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Introduction

A local deformable-model-based segmentation scheme can overcame some
limitations of the traditional image processing techniques and no model template
about the object is needed. The inherent continuity and smoothness of the models can
compensate for gaps and other regularities in object boundaries. Unfortunately, this
technique presents problems in noisy images. However, if some information of the
model such us geometrical features is available, then some problems caused by the
noise or edges from another objects in the image can be solved using a global
deformable model.

Several segmentation-scheme based on snakes (local deformable model) have been
developed for noisy images [1,2] but none of them are applicable for segmentation in
images with granular noise (macro-particles) or when objects are superimposed. We
present a model that is adequate for those cases where some geometrical information
about the object is available.

This paper is organized as follows. In the next section a brief review of previous
work on geometrical deformable models is given. The limitations of these proposed
methods and some open problems are pointed out. Our new approximation to a



geometrical (global) deformable model is presented in Section 3, where a Bayesian
approach of the geometrical constraints is described. In section 4, two different
algorithms, global minimization and fast global minimization are proposed. In Section
5 the results show that our new geometrical deformable model is helpful to segment
objects with granular noise or another superimposed objects. Finally, in Section 6,
conclusions are presented.

Geometrical deformable models

Deformable models are a useful tool for image segmentation. They can be classified,
according to the information held by the model [3], in local deformable models and
global deformable models. Local deformable models manage information to pixel
level taking into account only a close pixel neighborhood. However, global
deformable models can use information from any location in the image. Local
deformable models are faster to converge and they do not need a template of the
object to be segmented. The most popular approach to local deformable model is the
“snake” by Kass et al[4]. Unfortunately, they are very sensitive to noise. On the other
hand, global deformable models have slower convergence than local deformable
models and usually they need a template of the object. However, global deformable
models are more robust and less sensitive to noise than local models.

Geometrical deformable models are a particular case of global deformable models
that use geometric information of the object. Geometrical models have been used for
a number of applications in image segmentation. Continuous geometric models
consider an object boundary as a whole and can use the a priori knowledge of object
shape to constrain the segmentation problem. Wang and Gosh [5] proposed a
geometrical deformable model based on the curve evolution theory in differential
geometry. Burger et al [6] used a geometrical priori knowledge information for the
segmentation of the aorta. Delibasis and Undrill [7] developed a geometric
deformable model for anatomical object recognition. And Clarysse and Friboulet [8]
proposed a 3-D deformable surface model with geometrical descriptors for the
recognition of the left-ventricular surface of the heart. Shen and Davatzikos [9] used
an attribute vector to characterize the geometric structure around each point of the
snake and only affine-segment transformations of a standard shape are allowed during
convergence process. This restriction permits a faster convergence but a close object
initialization has to be carried out. In addition, some kind of objects can not be
properly represented using this standard shape.

Our geometric model avoids guided initialization by using a previous local
deformable model where no user interaction is required.

Description of geometric deformable model

In the segmentation task, we assume the object to be detected is represented by a
contour(x) in an image(z). A polygon (or vector) representation of an object is a



representation where the contour is defined by a set of nodes giving coordinates of
contour points in a circular (clockwise) manner. Between each node, the contour is
defined by a straight line (or some spline-curves).

The Bayesian paradigm consist of four successive stages:

1. Construction of a prior probability distribution )(xπ where x is the contour of

the object. Priori knowledge is included in  )(xπ .

2. Combining the observed image z with the underlying contour x through a
conditional probability density )|( xzf .

3. Constructing the posterior density )|( zxp  from )(xπ  and )|( xzf by Bayes

Theorem giving

)|( zxp ∝  )(xπ )|( xzf (1)

4. Base any inference about the contour x on the posterior distribution )|( zxp

Prior knowledge is usually present on the contour to be recognized. This prior
knowledge is associated to features as shape, size, orientation, etc.

In Bayesian analysis, all kinds of inference are calculated from the posteriori
probability )|( zxp . Finding the maximum a posteriori (MAP) estimation is the most

used choice of inference. Constraints on contours are, for this approach, designed
through energy-functions. The energy-function consists of internal energy and
external energy, where the internal energy is related to geometric features of the
contour and external energy is related the contour and the image. Assume )(xU is the

total energy of the contour represented by x, and given by
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where Uint is the internal energy while Uext is the external energy (depending on the
observed image z). Then, a prior model is defined by

)(

int

int
1

)( xUe
Z

x −=π
(3)

where Zint is a normalization constant guaranteeing the prior model to be a proper
probability distribution.

