370 1.0 
Rank 4 1 2 3  

Table 5.  Simulation results for N=50 and target function (7) 

Mod NIC 10NCV 10CV GPE PR 
1 0 0 0 0 1 
2 0 4 2 1 3 



3 13 75 32 18 16 
4 101 264 219 165 239 
5 138 248 278 221 351 
6 119 161 185 158 199 
7 111 103 113 118 103 
8 133 53 78 102 46 
9 147 53 57 105 20 
10 238 39 36 112 22 

Efficiency 0.7866 0.8783 0.8558 0.8272 1.0 
Rank 4 1 2 3  

Table 6. Simulation results for N=100 and target function (7). NCV, CV and GPE favor 
models from 4 to 8 hidden units while NIC favors more overfitted models 

Models NIC 10NCV 10CV GPE PR 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 1 7 1 1 1 
4 152 251 113 184 203 
5 207 268 329 270 408 
6 191 193 223 199 213 
7 126 117 132 117 105 
8 109 81 96 91 41 
9 113 52 56 76 17 
10 101 31 50 62 12 

Efficiency 0.9114 0.9491 0.9190 0.9250 1.0 
Rank 4 1 3 2  

 
In contrast to the previous results, we next considered a problem that has a much 

higher nonlinearity, the low-noise block function. Tables 7, 8 and 9 show that NIC 
outperforms 10NCV and 10CV when the sample size is 100 while N=50 all methods 
perform almost the same. The averaged observed efficiency always grows as the 
simple size increases 

Table 7.  Simulation results for N=25 and low-noise block target function, when the sample 
size is very small model selection tasks are more difficult, in this case NIC shows a very high 
variance on the observed efficiency  

Models NIC 10NCV 10CV GPE PR 
1 0 76 69 0 20 
2 2 177 146 2 114 
3 0 236 235 4 204 
4 12 145 158 31 165 
5 26 112 96 44 150 
6 73 82 83 120 87 
7 79 54 45 126 75 
8 103 44 43 146 49 
9 96 17 38 121 40 
10 61 12 12 99 28 



11 88 8 10 50 18 
12 75 1 9 59 4 
13 48 3 6 17 8 
14 33 2 5 19 6 
15 31 5 4 20 2 
16 26 6 6 17 3 
17 26 1 7 15 2 
18 27 2 6 14 3 
19 37 6 5 16 6 
20 157 11 17 80 16 

Efficiency 0.7251 0.8046 0.8233 0.7319 1.0 
Rank 4 2 1 3  

Table 8.  Simulation results for N=50 and low-noise block target function. All criteria show a 
similar averaged observed efficiency, but 10NCV and 10CV tend to more underfitted models 
than NIC and GPE 

Models NIC 10NCV 10CV GPE PR 
1 0 3 2 0 0 
2 0 28 18 0 9 
3 0 71 89 0 22 
4 0 173 138 0 65 
5 8 188 187 8 120 
6 8 111 97 12 112 
7 30 81 71 44 96 
8 44 66 85 60 102 
9 75 83 70 106 91 
10 96 41 64 125 72 
11 135 36 52 126 98 
12 97 33 47 116 56 
13 99 30 14 100 30 
14 88 19 10 69 34 
15 60 3 13 52 18 
16 49 5 4 44 20 
17 33 6 5 24 11 
18 35 6 10 23 11 
19 30 9 7 24 10 
20 113 8 17 67 23 

Efficiency 0.8269 0.8208 0.8358 0.8322 1.0 
Rank 2 1 4 3  

Table 9.  Simulation results for N=100 and low-noise block target function. GPE and NIC 
show a higher averaged observed efficiency, and favor models from 11 to 16 hidden units, 
while 10CV and 10NCV models ranging between 9 and 14 hidden units 

Models NIC 10NCV 10CV GPE PR 
1 0 0 0 0 0 
2 0 0 0 0 0 
3 0 0 0 0 0 
4 0 12 17 0 1 



5 0 30 42 0 5 
6 0 75 55 2 8 
7 6 60 42 4 33 
8 14 66 36 14 25 
9 23 90 68 27 45 
1 42 92 91 58 96 
11 114 112 120 140 97 
12 118 72 87 138 99 
13 114 84 78 105 97 
14 127 79 87 137 135 
15 103 66 75 106 102 
16 98 44 49 93 77 
17 65 30 27 56 68 
18 62 16 47 52 27 
19 41 29 20 25 27 
20 73 43 59 43 58 

Efficiency 0.9326 0.8484 0.8581 0.9319 1.0 
Rank 1 3 4 2  

 
From all the experimental results we can conclude that the performance 

differences are not great between 10NCV and 10CV, but 10NCV seems to perform 
better in almost all the sample sizes. 10CV is more computationally demanding than 
10NCV. This fact leads us to prefer 10NCV rather than 10CV.  

In general, there is not best model selection method. Depending on the particular 
problem one technique can outperforms another. When N is large, all methods give 
reasonable efficiency results but crossvalidation-based criteria seem to be slightly 
better. However, when it comes to the case where N=50 and 100 and high 
nonlinearity is present, NIC and GPE outperform 10NCV and 10CV. The algebraic 
estimate of prediction risk is also more attractive from the computational perspective. 
However, it is important to note that the theory of NIC relies on a single well-defined 
minimum to the fitting function, and it can be unreliable when there are several local 
minima [8]. Among the different cases presented in this paper GPE shows a more 
reliable behavior with not great differences between the best technique and GPE. 

Conclusions 

The performance of different model selection techniques based on the prediction risk 
estimation in nonlinear regularized neural networks has been studied. We 
determined relative performance by comparing GPE, NIC, 10NCV and 10CV 
against each other under different simulated conditions. Which is the best among 
these competing techniques for model selection is not clear. They can behave quite 
differently in small sample sizes and directly depend on the nonlinearity of the task.  
The similar performance between 10CV and 10NCV lead us to prefer 10NCV since 
the computational cost is lower. NIC favors overfitted models when low nonlinearity 
is present while 10NCV favors underfitted models, even in high nonlinearity cases. 



Although the observed efficiency of GPE is not always the best, it gives reliable 
results for all the cases and, as well as 10NCV, it provides good estimates of the 
prediction risk at a lower computational cost. 
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