
Comparing Distributed Reinforcement Learning

approaches to learn agent coordination

Reinaldo A. C. Bianchi and Anna H. R. Costa

Laborat�orio de T�ecnicas Inteligentes - LTI/PCS

Escola Polit�ecnica da Universidade de S~ao Paulo

Av. Prof. Luciano Gualberto, trav. 3, 158. 05508-900 S~ao Paulo - SP, Brazil.

freinaldo.bianchi, anna.realig@poli.usp.br
http://www.lti.pcs.usp.br/

Abstract. In this work we compare the performance of the Ant-ViBRA

system to aproaches based on Distributed Q-learning and Q-learning,

when they are applies to learn coordination among agent actions in a

Multi Agent System. Ant-ViBRA uses a Swarm Intelligence Algorithm

that combines a Reinforcement Learning (RL) approach with Heuristic

Search. The goal of Ant-ViBRA is to create plans that minimize the

execution time of assembly tasks.

Ant-ViBRA is a modi�ed version of a swarm algorithm called the Ant

Colony System algorithm (ACS), so that it could be able to cope with

planning when several agents are involved in a combinatorial optimiza-

tion problem where interleaved execution is needed.

Aiming at the reduction of the learning time, Ant-ViBRA uses a priori

domain knowledge to decompose the assembly problem into subtasks and

to de�ne the relationship between actions and states based on interac-

tions among subtasks.

Results acquired using Ant-ViBRA are encouraging and show that the

combination of RL, Heuristic Search and the use of explicit domain

knowledge presents better results than the Distributed Q-learning and

the Q-learning algorithms.
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1 Introduction

Based on the social insect metaphor for solving problems, the use of Swarm

Intelligence for solving several kinds of problems has attracted an increasing

attention of the AI community [1, 2]. It is an approach that studies the emergence

of collective intelligence in groups of simple agents, and emphasizes the exibility,

robustness, distributedness, autonomy and direct or indirect interactions among

agents.

As a promising way of designing intelligent systems, researchers are applying

this technique to solve problems such as: communication networks, combinatorial

optimization, robotics, on-line learning to achieve robot coordination, adaptative

task allocation and data clustering.
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The most common Swarm Methods are based on the observation of ant

colonies behavior. In these methods, a set of simple agents, called ants, cooperate

to �nd good solutions to combinatorial optimization problems.

The purpose of this work is to use a Swarm Algorithm that combines the

Reinforcement Learning (RL) approach with Heuristic Search to: (i) coordinate

agent actions in a Multi Agent System (MAS) used in an assembly domain,

creating plans that minimize the execution time, by reducing the number of

movements made by a robotic manipulator; (ii) reduce the learning time of each

new plan.

To be able to learn the best assembly plan in the shortest possible time a

well known Swarm Algorithm { the Ant Colony System (ACS) Algorithm [5] {

was adapted to be able to cope with planning when several agents are involved.

The ACS algorithm is based on the metaphor of ant colonies and was initially

proposed to solve the Traveling Salesman Problem (TSP), where several ants

are allowed to travel between cities, and the path of the ant that have the

shortest length is reinforced. ACS is a combination of distributed algorithms

and Q-Learning [7] (a well known RL algorithm). It is considered one of the

faster algorithms to solve TSP problems [5] and has been successfully applied to

several optimization problems, such as Asymmetric TSPs, Network and Vehicle

Routing and Graph Coloring.

In order to better evaluate the results of the modi�ed ACS algorithm im-

plemented, the system performance is compared with the ones obtained using

a Distributed Q-learning (DQL) algorithm proposed by [6] and the Q-learning

algorithm [7].

The remainder of this paper is organized as follows. Section 2 presents the

ACS algorithm and section 3 presents the DQL algorithm. Section 4 describes the

assembly task domain used in the experiments. Section 5 describes the proposed

approach to solve the assembly problem and section 6 presents the experimental

setup, the experiments performed in the simulated domain and the results ob-

tained. Finally, Section 7 summarizes some important points learned from this

research and outlines future work.

