
An Interactive Framework for Open Queries in
Decision Support Systems

Juan A. Fernández del Pozo1 and Concha Bielza1

Decision Analysis Group, Technical University of Madrid,
Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

{jafernandez,mcbielza}@fi.upm.es

Abstract. We have recently introduced a method for minimising the
storage space of huge decision tables faced after solving real-scale decision-
making problems under uncertainty [4]. In this paper, the method is
combined with a proposal of a query system to answer expert questions
about the preferred action, for a given instantiation of decision table at-
tributes. The main difficulty is to accurately answer queries associated
with incomplete instantiations. Moreover, the decision tables often only
include a subset of the whole problem solution due to computational
problems, leading to uncertain responses. Our proposal establishes an
automatic and interactive dialogue between the decision support sys-
tem and the expert to extract information from the expert to reduce
uncertainty. Typically, the process involves learning a Bayesian network
structure from a relevant part of the decision table and the computation
of some interesting conditional probabilities that are revised accordingly.

1 Introduction

In problems of decision-making under uncertainty, the model evaluation outputs
are decision tables with the optimal alternatives. In our case, the model is an
influence diagram [11], i.e. a directed acyclic graph which has proven to be very
useful in this context. Therefore, the evaluation of an influence diagram yields,
for every decision time, an associated decision table with the information about
which is the best alternative, i.e., the alternative with the maximum expected
utility, for every combination of variables (outcomes of random variables and/or
other past decisions). The evaluation algorithm determines which these variables
are. Let us consider a decision table as a set of attributes (a multidimensional
array) that determine the optimal action, policy or response. Then, an essential
issue is to minimise its storage space, which typically grows enormously in real-
scale problems. Each table may have up to millions of rows and typically, more
than twenty columns, and the results of the decision problem, therefore, rely on
a combinatorial knowledge representation space.

In [4], we introduce KBM2L lists to address this problem. The main idea
stems from how computers manage multidimensional matrices: computer mem-
ory stores and manages these matrices as linear arrays, and each position is a

function of the order chosen for the matrix dimensions. KBM2L lists are new list-
based structures that optimise this order in the sense of putting equal responses
in consecutive positions in order to achieve compact storage.

During usual decision support system (DSS) operation, the expert user will
query the system about which is the best recommendation for a given set of
attributes. In this paper, we propose a query system based on the KBM2L
framework. Section 3 describes different types of queries and elaborates on the
difficulties involved. Section 4 addresses the situation of a closed query, with the
whole set of attributes instantiated (a record). Section 5 tackles more general and
complex queries –open queries–. The procedure combines compact decision tables
with learning, information access and information retrieval processes. Section 6
uses a real medical DSS to illustrate all kinds of open queries. The last section
is a summary and suggests further research.

2 KBM2L Lists for Knowledge Synthesis

As mentioned above, KBM2L lists store the information of a decision table as
a vector, much in the manner computers work. A decision table is a set of
attributes. If we assume discrete attribute domains, then an order, natural or
conventional, in the values of these domains may also be assumed. The attributes
can also be arranged in different orders always maintaining the same information.
A base is a vector whose elements are the attributes in a specific order. An index
is a vector whose elements are the values of the attributes of the base, interpreted
as the coordinates with respect to the base.

Therefore, the decision table as a multidimensional matrix maps into an array
as follows [8]. Given a cell of the table with coordinates c = (c0, c1, ..., cn), we
define f : Rn+1 →R, such that

f(c0, c1, ..., cn) = c0

n∏

i=1

Di + c1

n∏

i=2

Di + ... + cn = q (1)

where q is the c-offset with respect to the first element of the table in a given
base, Di denotes the cardinal of the i-th attribute domain (i = 0, 1, ..., n), and

n∏
j=i+1

Dj is called its weight wi. The vector of weights is w = (w0, w1, ...wn) with

wk = wk+1Dk+1, wn = 1 and k = 0, 1, . . . , n− 1. Their algebraic interpretation
is that they are the coefficients that multiply the coordinates in (1), like radix
powers in the number value expression. We can use relationship (1) to access all
the table values. Without loss of generality, suppose ci has 0,1,2,...Di − 1 as its
possible outcomes and, hence, possible values for q are 0,1,2,...,w0D0 − 1.

