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Abstract. Niching techniques for evolutionary algorithms are aimed at form-
ing and maintaining stable subpopulations (species) in multimodal domains. This
paper reviews some of the existing niching techniques for classical evolution-
ary algorithms. Also the idea of a niching coevolutionary multi-agent system
(NCoEMAS) is presented. In such a system the niche formation phenomena occur
within one of the preexisting species as a result of coevolutionary interactions.

1 Introduction

Terms Evolutionary Computation and Evolutionary Algorithms cover a wide range of
global search and optimization techniques based on analogies to natural evolutionary
processes. However, both experiments and analysis show that even for multi-modal
problem landscapes a simple evolutionary algorithm will inevitably locate a single so-
lution — even when there are multiple solutions of equal fitness [8, 15]. This tendency
is caused by the genetic drift [6]. In order to overcome this limitation some mechanism
that creates and maintains different subpopulations (species) in a multimodal domain
must be used.

In nature, there exist different subspaces within the environment (niches), which
support different types of life (species). The number of organisms within each niche
depends on niche fertility (its carrying capacity) and the efficiency at each organism
exploits the niche resources. If there are too many organism in a given niche, the least
efficient die because of resource shortages. And conversely, if there are too few organ-
isms in a very fertile niche, they reproduce quickly so as resources of a given niche are
fully exploited.

Traditionally, there are two basic approaches in evolutionary biology to understand-
ing speciation process [7]. The first one called allopatric speciation occurs when sub-
populations of a given species become geographically isolated. After isolation they fol-
low different paths of evolution, which eventually lead to forming of different species.
Resulting species are reproductively isolated even after secondary contact. The second
kind of speciation is called sympatric speciation. Such speciation results from niche
separation due to resource competition, predator-prey coevolution, sexual preferences,
etc. [7]. In this case speciation process takes place within single population and geo-
graphical separation of subpopulations is not needed.



This paper starts with the overview of the existing niching techniques for classical
evolutionary algorithms. Then the idea of a niching coevolutionary multi-agent sys-
tem (NCoEMAS) is introduced, which opens new possibilities of modelling biological
speciation mechanisms based on coevolutionary interactions, competition for limited
resources, and geographical isolation. In such a system the niching (species formation)
phenomena occurs as a result of coevolution of two different species: solutions and
niches. Coevolution forces the process of speciation within the former one.

2 Niching Techniquesfor Evolutionary Algorithms

In case of a multimodal landscapes every peak can be treated as a niche (everywhere
in this paper we assume maximization problems). The number of individuals that live
within a niche should be in direct proportion to its carrying capacity. Carrying capacity
in this case means peak’s fitness relative to other peaks present in multimodal domain.
This is called niche proportionate population.

Various mechanisms have been proposed to stably maintain species throughout the
search process, thereby allowing to identify all peaks of a multimodal function. Most
of these techniques allow niche formation through the implementation of crowding, fit-
ness sharing or some modifications of these mechanisms. Crowding and sharing based
techniques are inspired by speciation resulting from niche separation due to resource
competition.

Every niching technique can also be classified as parallel or sequential [14]. Parallel
niching methods form and maintain species simultaneously within a single population
(regardless of the number of processors used). Sequential niching methods locate mul-
tiple peaks temporally, one after another.

Parallel evolutionary algorithms represent quite different approach to species for-
mation, which is based on allopatric speciation [2].

2.1 Crowding Based Techniques

One of the first attempts to introduce niching into a genetic algorithm was Cavicchio’s
preselection scheme [3]. In preselection scheme offspring replaces less fit of two parents
only when it has higher fitness than parent.

In the crowding technique [6] in each generation, a part of the population G (gen-
eration gap) is selected (via fitness proportionate selection) for reproduction. For each
offspring, a certain number — C'F' (crowding factor) — of individuals are selected at
random. The most similar individual, according to a similarity metric, is then replaced
by the offspring. As a similarity metric De Jong used Hamming distance in genotypic
space. Crowding does not promote the formation of stable species, but rather aims at
maintaining the diversity of initial population.

Mahfoud developed niching mechanism called deterministic crowding [13]. He
showed that similarity metrics based upon phenotypes should be preferred to geno-
type based ones. It was also demonstrated that there was very high probability that the
offspring most similar individual should be searched among its parents. The new off-
spring is directly compared to their parents. In deterministic crowding parent is replaced



only if the child has higher fitness. To determine which of the two possible parent-child
pairings should be used in the process of comparing parents to their offspring the total
similarities were determined for each possible combination. The pairing that had the
highest total similarity (according to some similarity metric) was used.