2 The Ant Colony System Algorithm

The ACS Algorithm is a Swarm Intelligence algorithm proposed by Dorigo and

Gambardella [5] for combinatorial optimization based on the observation of ant

colonies behavior. It has been applied to various combinatorial optimization

problems like the symmetric and asymmetric traveling salesman problems (TSP

and ATSP respectively), and the quadratic assignment problem. The ACS can

be interpreted as a particular kind of distributed reinforcement learning (RL)

technique, in particular a distributed approach applied to Q-learning [7]. In the

remaining of this section TSP is used to describe the algorithm.

The most important concept of the ACS is the �(r; s), called pheromone,

which is a positive real value associated to the edge (r; s) in a graph. It is the

ACS counterpart of Q-learning Q-values, and indicates how useful it is to move
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to the city s when in city r. �(r; s) values are updated at run time by the arti�cial

ants. The pheromone acts as a memory, allowing the ants to cooperate indirectly.

Another important value is the heuristic �(r; s) associated to edge (r; s). It

represents an heuristic evaluation of which moves are better. In the TSP �(r; s)

is the inverse of the distance Æ from r to s, Æ(r; s).

An agent k positioned in the city r moves to city s using the following rule,

called state transition rule [5]:

s =

(
arg max

u2Jk(r)
�(r; u) � �(r; u)� if q � q0

S otherwise

(1)

where:

{ � is a parameter which weighs the relative importance of the learned

pheromone and the heuristic distance values (� > 0).

{ Jk(r) is the list of cities still to be visited by the ant k, where r is the current

city. This list is used to constrain agents to visit cities only once.

{ q is a value chosen randomly with uniform probability in [0,1] and q0 (0 �

q0 � 1) is a parameter that de�nes the exploitation/exploration rate: the

higher q0 the smaller the probability to make a random choice.

{ S is a random variable selected according to a probability distribution given

by:

pk(r; s) =

8>><
>>:

[�(r; u)] � [�(r; u)]
�X

u2Jk(r)

[�(r; u)] � [�(r; u)]
�
if s 2 Jk(r)

0 otherwise

(2)

This transition rule is meant to favor transition using edges with a large

amount of pheromone and which are short.

In order to learn the pheromone values, the ants in ACS update the values

of �(r; s) in two situations: the local update step and the global update step.

The ACS local updating rule is applied at each step of the construction of

the solution, while the ants visit edges and change their pheromone levels using

the following rule:

�(r; s) (1� �) � �(r; s) + � ���(r; s) (3)

where 0 < � < 1 is a parameter, the learning step.

The term ��(r; s) can be de�ned as: ��(r; s) =  �maxz2Jk(s) �(s; z). Using

this equation the local update rule becomes similar to the Q-learning update,

being composed of a reinforcement term and the discounted evaluation of the

next state (with  as a discount factor). The only di�erence is that the set of

available actions in state s, (the set Jk(s)) is a function of the previous history

of agent k. When the ACS uses this update it is called Ant-Q.

Once the ants have completed the tour, the pheromone level � is updated by

the following global update rule:
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�(r; s) (1� �)�(r; s) + � ���(r; s) (4)

where � is the pheromone decay parameter (similar to the discount factor in

Q-Learning) and ��(r; s) is a delayed reinforcement, usually the inverse of the

length of the best tour. The delayed reinforcement is given only to the tour done

by the best agent { only the edges belonging to the best tour will receive more

pheromones (reinforcement).

The pheromone updating formulas intends to place a greater amount of

pheromone on the shortest tours, achieving this by simulating the addition of

new pheromone deposited by ants and evaporation.