Rather than looking at the way the cells can be enumerated depending on
the base, we now consider their content, namely, the DSS proposals. The list
often contains sets of consecutive cells leading to the same optimal policy, as
the optimal decisions present some level of knowledge granularity. The memory
savings come from storing only one cell (or equivalently its offset) per set, e.g.

its last cell. This last cell together with the common policy, representing a set of
records (cell,policy), is called item. The shorter resulting list composed of items
is a KBM2L list [4]. It is somewhat related to the way sparse matrices are
managed. Each item is denoted as <offset, policy|, where the < symbol reflects
item offsets increasing monotony and | reflects granularity.

Good KBM2L lists search for bases with few items, grouping identical poli-
cies as far as possible into consecutive offsets. We have implemented a genetic
and a variable neighbourhood algorithm to guide this search, as well as efficient
heuristics for some time-consuming associated processes [5]. A list of minimum
length means a table of minimum memory requirements. Moreover, this list also
serves as a means of high-level explanation and validation, finding out relation-
ships between groups of attributes and system proposals. [4] illustrates a medical
problem. Therefore, this knowledge synthesis is useful from both a physical and
a semantic point of view.

3 Queries

The expert decision-maker uses decision tables as a knowledge base (KB). In a
typical session, expert and DSS accomplish these tasks: (A) formulate a query
in the KB domain; (B) translate it into the KB formalism; (C) implement the
response retrieval; (D) build the response efficiently; (E) communicate the re-
sponse(s) and/or suggest improvements, and wait for user feedback.

As far as tasks (A) and (B) are concerned, there is a wide range of possible
query formulations. We propose a simple classification of queries into two groups
depending on whether the whole set of attributes is instantiated –closed query–
or not –open query–. A closed query corresponds to a user who issues a specific
and defined query, as she knows all the information about the attributes. An
open query is more general, since it includes undefined attribute values, because
they may be difficult or expensive to obtain or because they are unreliable.
This classification is similar to the one given in [9], although [9] deals with GIS
(Geographical Information Systems) and focuses more on data efficient updating
and access from a physical point of view (merely as a database), than from a
logical point of view (as a knowledge base).

Queries are stated as attribute instantiations and, therefore, they are related
to the index. A response in terms of the optimal policy is expected. However, an
added difficulty is optimal policy ignorance.

Let us explain this point in further detail. The complete evaluation of the
decision-making problem may be so costly (in terms of time and memory re-
quirements) that we have to resort to solving a set of subproblems instead, each
one as the result of instantiating some random variables [1]. This subproblem set
may not be exhaustive, implying unknown optimal policies for some attribute
combinations, i.e. those associated with unsolved subproblems. This is common
in large decision-making problems. In fact, the optimal KBM2L construction
process also operates with unknown policies and subproblems. It firstly (sequen-
tially or in parallel) evaluates all the subproblems, and then the resulting partial

decision tables are sequentially added to the KBM2L list by means of a learn-
ing mechanism that optimises the list as new knowledge is entered (i.e., before
reading the next partial table). Each stage in the addition process supposes a
better item organisation and facilitates future additions [5].

In short, we distinguish not only between closed and open queries, but also
between known and unknown or uncertain responses. The different scenarios are
analysed in the following sections, thus completing tasks (C)-(E).

4 Closed Queries

The whole set of attributes is instantiated for closed queries. Then, the system
only needs to look for the corresponding KBM2L list element and retrieve the
optimal policy, which is presented to the user as the response. The mechanism
is as follows.

