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Abstract. In this work we apply Evolution Strategies as a method to
find the orbital parameters of a pair of interacting galaxies using a single
photometric image. Finding the orbital parameters that best match the
image is done by posing it as an optimization problem and solving it us-
ing Evolution Strategies. Orbital parameters are estimated using position
data from the image only, but in some cases is possible to use velocity
data. As working directly with galaxies is unfeasible, we have used single
simulations for modeling the system of galaxies, we present experimental
results using synthetic data instead of a real image, showing that Evolu-
tion Strategies can determine orbital parameters of interacting galaxies
very accurately.

1 Introduction

Evolution Strategies (ES) attempt to apply the idea of biological evolutionary
process to optimization tasks; finding orbital elements of a pair of interacting
galaxies can be seen as an optimization problem if any adaptation process is
done, i.e. we need to find orbital elements that maximize (or minimize) our
fitness function based on comparison between images. We choose ES instead of
Genetic Algorithm because ES are better suited for working with continuous
spaces, where the problem of finding orbital elements falls, due to the physical
quantities involved. Another reason to work with ES is that in the framework of
interchange of ideas between different scientific fields (Astrophysics and Machine
Learning) we try to introduce unexplored techniques to Astrophysics; ES have
not been used before in Astrophysics to the best of our knowledge, this leads to
expanding the application field of ES.

Our proposed solution to this problem follows the basic algorithm for ES [8],
with only small changes in the use of the genetic operators. We use cross-over,
mutation and average as genetic operators to generate new populations in ES;
the selection process is (µ + λ), where the µ best fit individuals of the union
of parents and children are selected and we use dynamic mutation, applying a
variable mutation step to all individuals, depending on if they are near or far
from the solution. A vector that contains a set of orbital parameters represents
each individual in the ES population; the structure and details are showed in
section 4.
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In Astrophysics, the study of galactic science is essential to understand an
extraordinary set of fundamental subjects, from star formation to cosmologi-
cal questions; galaxies are the fundamental blocks in the construction of the
Universe. In particular, pairs of interacting galaxies are very important because
almost every galaxy in the Universe has been created or shaped by means of an
interaction or even by mergers between galaxies.

In the study of galactic dynamics there are some effects that are especially
useful: when two galaxies interact, many different structures can be produced,
and in some cases the galactic discs can be destroyed. Some examples of possible
structures are: bridges and tails, spiral structures, bars, rings, lenses, deforma-
tions and bulges [2]. However, observations are not enough to understand the
dynamical nature of the galaxies. Due to the enormous time scales involved in
galactic interaction, with direct observations it is only possible to obtain sin-
gle snapshots. Fortunately, such snapshots give some information due to the
deformations produced by gravitational forces between galaxies; in addition to
position data, obtained directly from the image, the radial velocity field can be
measured by means of a spectrograph, also, it is possible to do an estimation of
the mass of the galaxies, the number of stars and the time of interaction. On
the other hand, and due to the last point, simulations are very important tools
to study galaxies and are essential as a complement to direct observations.

Finally, in order to understand completely the dynamics of an interacting
system of galaxies it is equally important to know the parameters of the relative
orbit of the two galaxies. Such parameters define the geometrical orbits of both
galaxies and allow knowing the position of the galaxies, and their structures, in
any point of the time.

Currently, we have obtained results for synthetic data, i.e. we generate artifi-
cial images using the simulator program and save the image, its mass and velocity
distributions and its parameters to compare later with the results obtained from
ES.

The organization of the remainder of this paper is as follows: Section 2 con-
tains a description of the problem, the method of solution is presented in Sect.
3, the results are given in Sect. 4 and the conclusions are presented in Sect. 5.

2 The Problem

The problem to be solved is the following: Given an image, obtained from pho-
tometric observations, and in some cases data concerning velocity obtained from
spectroscopic observations, of a pair of interacting galaxies, we will find the set
of orbital parameters that best match it.

Orbital parameters to be learned by the algorithm are: a (semi-major axis),
e (eccentricity), i (inclination), Ω (longitude of the ascending node), ω (the
argument of the pericentron) and τ (the time of the pericentre passage) [1,5].
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3 Description of the Method

Basically, the solution process can be divided in two blocks: estimation of the
orbital parameters using ES; and running a simulator program for each set of
parameters, or individual.