In short, the system works as follows: after the ants are positioned in ini-

tial cities, each ant builds a tour. During the construction of the tour, the local

updating rule is applied and modi�es the pheromone level of the edges. When

the ants have �nished their tours, the global updating rule is applied, modify-

ing again the pheromone levels. This cycle is repeated until no improvement is

obtained or a �xed number of iterations were reached. The ACS algorithm is

presented in table 1.

Table 1. The ACS algorithm (in the TSP Problem).

Initialize the pheromone table, the ants and the list of cities.

Repeat (for n episodes) /* an Ant Colony iteration */

Repeat (for m ants) /* an ant iteration */

Put each ant at a starting city.

Repeat (for each step of the episode)

Chose next city using equation (1).

Update list Jk of yet to be visited cities for ant k.

Apply local update to pheromones using equation (3).

Until (ants have a complete tour).

Apply global pheromone update using equation (4).

3 Distributed Q Learning

Another recent Distributed Reinforcement Learning algorithm is the Distributed

Q-learning algorithm, proposed by Mariano and Morales [6]. It is a generalization

of the traditional Q-learning algorithm proposed by Watkins [7] where, instead

of a single agent, several independent agents are used to learn a single policy.

These agents explore di�erent options in a common environment and when all

agents have completed a solution, their solutions are evaluated and the best one

receives a reward. The DQL algorithm is presented in table 2.

In this work, we propose to compare the performance of the DQL to a mod-

i�ed version of the ACS algorithm in the assembly domain, which is described

in the next section.
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Table 2. The general DQL algorithm [6].

Initialize Q(s; a) arbitrarily

Repeat (for n episodes)

Repeat (for m agents)

Initialize s, copy Q(s; a) to Qc(s; a)

Repeat (for each step of the episode)

Take action a, observe r, s0

Update Qc(s; a) according to the Q-learning rule

s s
0

Until s is terminal

Evaluate the m solutions

Assign reward to the best solution found as in the Q-learning

4 The Application Domain

The assembly domain can be characterized as a complex planning task, where

agents have to generate and execute plans, coordinate its activities to achieve

a common goal and perform online resource allocation. The diÆculty in the

execution of the assembly task rests on possessing adequate image processing

and understanding capabilities and appropriately dealing with interruptions and

human interactions with the con�guration of the work table. This domain has

been the subject of previous work [3, 4] in the exible assembly cell shown in

Figure 1.

Fig. 1. One of the Assembly Cell manipulators.

In the assembly task, given a number of parts arriving on the table (from

a conveyor belt, for example), the goal is to select pieces from the table, clean

and pack them. The pieces can have sharp edges as molded metal or plastic

objects usually presents during their manufacturing process. To clean a piece

means to remove these unwanted edges or other objects that obstructs packing.

In this way, there is no need to clean all pieces before packing them, but only
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the ones that will be packed and are not clean. In this work, pieces to be packed

(and eventually cleaned) are named tenons and the desired place to pack (and

eventually clean) are called mortises.

While the main task is being executed, unexpected human interactions can

happen. A human can change the table con�guration by adding (or removing)

new parts to it. In order to avoid collisions, both the cleaning and packing

tasks can have their execution interrupted until the work area is free of collision

contingencies.

The assembly domain is a typical case of a task that can be decomposed

into a set of independent tasks: packing (if a tenon on the table is clean, pick it

up with the manipulator and put it on a free mortise); cleaning (if a tenon or

mortise have sharp edges, clean it before packing) and collision avoidance. In our

approach, each task is assigned to an autonomous agent. One of the problems to

be solved when a task is decomposed in several tasks is how to coordinate the

task execution.

One possible solution to this problem is to use a �xed, prede�ned author-

ity structure. Once established that one agent has precedence over another, the

system will always behave in the same way, no matter if it results in an ineÆ-

cient performance. This solution was adopted in ViBRA - Vision Based Reactive

Architecture [3]. However, this solution has several drawbacks, e.g., in a real ap-

plication, if an unwanted object is not preventing a packing action, it is not

necessary to perform a previous cleaning action, but the �xed ViBRA author-

ity structure imposes that a cleaning action should always be executed before a

packing action.