Probabilistic crowding developed by Mengshoel and Goldberg [16] is based upon
Mahfoud’s deterministic crowding. The main difference to deterministic crowding is
the use of a probabilistic rather than a deterministic acceptance function. This means
that stronger individuals win proportionally according to their fitness. The probability
of wining the tournament by individual z is

P, =Ple) = 1)

where f is a fitness function.

2.2 Sharing Based Techniques

Fitness sharing was first introduced by Holland [12] and further developed by Goldberg
and Richardson [10]. This technique models the ecological phenomenon of competition
for limited resources between individuals that occupy the same niche. Fitness sharing
technique reduces the fitness of individuals that have highly similar members within
the population. Such a mechanism rewards unique individuals and punishes redundant
individuals within the population. The reduced fitness of an individual 7 is given by

fi==t 2
where f; is its raw fitness and m; is the niche count. The niche count is given by

n
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where d;; is the distance between individual ¢ and individual j, determined by a simi-
larity metric. The similarity metric used can be based on either phenotype or genotype
similarity. A genotype similarity metric is often domain independent (for example Ham-
ming distance between the genotype bit strings). A phenotype similarity metric utilizes
some knowledge about the domain, so it is more meaningful. The similarity metric
should always return a distance d;;, which increases as similarity decreases (and vice
versa). If the distance between two individuals ¢ and j is less than some fixed radius
osn, the sharing function will return a value from [0, 1], which increases with greater
similarity between two individuals. In sharing technique each individual is considered
to be the center of a niche with radius o . Fitness of each individual is reduced for ev-
ery other individual that lives in its niche in a proportion to their similarity. The sharing
function is given by

1- (L) ifd<o,
sh(dy = { L 7GR A< o, (4)
0 otherwise,



where « is a constant that regulates the shape of the sharing function. It is commonly set
to 1. Goldberg and Deb [9] developed formulas for determining the appropriate value
for oy, given the expected number of peaks and assuming that maxima are regularly
located in the search space.

Miller and Shaw [17] developed the niching technique called dynamic niche shar-
ing. Their approach utilizes two assumptions. The first assumption is that the number
of niche peaks, ¢ can be estimated. The second assumption is that the peaks are all a
minimum distance 2o, from each other. Dynamic niche sharing technique attempts to
identify the ¢ peaks of forming niches and uses these dynamically identified peaks to
classify all individuals as either belonging to one of these dynamic niches or belong-
ing to the “non-peak” category. The shared fitness value for an individual that belongs
to one of the dynamic niches is its raw fitness value divided by the dynamic niche
population size. If the individual does not belong to a dynamic niche it belongs to the
“non-peak” category and its niche count is calculated using the standard niche count
equation (4). The shared fitness value for dynamic niche sharing is given by

Fhops = —2— ©)

Mdsh,i

The dynamic niche count is
n;  ifind. is within dyn. niche j
Mdsh,i = . .. (6)
m; otherwise (non-peak individual),

where 7 is the niche population size of the jth dynamic niche and m ; is the standard
niche count. An individual ¢ is considered to be within a dynamic niche j if its distance
d; ; from peak j in the dynamic peak set is less than o ,,. A greedy approach is used to
identify the dynamic peaks for each generation. The population is sorted in decreasing
raw fitness order. First the population member with the highest fitness is inserted into
Dynamic Peak Set (DPS). Then for every individual in population array (in decreasing
fitness value order) its distance from every peak in DPS is calculated. If all these dis-
tances are greater than o, the individual is inserted into DPS. The whole process is
continued until there are ¢ peaks in DPS.

Coevolutionary sharing technique (CSN) was developed by Goldberg and Wang
[11]. Their technique is loosely inspired by the economic model of monopolistic com-
petition. The customer population is the usual population of candidate solutions. The
businessmen will locate themselves in solution space in order to obtain largest payoff.
Customer population C' consists of n. [-bit binary strings. Businessman population B
consists of n, I-bit binary strings. The distance between a customer ¢ and a businessman
b is the Hamming distance of string cand b (|c— b|). Customer ¢ belongs to businessman
b if b is the nearest businessman to ¢ that is mine g|c — b|. The set of customers that
belong to businessman b at generation ¢ is denoted C'y, ;. The number of customers a
businessman b serves at generation ¢ is my; = ||Cs¢||. The modified customer fitness
is