Assume further that the likelihood for the observed image z given x is
defined by
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where Zext is a normalization constant similar to Zint. The posterior probability for
the contour conditioned on the image is then
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verifying that minimization of the energy function corresponds to maximization of
the posterior distribution, that is, finding the Maximum a posteriori (MAP) solution.

This Bayesian framework is proposed in order to evaluate the contour solution
through a posteriori probability (APP) according to the )|( zxp  function and a

threshold of reliability pθ . The prior model, where the geometrical information is

incorporated, is discussed in section 3.1 and the probability densities for observed
image are presented in section 3.2.

Prior model and geometrical information

Let’s consider that the contour x has a polygon representation ),..,,( 110 −= npppx

(contour of n points) with npp =0  and where pi gives the coordinates of a point on

the contour. A priori knowledge is present in the prior model through the )(xπ
distribution from Eq. 3. The a priori distribution should capture the knowledge
available about x . A common assumption is that the energy-function is built up by
potentials measuring local and global characteristics. To incorporate the a priori
geometrical information in the Bayesian approach, a new potential, Ugeom, is
considered to capture the geometrical information. Then,

)()()()( 21int xUxUxUxU geom⋅+⋅+⋅= γβα (6)

where )(1 xU  and )(2 xU  are the typical continuity and curvature term

respectively [4]. In addition, )(xU geom is the geometrical restriction term, and α , β
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Fig. 1.  Vessel geometric model



and γ  parameters are regularization factors . In the following the term Ugeom is
developed.

Geometrical constraints
Geometrically, a vessel can be defined as two parallel edges having a distance
between them (width of the vessel) within a range. Let’s consider that )(sv with

[ ]bas ,∈ , is the axis curve of the vessel. Then, the edges of the vessel, )(1 sv  and

)(2 sv  (Figure 1), can be defined as:
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with [ ]bas ,∈ , where )(sv∇  is the gradient vector of s and λ  is the width of the

vessel. That is, the two edges and the axis have the same gradient vector in a point s.
Given a contour point pi , we say that fpi is the frontal point of the pi, if fpi is the

contour point that intercept the line of gradient direction (perpendicular direction to
the contour) of the point pi. Then, we define the width of the contour at a point pi ,

)( ipW , as:
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Fig. 2. Width function W(x) for a vessel shape (a), and a circle
shape(b)
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that is, the distance between pi and its frontal point. The width function of a vessel
is represented in Figure 2a. Note that this function is dependent of the beginning point
p0. Also can be observed that this function is almost flat but two peaks. Because an
image has limited dimensions, just a fragment of the vessel is present in it, and two
additional edges are produced where the vessel crosses the borders of the image.
These edges produce the two peaks in the width function of the vessel.

Most values of the width function are closer to the medium value (Md) than to the
mean value of the function because the median value is less sensitive to extreme
values (two peaks in width function) than the mean value. Then we can think that a
shape is more similar to a vessel shape in the way that its width function is more
similar to a flat width function. However a circle shape has a flat width function
(Figure 2b), then additional features such us compactness or elongation have to be
taken into account. Finally, the geomU  potential function is defined as:
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where the first term is an estimation of the normalized deviation of the
)( ipW function and Maxσ is the maximum deviation possible of )( ipW . Similarly,

C(x) = area/(perimeter)2 is the fractal dimension of the object and is minimal for a
disk-shaped region. The parameters µ and λ are regularization factors between both
terms, and they must verify µ + λ  = 1 in order to be keep the term Ugeom  normalized.

Probability densities for image data

The probability density )|( xzf is related to the specification of the observed image

data. In our approach it is defined through an external energy, which depends on the
contour and the observed image. The external energy function connects the contour to
the image features were defined through potentials along the contour. Thus, a generic
external energy function can be defined as:
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where ),( zph i is some local measure from the observed image z at location pi

(contour pixel). Usually, measure is based on grey-levels itself or some gradient
value. In many cases, the complexity of the segmentation process does necessary to
take into account not only the observed measurements along the contour but also the



gray level inside and outside the contour. For example, the average gray-level inside
the object is very different from the average outside the object. Such information can
be very useful but it will increase the time of computation with respect to the local
measures. In this case, an alternative model is to assume one distribution function f1
for the pixels inside the object, and another distribution f2 for the pixels outside the
object, then
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where R1 and R2 are the sets of pixels inside and outside the contour, respectively,
being R1 and R2 specified by x. Moreover, )( ipg is the gray value of the pixel pi in the

image.