Let A0, ...An be the attributes and Ω0, ..., Ωn their respective domains. ΩR

denotes policy domain. Let Q denote a closed query, i.e. Q = (a0, ..., an), ai ∈
Ωi, i = 0, ..., n. Suppose the optimal KBM2L list has been achieved with re-
spect to base B = (A0, ...An) and w is its respective weight vector. If this list
has h items, then the list is < q0, r0| < q1, r1| · · · < qh, rh|, where 0 ≤ qi ≤
w0D0− 1, qi < qi+1 ∀i (offsets), ri ∈ ΩR, ri 6= ri+1 ∀i (policies). The response re-
trieval procedure (task (C) above) consists of projecting Q into the offset space
{0, 1, ..., w0D0 − 1} and deriving its policy from the KBM2L list. Namely, if
〈·, ·〉 denotes scalar product, we compute 〈Q,w〉 = f(Q) = q, and whenever
q ∈ (qi−1, qi] it implies that the response is ri.

If ri is unknown, then an efficient solution is to call the influence diagram
evaluation and solve the respective subproblem that makes ri known.

Finally, response ri displayed by the system to the expert may be completed
by asking for an explanation. The expert is not only interested in knowing which
is the best recommendation for a certain case, but also in concise, consistent
explanations of why it is optimal, hopefully, translated into her own domain
language. Explanations are also useful as a sensitivity analysis tool for validating
the DSS. Explanations are constructed via two clearly different parts of the
indices an item represents. The first part is the fixed (constant) part of the
indices. The fact that these components take the same value for the respective
attributes somehow explains why the policy is also the same. Therefore, the set
of attributes of the fixed part can be interpreted as the explanation of the policy.
The second part, complementary to the first, is the variable part: the records
do not share the same values and, therefore, the attributes are unimportant
information for the item policy [4].

5 Open Queries

We have seen that the expert is an agent interested in the optimal policy for
the decision-making problem and she queries the system. Expert and DSS have
a dialogue consisting of queries, responses and explanations. For closed queries,

the expert receives definite and accurate responses. For open queries, this task
is harder due to expert imprecision. Not all attributes are instantiated. Possible
reasons may be the unreliability of some attribute values, missing knowledge,
their high extraction cost or simply an interest in making a complex query con-
cerning the whole ranges of (some) attributes. For example, in medical settings,
the physician often has access to administrative data like sex, age, etc., but may
have no access to (or confidence) attributes like the first treatment received or
some test results. Also, she may be interested in asking for all possible patient
weight intervals. Thus, an open query is, e.g. OQ = (∗, a1, ∗, ..., an), where ∗
denotes non-instantiated attribute values.

In principle, the DSS looks up the respective KBM2L list elements and re-
trieves the optimal policy (or policies) to be presented to the user as the response.
Suppose, as above, that the optimal KBM2L list has been achieved with respect
to base B = (A0, ...An) and the query is open with respect to attributes i and
j, i.e., the query is OQ = (a0, a1, ..., ∗i, ..., ∗j , ..., an). Actually, OQ is a set of
closed queries Qi, namely,

OQ = {(a0, a1, ..., x, ..., y, ..., an) : x ∈ Ωi, y ∈ Ωj} =
Di×Dj⋃

i=1

Qi.

Then, the response retrieval procedure would consist of applying the tech-
nique described in Section 4 to each Qi, computing 〈Qi,w〉 = f(Qi) = pi,
to give an offset set P = {p1, p2, ..., pDi×Dj}, with the respective responses
S = {s1, s2, ..., sDi×Dj}.

There exist four possible situations: (i) all si are equal and known; (ii) all si

are equal but unknown; (iii) there are at least two different values among si’s
and they are known; (iv) there are at least two different values among si’s but
some si’s are unknown. Situation (i) implies an accurate response (si) and the
DSS does not require additional interaction with the expert. The remaining situ-
ations involve various possible responses and/or uncertain responses requiring a
refinement to be helpful for the expert. It is here that tasks (D) and (E) pointed
out in Section 3 play an important role.