Fig. 1 shows the general procedure to solve the problem. The first block rep-
resents the estimation of the parameters by ES; the next block represents the
program simulator and the last is the comparison module, where the fitness func-
tion is evaluated for each individual and indicates if an individual has reached
the threshold fitness or if the maximum number or generations has been done.

The following two subsections describe how ES were used for searching the
orbital parameters, and explain individual simulations.

Fig. 1. Schematic description of the solution process

3.1 Evolution Strategies

At the start of each run, a population of p individuals is randomly created using
a uniform distribution, in all the experiments for this work p is equal to 50. An
individual in the population has the following structure:

opi = 〈m1, m2, ∆z, s1, s2〉
spi = 〈σ1, σ2, σ3, P1, P2〉 i = 1,2,. . . ,p

Where op is the object parameter vector and sp is the strategy parameter
vector used to modify the object vector in the mutation process.

In the vector op the parameters are: m1, mass of galaxy 1; m2, mass of galaxy
2; ∆z, separation in the line of sight (z−axis) between galaxies; s1, rotation spin
for galaxy 1; s2, rotation spin for galaxy 2. Rotation spins can only take values
of -1 or 1, for clockwise and counterclockwise rotation respectively. Due to the
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fact that spins have different characteristics with respect to the other parameters
they need to be handled different by the mutation genetic operator. There is no
restriction in the range of values for each parameter, except for the spins and
for the masses that can only take positive values.

In the vector sp the parameters are: σ1 to σ3, standard deviations for the
first three parameters in vector op; P1 and P2 are the probability of change of
the rotation spin in galaxy 1 and 2 respectively.

For each individual in the initial generation, the simulator program is exe-
cuted, with the set of object parameters as inputs to the program. At the end of
the simulation, an image and its mass distribution are returned and evaluated
according with the fitness function (section 3.3).

After the p simulations are finished and their fitnesses calculated, a new
population is created based on genetic operators. 10% of the new population
is created by cross-over; average operator creates 10% and 80% is created by
mutation.

Cross-over is uniform: two individuals are randomly selected from the original
population and each parameter in the two individuals has the same probability
to be selected to form two new individuals.

In the average operator, two individuals (op1 and op2) are randomly selected
from the original population, then a random value between 0 and 1 (M) is
created and two new individuals are created as follows :

opprom1 = op1 ∗M + op2 ∗ (1−M)
spprom1 = sp1 ∗M + sp2 ∗ (1−M)
opprom2 = op2 ∗M + op1 ∗ (1−M)
spprom2 = sp2 ∗M + sp1 ∗ (1−M)

Finally, the mutation operator is performed by multiplying a random number
obtained from a normal distribution with zero mean and standard deviation σ

(taken from vector sp), selecting individuals randomly from the original popu-
lation:

opmut = op+N0(sp) = (m1 +N0(σ1),m2 +N0(σ2),∆z +N0(σ3))

Because of the different nature of spins (they are discrete and can take only
two values), they need a different mutation operator. Thus, instead of multipling
by a random number, spins are mutated by probability: a random number is
generated between 0 and 1 from a uniform distribution for each individual, if
this number is bigger than the probability assigned to the given individual in
the vector sp, then spin is multiplied by -1.

When the new population is created, we have two populations: parents and
children. Following the selection process (µ+λ), where µ is the number of parents
and λ (in this case they have the same value) the number of children, we merge
both populations and sort by fitness. Then the first µ individuals are selected
from this merged population to be the new population.

Dynamical mutation is done by means of a multiplication of the strategy
parameters (sp) by a factor, which is defined according to the experiment and
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if the individual is near or far from the solution. When we have many fit in-
dividuals, then we can say that the mutation is successful and it is possible to
increment the mutation step to reach (or at least be near of) the solution in
less generations; for incrementing the mutation step, vector sp is multiplied by a
factor of 2.5. In contrast, when we have many unfit individuals, then we can say
that the mutation is unsuccessful and it is necessary to reduce the mutation step,
maybe because the solution is near; for reducing the mutation step, vector sp is
multiplied by a factor of 0.7. These values have been selected experimentally.

The process of calculating fitness and creating a new population is done for
a number n of generations or until a fitness threshold is reached. The number of
generations varies depending on the complexity of the problem to solve.

3.2 Simulations

In this work simulations are done using the non-self-gravitating technique, based
on the restricted three body problem [9,5], i.e. the interparticle forces are ne-
glected and the discs of particles are influenced only by the gravitational forces
from the two points of mass that represent the galactic discs [10]. In essence, any
kind of simulation can be used, for example N-body simulations surely would
produce better results, but they are very expensive in terms of computational
resources; the purpose of using non-self gravitating simulations is to reduce the
amount of computation. Because of the use of this kind of simulations, the
method presented here is restricted to minor violent types of interactions such as
bridges, tails and spiral arms; more violent types such as mergers and encounters
need more complex simulations.