Minimization

As pointed in previous section, maximizing the posterior distribution corresponds to
minimizing the energy function. Optimal solutions are usually hard to find.
Minimization algorithms can be based on dynamic programming [10], variational
calculus [4] or iterative exploration [11], which is the most popular approach. We use
this approach for our model. This method consists in dynamically move the contour
towards the optimal solution. In the following the initial contour and iterative
exploration of our methods are presented

Initial contour

Usually, deformable global models have longer computation time than local
deformable models. A critical factor in computation time is the initial contour. Some

Fig. 3. Initial contour and results with the local deformable model



systems require a human operator to draw an initial contour close to the object. In our
model, this requirement is avoided using a initial contour provided by a local
deformable model, where no initial contour close to the solution is required (see
example of fig 3).

Previous to geometrical deformable model application, the contour approximation
(initial contour) provided by the local model is evaluated through the a posteriori
probability (APP) of the contour. If the APP of the initial contour is high (above a

reliable threshold, pθ ) pzxp θ≥)|( , then no tuning is needed (Fig 4 a-c). However, a

low APP (below the reliable threshold) indicates that a tuning of the solution need to
be performed through the geometrical model (Fig 4 d-f) here presented.

Iterative exploration

An easy way to minimize a global deformable model is an algorithm that moves the
contour points looking for a position of lower energy value. A neighborhood of M x
M of each contour point is explored and the point is moved to the location with lowest
energy value. This operation is performed for every point of the contour at each
iteration until the convergence criterion is done. The convergence criterion is based
on the percentage of points moved in the current iteration. If this value is less than C,
where C is the convergence threshold, the algorithm finishes. This algorithm can be
resumed as:

Until Convergence criterion do
  For Pi = 1 to N do
    Explore energy value U(x)in a M x M neighborhood of

Pi
 Move Pi to the location with minimum energy value
  End For
End Until

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results obtained with regular snake for noisy
images



When this algorithm ends, a new contour x is obtained and the a posteriori
probability )|( zxp  is evaluated. A high APP confirms that the object have been

segmented correctly, and a low APP indicates that the object was not captured,
presumably because it was not present in the image

Results

The new approach to a geometrical deformable contour segmentation has been
validated in a database of mammograms by detecting vessels on the images. These
images (called Regions of interest ROI) have a size of LL ⋅ , begin L = 128 pixels
with 1024 gray levels. A local deformable for noisy image segmentation [2] was
applied to a database of 200 ROIs. Some result images are shown in Figure 4. In 24
ROIS the local deformable model was not able to segment the vessel correctly
because it was captured by noise particles, as shown in Figure 4(a-c).

The threshold probability pθ for the evaluation was empirically set to 0.65 and

Maxσ = L⋅2 , which is the diagonal of the ROI Image. The α , β  and γ  parameters

were also empirically adjusted to 1.0=α , 1.0=β  and 1=γ .

Results of some images obtained with the geometric deformable model are
presented in the Figure 5. The upper row corresponds to the initial contour (from local
deformable model), and the bottom row corresponds to the tuning by the geometric
model. The algorithms were implemented in C language using a Pentium II 450 Mhz,
128 Mb RAM memory and running Red Hat 6.0 linux operating system. The local
deformable model applied to obtain a initial contour spent 0.20 seconds per image in
average. The global deformable model spent 2 seconds in average per image to
converge (for tuning the image).

(a) (b) (d)(c)

Fig. 5. Results. Initial contour approximation with local model (upper) and tuning by
geometric deformable model (bottom)



Conclusions and future works

In this paper we have proposed a global deformable model that uses the geometrical
information as a priori knowledge of the object. This geometrical deformable model
refines the solution of a local deformable model when the local information is not
enough for segmenting the object. This situation can arise due to noise perturbation or
other objects in the image. Also a Bayesian framework of the model is provided in
order to evaluate the contour (initial estimation and solution) through a posterior
probability. A specific geometrical restriction term and a likelihood function for
contour vessels in mammograms are developed. An automatic initial contour for the
geometric deformable model is provided for a local deformable model, avoiding
manual initialization. Finally, a minimization algorithm based on iterative exploration
is proposed.

As future works we propose the following points: A faster minimization algorithm
because computation of the geomU  term makes the convergence algorithm very slow.

Moreover, an algorithm for automatic parameter adjusting could be very useful.
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