The information for the expert comprises two sets P and S, jointly involving
simple KB records. They have been extracted from the optimal base. Note that
base is the best base for the whole KB, both minimising storage requirements
and maximising knowledge explanation performance. Notwithstanding, this base
may not be useful with respect to the part of the KB concerning the open query.

Attribute weight changes depending on its position within a base, and the
further to the right the position, the smaller the weight is. We propose moving
query open attributes towards positions to the right. The query is the same, but
its attribute order implies working in a new base, with open attributes moved
towards the smallest weight positions. From a semantic viewpoint, this movement
also agrees with the idea of consigning open attributes to less important positions
as the query seems to indicate, that is, the expert has not assigned a value to
and does not show a significant interest in these attributes. The new base will
be called operative base, which gives an operative KBM2L. There are several

possible operative bases, all of which are valid. We can choose the base leading to
less computational effort when changing the base and transposing the knowledge,
after trying a few bases in linear time.

A base change may be interpreted as a change in the query and response
points of view. For the DSS, the optimal base represents a good organisation of
the whole KB content. For the expert, the operative base provides an organised
view of the responses to her open query, as consecutive records. This base will be
optimal for explaining the responses. It illustrates how a query may be difficult
in one base and easier in another base. It bears a resemblance to human domains,
where a query is simple for an expert but hard for non-experts. An expert has
a good problem description: a good conceptual model, few relevant facts, and a
good information organisation that allows fact analysis and explanation. Indeed,
this is why she is an expert.

Now, working on the operative base, new offset set P ′ will include consecutive
p′i’s and we can introduce some rules based on distances in the offset space to
make more accurate recommendations to the expert.

Situation (ii) may seem surprising since the DSS is asked for something
which is unknown, because the associated subproblems have not been evaluated.
Nevertheless, we will try to provide a solution. Specifically, situation (ii) may be
solved by predicting that the response is associated with the nearest offset to P ′

based on the Euclidean distance in the offset space, i.e. in {0, 1, ..., w0D0−1}, as
follows. Let pl, pu be the minimum and maximum offsets, respectively, included
in P ′. Suppose ql is the maximum offset with known policy (say r) that precedes
pl in the operative KBM2L list. Likewise, qu is the minimum offset with known
policy (say s) that follows pu in the operative KBM2L list. All records that
match (p′, s), with p′ ∈ P ′, s ∈ S, belong to the same item in the operative
KBM2L list, while, offsets ql and qu are located at its adjoining items. Then, we
compute d1 = |pl − ql| and d2 = |pu − qu|. If d1 < d2, then the response is r;
otherwise the response is s.

Situation (iii) presents different policy values in S. We may give an imme-
diate answer to the expert based on statistics over the policy value distribution
(median, mode, etc.). However, more intelligent responses will be preferred. As a
first proposal, let us call it Algorithm A1, the DSS asks the expert to instantiate
the open attribute further to the left with respect to the optimal base. It will
be the most efficient attribute for reducing response uncertainty. That is, it will
have the greatest weight among all the open attributes, implying more likelihood
of belonging to the fixed part of the item indices, which is what explains a fixed
policy. Thus, the further to the left the attribute, the more likely the query is to
lead to less responses that are different. If necessary, then, the instantiation of
the second further to the left open attribute would be requested, and so on. This
approach will fit problems with many attributes but with few open attributes.

For many open attributes, say more than 10, we have enough information
to make automatic inferences via a learning process. Thus, we propose focusing
once again on the operative KBM2L records of interest and learning the prob-
abilistic relationships among the attributes and the policy from these records.

The structure to be learnt is a Bayesian network (BN) (see e.g. [10]), as it has
a clear semantics for performing many inference tasks necessary for intelligent
systems (diagnosis, explanation, learning...). Then, the resulting structure will
provide a basis for starting a DSS/expert dialogue to lend insight into the prob-
lem and refine the query in the light of new evidence until the response satisfies
the expert.