Another solution to the task allocation problem is to use a Reinforcement

Learning Algorithm to learn the coordination among agents, taking into account

the packing and the cleaning agents and thus selecting the best order in which

this agents should perform their actions, based on the table con�guration per-

ceived by the vision system. This solution was adopted in the L-ViBRA [4],

where a control agent using the Q-Learning algorithm was introduced in the

agent society.

The use of the Q-Learning algorithm in L-ViBRA resulted in a system that

was able to learn how to coordinate agents properly, but that was not fast enough

in the learning process. Every time the workspace con�guration is changed, the

system must learn a new coordination procedure. This way, a high performance

learning algorithm is needed.

As this routing problem can be modeled as a combinatorial TSP Problem, a

new system { the Ant-ViBRA { is proposed by adapting the ACS algorithm to

cope with di�erent sub-tasks, and using it to plan the route that minimizes the

total amount of displacement done by the manipulator during its movements

to perform the assembly task. This approach is compared to the general DQL

approach.

The next section describes the proposed adaptation of the ACS Algorithm

to the assembly domain.
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5 The Ant-ViBRA System

To be able to cope with a combinatorial optimization problem where interleaved

execution is needed, the ACS algorithm was modi�ed by introducing: (i) several

pheromone tables, one for each operation that the system can perform, and;

(ii) an extended Jk(s; a) list, corresponding to the pair state/action that can be

applied in the next transition.

A priori domain knowledge is intensively used in order to decompose the

assembly problem into subtasks, and to de�ne possible interactions among sub-

tasks. Subtasks are related to assembly actions, which can only be applied to

di�erent (disjunct) sets of states of the assembly domain.

The assembly task is decomposed into three independent subtasks: packing,

cleaning and collision avoidance. Since collision avoidance is an extremely re-

active task, its precedence over cleaning and assembly tasks is preserved. This

way, only interactions among packing and cleaning are considered. The packing

subtask is performed by a sequence of two actions { Pick-Up followed by Put-

Down { and the cleaning subtask applies the action Clean. Actions and relations

among them are:

{ Pick-Up: to pick up a tenon. After this operation only the Put-Down oper-

ation can be used.

{ Put-Down: to put down a tenon over a free mortise. In the domain, the

manipulator never puts down a piece in a place that is not a free mortise.

After this operation both Pick-Up and Clean can be used.

{ Clean: to clean a tenon or a mortise, removing unwanted material to the trash

can and maintaining the manipulator stopped over it. After this operation

both Pick-Up and Clean can be used.

The use of knowledge about the states in which every action can be applied

reduces the learning time, since it makes explicit which part of the state space

must be analyzed before making a state transition.

In the Ant-ViBRA, the pheromone value space is decomposed into three sub-

spaces, each one related to an action, reducing the search space. The pheromone

space is discretized in \actual position" (of the manipulator) and \next posi-

tion" for each action. The assembly workspace con�guration perceived by the

vision system de�nes the position of all objects and also the dimensions of the

pheromone tables.

The pheromone table corresponding to the Pick-Up action has entries \actual

position" corresponding to the position of the trash can and of all the mortises,

and entries \next position" corresponding to the position of all tenons. This

means that to perform a pick-up, the manipulator is initially over a mortise (or

the trash can) and will pick up a tenon in another place of the workspace.

In a similar way, the pheromone table corresponding to the Put-Down action

has entries \actual position" corresponding to the position of the tenons and

entries \next position" corresponding to the position of all the mortises. The

pheromone table corresponding to the Clean action has entries \actual position"
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corresponding to the position of the trash can and of all the mortises, and entries

\next position" corresponding to the position of all tenons and all mortises.

The Jk(s; a) list is an extension of the Jk(r) list described in the ACS. The

di�erence is that the ACS Jk(r) list was used to record the cities to be visited,

assuming that the only action possible was to move from city r to one of the

cities in the list.