We have used a coordinate system such that the x−y plane coincides with the
plane of the sky, with the x−axis horizontal, and the z−axis pointing towards
the observer. The coordinate system has a range from -30 to 30 units of length.

The physical quantities are such that G, the gravitational constant, is equal
to 1; the unit of length is taken to be 3 kpc, the unit of time 1 ∗ 107 yr, and the
unit of mass 6 ∗ 1010M¯ (solar mass), but other scalings to physical units can
be used.

Orbital parameters are not absolutely necessary for running the simulator
program. Instead of these, the Cartesian coordinates, masses and velocities are
sufficient. Actually, the masses, spins and separation in the line of sight are the
parameters shown in the results. Orbital parameters can be determined from
these, following the equations given in [5,1]. Parameters used by the simulator
program are: masses (m1 and m2), three components of the separation vector
(∆x, ∆y, ∆z) and the three components of the velocity (∆vx, ∆vy, ∆vz). Ob-
servations can provide information about velocities along the line of sight (∆vz)
and separations in the plane of the sky (∆x, ∆y).

For each simulation a disc of particles is used to represent each galaxy; where
particles represent the stars in the galaxy, and each particle can represent more
than one star. Distribution of the particles in the disc is done following an
exponential distribution, falling with the radius. Following the equations given
by the restricted three-body problem, the orbit for each particle is integrated
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on time using the Runge-Kutta algorithm [7]. At the end of the simulation, an
image of the pair of interacting galaxies and its mass distribution are obtained.

3.3 Fitness

At the end of a simulation, the output must be compared with the observational
(or synthetic) data to measure the fitness. The method here described requires
the data as an image with black pixels, where each pixel represents a portion of
the total mass of galaxy. Thus, at the end of each simulation, a grid is super-
imposed on the image, and the amount of mass in each cell is calculated; Fig. 2
illustrates this process with an image and its grid.

Fig. 2. Artificial image and its grid

The grid has a bi-dimensional size of L × L cells; in the program the size
is 16×16, but other sizes can be used depending on the image size. In order
to evaluate a single simulation, the fitness has to be measured. Fitness can be
defined in different ways; in this case we define fitness by the following equation:

fm =

√

√

√

√

L
∑

i,j=1

(mi,j −mobs
i,j )

2 (1)

Where mi,j represents the mass distribution in cell (i,j) obtained from the
simulation, mobs

i,j is the same quantity obtained from observational (synthetic)
data, and the sum extends over the whole grid.

Sometimes the velocity data is also known; in this case such data can be used
to measure the fitness of a simulation. Fitness for velocity data is:

fv =

√

√

√

√

L
∑

i,j=1

(v̄i,j − v̄obs
i,j )2 (2)

Where v̄i,j and v̄obs
i,j denote the average radial velocity in cell (i,j) obtained

from the simulation and from observational (synthetic) data respectively. When
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the two fitness functions are used, the total fitness, with a as a proportionality
constant, is:

f = fm + a ∗ fv (3)

4 Results

The results presented here are divided in runs. As mentioned earlier, we have
used synthetic data to prove the efficacy of ES. In the beginning of each run, we
introduce known parameters to the simulator program and obtain an artificial
image with a mass distribution, then we save the image, mass distribution and
original parameters and these data are used later to be compared with outputs
from ES.

Table 1. Run 1

Generation m1 m2 s1 s2 ∆z

1 2.0514 1.7060 1 1 3.0143
5 1.5682 0.8425 1 1 3.1538
10 1.6277 0.8684 1 1 4.5527
20 1.3255 0.5374 1 1 3.1007
50 1.2937 0.5303 1 1 1.9049
SD 1.3 0.54 1 1 0

Fig. 3. Image sequence for run 1



8

The first two runs represent the application of the ES to images with simple
geometrical configurations between interacting galaxies. For these two runs, we
assume that we only know data about the position of the particles.