e =19 ™

M.t ceClh



The modified businessman fitness is

o) = Y f(©) (8)
ceCly ¢

Simple CSN uses selectorecombinative GA for the customer population and selecto-
mutational GA for the businessman population. Each customer is assigned to the closest
businessman. Proportionate selection and genetic operators are used to compute a new
customer generation. Each businessman is chosen in turn and a single mutation site is
selected randomly. The resulting individual replaces its parent if it is at least d ,,;,, from
other businessmen and it is an improvement over its parent. Otherwise another mutation
site is selected (max. ny;m,: times). In the case of a massively multimodal function it
was necessary to apply imprint mechanism. In CSN with imprint a candidate business-

man is chosen from among the best individuals of the customer population.

2.3 Sequential Niching

One of the example of sequential niching methods is sequential niche technique (SN)
developed by Beasley, Bull and Martin [1]. Their technique works by running multi-
ple times a simple GA. The best solution of each run is maintained off-line. To avoid
converging to the same niche, whenever a peak is located SN depresses the fitness land-
scape within some radius of that solution. The niche radius used in SN plays a role
similar to that of o, in sharing. In fact the authors suggest that SN is a sequentializa-
tion of fitness sharing.

The authors claim that there are three potential advantages of sequential niching:
simplicity, ability to work with smaller populations, and speed (partially a byproduct of
smaller populations). Mahfoud [14] showed that two latter potential advantages never
materialize and what is more there are many disadvantages:

Loss, through deration, of optimal solutions and their building blocks;

Repeated search of depressed regions of the search space;

Repeated convergence to the same solutions;

Loss of cooperative population properties, including cooperative problem solving,
and niche maintenance;

Slower runtime, even on serial machines.

2.4 Parallel Evolutionary Algorithms

Parallel EAs (PEAS) represent quite different approach to species formation, which is
based on allopatric speciation [2].

In the island model PEA [2] the population is divided into several subpopulations.
Each subpopulation is assigned to a different processor (island). Individuals in each
subpopulation are relatively isolated from individuals on another subpopulations. To
exchange genetic material between islands, individuals with high fitness migrate oc-
casionally from one subpopulation to another. All these techniques help maintaining
genetic diversity and allow each subpopulation to search different part of multimodal
domain.



Also fine-grained PEA [2] can be treated as a technique that makes possible the
process of species formation. In this technique usually one individual is assigned to
each processor. The individuals are allowed to mate only within a neighborhood, called
a deme. Since neighborhoods overlap, the best individuals will propagate through the
whole population.

There are two basic problems with the application of PEA to multimodal optimiza-
tion. First, the number of niches (peaks of a multimodal function) is not known a pri-
ori, so there exist uncertainty about how many subpopulations should there exist. Sec-
ond, there is no guarantee that different subpopulations will explore different areas of a
search space.

3 Niching Coevolutionary Multi-Agent Systems

Most of niching techniques presented in the above sections indirectly model resource
sharing within the niches (through crowding or fitness sharing techniques). On the other
hand, PAEs model speciation caused by geographical isolation. However in nature there
exist much more speciation mechanisms such as predator-prey coevolution, sexual pref-
erences, etc. [7].

The idea of a niching coevolutionary multi-agent system (NCoEMAS) offers us new
possibilities for modeling species (niche) formation mechanisms. These include explicit
modelling of niches and resource sharing mechanism (energy sharing), predator-prey
interactions, and sexual preferences.

3.1 Evolutionary Multi-Agent Systems

The main idea of evolutionary multi-agent system (EMAS) is the modelling of evolution
process in multi-agent system (MAS) [5].

In opposition to classical EAs, in EMAS there is no centralized algorithm which
manipulates the whole population. All individuals (agents) are independent and make
their own decisions concerning reproduction, changing location etc. Agents live in an
environment with defined structure. Agents can move within environment, changing
their location. Every agent has some amount of resource called life energy. Every activ-
ity costs some energy (activities include: reproduction, migration, etc.) Energy can be
gained only from the environment, and the rule is that better fit agents are given more
energy than less fit ones.

It is very natural to implement the model of allopatric speciation in such a sys-
tem because there can be many environments coexisting in parallel, each of them with
different conditions. Agents can migrate between these environments, so the genetic
material (information) is exchanged [4]. This model is, to some extent, similar to island
model PEA [2] with all its advantages and disadvantages.