For the sake of simplicity, let X ⊂ Rn1 ,Y ⊂ Rn2 , n1+n2 = n denote, respec-
tively, instantiated and non-instantiated attributes of the query. Our Algorithm
A2 follows the steps:

S0. Initialise X0 = X,Y0 = Y
S1. DSS extracts data (records) matching X0 from the operative KBM2L
S2. DSS learns a BN from data (structure and conditional probabilities)
S3. DSS computes P (R = r|X0), ∀r ∈ ΩR on the BN. Expert fixes a decision

criterion, usually a distribution mode, to choose among r’s. Let m0 be this
value. It will be evidence to be propagated through the network.

S4. DSS computes P (Yj = y|R = m0,X0), ∀j = 1, ..., n2, ∀y ∈ ΩYj on the BN.
Expert fixes a decision criterion, usually minimum variance, to choose among
Yj ’s. Let Ỹ0 be the resulting vector of Yj ’s, with coordinates given by expert
instantiations, like e.g., the Yj mode.

S5. Extend vector X0 as X1 = X0 ∪ Ỹ0. Set Y1 = Y0 \ Ỹ0.

Steps S3 and S4 are repeated until the expert is satisfied or Yj has few
components and Algorithm A1 is called to continue. If the algorithm stops at
Xj , then mj is the response returned. The expert can always revise decisions
made at S3 and S4 of the last iteration whenever she does not agree with the
current outputs. Moreover, the DSS will be on the watch for and warn the expert
about probabilities conditioned to impossible events (registered in the DSS).

A BN (see a review in [2]) is learned in Step S2 using a structure learning
algorithm, where the K2 algorithm [3] is the standard. It works on quite reason-
able data sizes, as in the context we propose. Indeed, we may even have quite
large sizes, requiring a sample to be used to be computationally tractable.

Expert decision criteria at Steps S3 and S4 might be different. They are
expert choices. With the suggested criteria: (a) at Step S3, we choose the most
likely response given the instantiated attribute set for the query; and (b) at
Step S4, we choose the attribute(s) in which we have more confidence or the
attribute(s) wiggling less than a fixed threshold. Then, they are instantiated in
the query as their mode, giving rise to a new, more accurate, query. Posterior
steps allow continuous probability updating.

The DSS talks via the BN and its probabilities, giving, firstly, information
about the response and, secondly, about the likelihood of each open attribute,
given the response chosen by the expert. This support for both responses and
queries allows the expert to re-state and improve her query until it is more
defined, leading to more accurate answers. This is task (E) mentioned above.

Situation (iv) also presents different policy values in S, some of which, how-
ever, may be unknown. Unknown policies are the result of having a system that

can legitimately be termed knowledge based, due to its significant size [6], with
the impossibility of being completely solved. The expert plays an important role
in deciding which part of the problem should be solved, suggesting which is the
core she is interested in. As a consequence, her queries are likely to bear on
this core, thus having a known response. Thus, situation (iv) can be solved like
situation (iii), trying to avoid unknown policies via, e.g. Algorithm A1.

6 Example from a Medical DSS

Open queries and the respective responses and explanations are the basic dia-
logue elements in the expert/DSS interaction. We now describe how the dialogue
is developed in typical sessions. Our decision-making problem concerns a doctor
who has to make a decision about a patient admission and two possible therapy
actions [4, 1], i.e. three alternatives: r0: no admission, r1: 12-hours observation,
r2: 12-hours phototherapy. The decision table has 12 attributes, see Table 1,
and 82, 944 records. The optimal base is B = (A0, A1, ..., A11), with respective
weights w = (27648, 13824, 6912, 3456, 1152, 576, 192, 64, 16, 8, 4, 1). Our KB has
1, 656 items distributed over 27, 736 known records and 55, 208 unknown records.
Each query will be coded according to the optimal base order.