As stated before, the parameters shown are: masses, spins and separation in
the line of sight. Table 1 and the image sequence in Fig. 3 show the results for run
1. For this run we used 1000 particles per disc, an interaction time of 60 units of
time and ran the ES for 100 generations. The first 5 rows show the best simulation
in generations 1, 5, 20 and 50; the last row shows the synthetic data (SD). It is
clear that the method can estimate the parameters very accurately. Within a few
generations the method has found the tendency of the parameters, and at the
last generation the parameters are found with great precision. Spins are the first
parameters found by ES, this is because an inverse spin would produce a very
different morphological configuration at the end of the simulation. Masses are
also estimated accurately because the masses are decisive in the morphological
structure of the interaction.

Table 2. Run 2

Generation m1 m2 s1 s2 ∆z

1 1.6473 1.7029 1 1 3.3862
5 1.3993 1.3092 1 1 10.2076
10 0.9120 0.9192 1 1 1.8145
20 1.0261 1.0717 1 1 1.7101
50 1.0013 0.9982 1 1 1.5262
SD 1 1 1 1 0

Fig. 4. Image sequence for run 2
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Table 3. Run 3

Generation m1 m2 s1 s2 ∆z i1 i2

5 1.2611 1.1476 -1 -1 2.2990 60.2641 38.3962
10 0.6713 0.8309 -1 -1 7.4265 61.7701 52.1806
20 1.3836 1.2978 -1 -1 6.9343 67.2219 72.9081
50 1.0456 1.0584 -1 -1 5.2163 60.1958 59.0520
100 1.0001 1.0122 -1 -1 5.1476 60.1619 59.4460
SD 1 1 -1 -1 5 60 60

Fig. 5. Image sequence for run 3

Table 4. Run 4

Generation m1 m2 s1 s2 ∆z i1 i2

5 1.3141 0.0826 -1 1 2.7183 61.0038 18.0867
10 0.9715 0.1067 1 1 1.1835 67.7050 18.1197
20 1.0633 0.0883 1 1 1.4950 61.0191 38.2426
50 1.1027 0.0958 1 1 1.8222 8.3242 30.2229
100 1.0720 0.0872 1 1 2.5981 4.1040 31.1463
SD 1 0.1 1 1 3 0 30
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Fig. 6. Image sequence for run 4

Table 2 and the image sequence in Fig. 4 show numerical and graphical
results for run 2. In this case all the parameters are equal to unity, the number
of particles is 5000 per galaxy and we took the same interaction time and number
of generations. As in the previous run, the method finds the parameters with
great precision.

In the two previous runs, the separation in the line of sight cannot be found
as accurately as the other parameters, the reason is that position data are often
not enough to differentiate between images. Thus, in the following two runs the
velocity data will be considered. Velocity data helps to differentiate between
images where position data are very similar, even when the galactic discs are
tilted and the total of particles cannot be distinguished, as in the case of the
following runs.

Tables 3 and 4 and image sequences 3 and 4, in Fig 5 and 6 respectively, show
the results for runs 3 and 4 of the program. In these cases, additional parameters
i1 and i2 are shown. These parameters represent the tilt of the galactic discs 1 and
2 respectively. For these runs we used 2000 particles per disc and an integration
time of 60 units of time. Because of the inclusion of two additional parameters,
the population in ES was evolved over 200 generations.

In these cases, the galactic structure is more complex because the discs are
tilted and in run 4 the difference in masses are of one order of magnitude. But
even on those circumstances it is clear from the images and the tables that the
method can find the parameters very accurately.

5 Conclusions and Future Work

In this work we have applied ES to find the orbital parameters of a pair inter-
acting galaxies, a very important problem in Astrophysics research because it
involves many important issues, such as galactic morphological formation and
clustering of galaxies. With our solution we are opening the possibility to study
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a large number of galactic systems due to the automation of this part in the
process.

Even with several simplifications done in the test cases used here, searching
with ES has demonstrated to be an excellent method for optimization problems
where an exploration of continuous parameters spaces is needed. In all the cases
the parameters were found with very good precision and ES performed the work
with efficiency. Spins and masses were the easiest parameters to find; this is
because those parameters are strongly related with galactic morphology. Also,
the inclusion of velocity data was important to determinate separation in the
line of sight and to differentiate between images with similar position data. Even
in the case of tilted discs, ES were able to find the parameters with only a small
increment in the number of generations.

5.1 Future Work

In order to improve the method, the possibility of implement a parallelization
of the ES could be considered to reduce the necessary time to compute the
simulations. Also, simulations based on self-gravitating N-body techniques, in-
corporating gas dynamics and dark matter, can be employed to see the behavior
of ES in more complex situations and to work with real images.
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