The idea of niching coevolutionary multi-agent system (NCoOEMAS) presented in
the following section offers us new possibilities of modeling niching-like behavior, that
are not based on allopatric speciation.
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Fig. 1. A conceptual schema of a niching coevolutionary multi-agent system

3.2 Theldea of a Niching Coevolutionary Multi-Agent System

The key idea that differantiates coevolutionary multi-agent system (CoEMAS) from
EMAS is the coevolution of several species. COEMAS can be applied, for example,
to multiobjective optimization and multimodal function optimization (NCOEMAS).

In NCoEMAS several (usually two) different species coevolve. One of them repre-
sents solutions. The goal of the second species is to cooperate (or compete) with the
first one in order to force the population of solutions to proportionally populate and
stably maintain niches in multimodal domain i.e. to initialize and maintain the process
of speciation within the population of solutions.

It seems that NCOEMAS is especially suited for modelling sympatric speciation
(niche separation due to resource competition, predator-prey coevolution, sexual pref-
erences). Also, allopatric speciation can be modelled in NCOEMAS.

One of the possibilities is the coevolution of the population of individuals repre-
senting niches themeself and the population of individuals representing solutions (see
fig. 1). In NCoEMAS we can model niches as individuals that are characterized by pa-
rameteres like location, radius, etc. and evolve to best cover real niches in multimodal
domain. Two additional operators can be introduced for niches: splitting and merging.
Each niche can make decision on splitting into two niches based on the current distri-
bution of its subpopulation. Also, the decision of merging can be made by two niches
that are close enough and that are located on the same peak in the multimodal domain.
In order to proportionally populate niches the mechanism of explicit resource sharing
can be introduced. Agents’ life energy can be treated as a resource for which individ-
uals compete. This mechanism can be called energy sharing. Also, within each niche
we can model the process of allopatric speciation. Each niche can have its inner spatial
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Fig. 2. NCOEMAS with agents-niches

structure in which agents live (see fig. 1). This will help in maintaining genetic diversity
within each subpopulation.

3.3 NCoEMASwith Agents-Niches

In the particular case niches of NCOEMAS may be realized as agents (see fig. 2). There
exist two different species: niches and solutions. All agents representing niches are
located in nodes and can not change their location. Agents representing solutions are
also located in nodes but they can change their location in environment migrating from
node to node.

Every agent-solution has some amount of resource called life energy. There is closed
circulation of energy in the system, which means that the total energy possessed by
agents and the environment is constant during the whole simulation. Agents need en-
ergy for almost every activity: migration, reproduction etc. An individual dies when
its energy is equal to 0. An agent can migrate from one node to another guided by
the total energy of agents living in that node. The reproduction process can take place
when agent’s energy is above the given level. Agent starts reproduction, searches in
its neighborhood for partner and then new agent is created. Mutation and crossover
(one point crossover is used) are applied with the given probability in order to produce
child’s chromosome. An agent created in reproduction process obtains energy from the
environment.

The behavior of the niche population is very similar to the algorithm used for busi-
nessman population in CSN [11]. Each time step a single mutation site is selected ran-



domly. The resulting individual replaces its parent if it is at least d ,,,;,, from other niche
and it is an improvement over its parent. Otherwise another mutation site is selected
(max. nyimie times).

In the time ¢ every agent-solution searches for the closest niche (the weighted sum
of Hamming distance in genotype space and Euclidean distance in environment is used).
If there is no niche, such that its distance from the agent is less than given value, then
the new niche is created with the copy of agent’s chromosome (imprint mechanism).

In each time step less fit agents must give some amount of their energy to better
fit agents (according to fitness function). Agents are compared within niches and also
outside niches in the environment space. The latter comparisons are realized within
nodes. Given agent is compared with agents that stay in its node and also with agents
from the neighboring nodes.

4 Concluding Remarks

In the paper a survey of niching techniques for evolutionary algorithms was presented.
Most of classical niching techniques indirectly model resource sharing within the niches.
On the other hand, parallel evolutionary algorithms model speciation caused by geo-
graphical isolation of subpopulations.

However, something more is needed if we want to model other biological speci-
ation mechanisms. The idea is to allow the coevolution of several different species in
EMAS. The resulting niching coevolutionary multi-agent system (NCoEMAS) allows us
to model the process of sympatric speciation based on niche separation due to resource
competition (energy sharing), predator-prey coevolution, sexual preferences, etc. At
the same time allopatric speciation is modelled based on environmental structure of
NCoEMAS.
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