Table 1. Attributes and domains

Attributes Domains

Concentration of Bilirubin(A0) Normal(0), Pathological(1), VeryPathol.(2)
Child’s(A1) & Mother’s(A9) Rh Negative(0), Positive(1) Factor
Primiparous?(A2) Primiparous(0), Multiparous(1)
Delivery with Instruments?(A3) Natural(0), Instrumental(1)
MotherAge(A4) 15-18(0), 19-35(1), >35(2)
Child(A5) & Mother(A10) Coombs’ Negative(0), Positive(1) Test
5MinApgarTest(A6) 0-3(0), 4-7(1), 8-10(2) level
Concentration of Hemoglobin(A7) Normal(0), Pathological(1), VeryPathol.(2)
BirthWeight(A8) 0.5-1.0(0), 1.0-1.5(1), 1.5-2.5(2), >2.5(3) kg
Jaundice(A11) Yellow(Y) skin Normal(0), Y.(1), Y.-Feet(2), Pumpkin- Y.(3)

Situation (i): doctor queries (0,0,0,0,0,0,1,0,*,*,*,*), with four open attributes
on the right-hand side, thus coinciding the optimal and operative bases. The
response is that r1 is the optimal policy. Its explanation is the index fixed part
of the corresponding item, that is, A0 is 0,. . . , A7 is 0, see Table 2.

Situation (ii): doctor queries (0,0,0,0,0,1,2,0,3,*,*,*). In this case, the re-
sponse and its explanation are not available (NA) as the query covers only un-
known responses, see Table 2. Then, the closest offsets with known responses
are found. It follows that ql = 447, qu = 1151, both with policy r1. Hence,
d1 = 561, d2 = 128, and the response is r1. qu is located at an item with 64

records, from offset 1151 to offset 1215. The index fixed part of this item is
(0, 1, 2, 3, 4, 5, 6, 7), with values (0, 0, 0, 0, 1, 0, 0, 0), which is the r1 explanation.

Table 2. Query details for situations (i), (ii), (iii) and (iv)

Situation (i) Situation (ii)

open query (0,0,0,0,0,0,1,0,*,*,*,*) (0,0,0,0,0,1,2,0,3,*,*,*)
min index (0,0,0,0,0,0,1,0,0,0,0,0) (0,0,0,0,0,1,2,0,3,0,0,0)
max index (0,0,0,0,0,0,1,0,3,1,1,3) (0,0,0,0,0,1,2,0,3,1,1,3)

pl, pu offsets 192, 255 1008, 1023
fixed part (0,. . . ,7) NA explanation

response r1 unknown

Situation (iii) Situation (iv)

open query (0,0,1,0,1,1,*,*,*,*,*,*) (0,0,0,0,0,0,0,*,*,*,*,*)
min index (0,0,1,0,1,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0,0,0,0,0)
max index (0,0,1,0,1,1,2,2,3,1,1,3) (0,0,0,0,0,0,0,2,3,1,1,3)

pl, pu offsets 8640, 9215 0, 191
fixed part (0,. . . ,3) for r1 (0,. . . ,7) for r1

(0,. . . ,4) for r2 NA explanation for unknown

response r1 or r2 r1 or unknown

Situation (iii): doctor queries (0,0,1,0,1,1,*,*,*,*,*,*), with six open attributes,
see Table 2. There are two possible responses, each one with its own explanation.
Algorithms A1 or A2 could be called.

For A1, the DSS suggests the doctor to instantiate one of the six open at-
tributes, being A6 an efficient attribute to start with, as it is further to the left.
If it is not possible, doctor would be asked for A7, . . . , A11 values, in this order,
trying to minimise the current alternative set size. In this case, doctor says A6

is 0, and the DSS answers r2 is the optimal policy. With only one policy, the
session ends. The explanation is (0,0,1,0,1), see Table 2.

Situation (iv): doctor queries (0,0,0,0,0,0,0,*,*,*,*,*). The possible responses
are r1 or unknown, see Table 2. To apply A1, the requested attribute order would
be A7, . . . , A11. Doctor says A7 is 0, DSS answers r1, and the session ends. The
explanation is (0,0,0,0,0,0,0,0), see Table 2.

We only illustrate Algorithm A2 for situation (iii), since the record set in-
volved by the open query in situation (iv) is too small so as to learn a BN.
Situation (iii) query involves more than 500 records. The K2 algorithm was em-
bedded in our main program that manages KBM2L lists. Probability calculi were
carried out with Hugin Expert Software [7], once our output was exported to
Hugin input format. The BN gives probabilities 0, 0.014, 0.986 to r0, r1 and r2,
respectively, given the data. Doctor chooses the mode, i.e. m0 = r2, with expla-
nation (0,0,1,0,1) as above. The session ends as doctor is satisfied, not requiring
the Ỹ0 computation.

7 Conclusions and Further Research

One of the most important DSS facilities is to answer user queries. We have
proposed a query system based on the KBM2L framework. Information is effi-
ciently accessed and retrieved to construct the response. The optimal and oper-
ative bases allow the records involved in a query to be organised from different
perspectives. General queries leading to imprecise responses are addressed via an
attributes/policy relationship learning process, where the interaction with the
expert is required to arrive at a satisfactory response, with lower uncertainty.
Our approach provides the KB definite exploitation for the DSS since queries,
responses and explanations are properly performed.

Despite the power of our iterative scheme of progressive knowledge elicitation,
future research might focus on allowing queries with constrained rather than non-
instantiated attributes, covering initial beliefs about the attributes. Also, more
effort could be employed in determining good operative bases if there is more
than one. Two criteria could be: minimum computational effort to obtain the
new KBM2L and minimum item fragmentation. Finally, rather than directly
allowing the expert to choose a decision criterion in Algorithm A2, we could
previously implement a search within the tree of possible sessions, i.e. possible
r-y-r-y · · · (response r and instantiated attributes y) sequences. This would filter
possibilities that will not satisfy expert expectations, facilitating her choices.

References

1. Bielza, C., Gómez, M., Rı́os-Insua, S., Fdez del Pozo, J.A.: Structural, Elicitation
and Computational Issues Faced when Solving Complex Decision Making Problems
with Influence Diagrams. Comp. & Oper. Res. 27 (2000) 725-740

2. Buntine, W.L.: A Guide to the Literature on Learning Probabilistic Networks from
Data. IEEE Trans. on Knowledge and Data Engin. 8 (1996) 195-210

3. Cooper, G.F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic
Networks from Data. Machine Learning 9 (1992) 309-347

4. Fernández Pozo, J.A., Bielza, C., Gómez, M.: Knowledge Organisation in a Neona-
tal Jaundice DSS. In: Crespo, J., Maojo, V., Mart́ın, F. (eds.): Medical Data Anal-
ysis. Lecture Notes in Computer Science, Vol. 2199. Springer, Berlin (2001) 88-94

5. Fernández del Pozo, J.A., Bielza, C., Gómez, M.: Heuristics for Multivariate Knowl-
edge Synthesis. Technical Report #3-UPM. (2002)

6. Henrion, M., Breese, J.S., Horvitz, E.J.: Decision Analysis and Expert Systems.
Artif. Intell. Magazine 12 (1991) 64-91

7. Hugin Expert Software: http://www.hugin.com
8. Knuth, D.E.: The Art of Computer Programming, Vol. 1: Fundamental Algorithms.

Addison-Wesley, Reading (1968)
9. Martinez, C., Panholzer, A., Prodinger, H.: Partial Match Queries in Relaxed Mul-

tidimensional Search Trees. Algorithmica 29 (2001) 181-204
10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo CA (1988)
11. Shachter, R.D.: Evaluating Influence Diagrams. Oper. Res. 34 (1986) 871-882