To be able to deal with several actions, the Jk(s; a) list records pairs

(state=actions), which represent possible actions to be performed at each state.

The Ant-ViBRA algorithm is similar to the ACS algorithm presented in section

2, with the following modi�cations:

{ Initialization takes care of several pheromone tables, the ants and the Jk(s; a)

list of possible actions to be performed at every state.

{ Instead of directly choosing the next state by using the state transition rule

(equation 1), the next state is chosen among the possible operations, using

the Jk(s; a) list and equation (1).

{ The local update is applied to pheromone table of the executed operation.

{ When cleaning operations are performed the computation of the distance Æ

takes into account the distance from the actual position of the manipulator

to the tenon or mortise to be cleaned, added by the distance to the trash

can.

{ At each iteration the list JK(s; a) is updated, pairs of (state=actions) already

performed are removed, and new possible pairs (state=actions) are added.

The next section presents experiments of the implemented system, and results

where the performance of Ant-VBRA, DQL and Q-learning are compared.

6 Experimental Description and Results

Ant-ViBRA was tested in a simulated domain, which is represented by a dis-

crete workspace where each cell in this grid presents one of the following six

con�gurations: one tenon, one mortise, only trash, one tenon with trash on it,

one mortise with trash on it, one tenon packed on one mortise, or a free cell.

Experiments were performed considering di�erent numbers of workspace

cells, learning successfully action policies in each experiment under the assem-

bly task domain. In order to illustrate the results we present three examples. In

all of them, the goal is to �nd a sequence in which assembly actions should be

performed in order to minimize the distance traveled by the manipulator grip

during the execution of the assembly task. One iteration �nishes when there is

no more piece left to be packed, and the learning process stops when the result

becomes stable or a maximum number of iterations is reached. All three algo-

rithms implemented a priori domain knowledge about the position of the pieces

was used in order to reduce the state pace representation, reducing the search

space.

In the �rst example (�gure 2-a) there are initially 4 pieces and 4 tenons on

the border of a 10x10 grid. Since there is no trash, the operations that can be
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= Tenons= Mortises = Tenons= Mortises = Trash= Tenons= Mortises

TrashCan

(a) (b) (c)

Fig. 2. Con�guration of example 1 to 3 (from left to right).

performed are to pick up a tenon or put it down over a mortise. The initial (and

�nal) position of the manipulator is over the tenon located at (1,1).

In this example, the average of 25 runs of the Ant-ViBRA algorithm took

844 iterations to converge to the optimal solution, which is 36 (the total distance

between pieces and tenons). The same problem took 4641 steps in average to

achieve the same result using the Distributed Q-learning and 5787 steps using

the Q-learning algorithm. This shows that the combination of both reinforcement

learning and heuristics yields good results.
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Fig. 3. Result for examples 1 to 3 (from left to right), using Q-learning, DQL and

Ant-ViBRA algorithms.

The second example (�gure 2-b) is similar to the �rst one, but now there

are 8 tenons and 8 mortises spread in a random disposition on the grid. The

initial position of the manipulator is over the tenon located at (10,1). The result

(see �gure 3-b) is also better than that performed by both the DQL and the

Q-learning algorithm.

Finally, example 3 (�gure 2-c) presents a con�guration where the system

must clean some pieces before performing the packing task. The tenons and

mortises are on the same position as example 1, but there are trashes that

must be removed over the tenon in the position (1, 10) and over the mortise

(6, 1). The initial position of the manipulator is over the tenon located at (1,1).

The operations are pick up, put down and clean. The clean action moves the
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manipulator over the position to be cleaned, picks the undesired object and puts

it on the trash can, located at position (1, 11). Again, we can see in the result

shown in �gure 3-c that the Ant-ViBRA presents the best result.

In the 3 examples above the parameters used were the same: the local update

rule used was the Ant-Q rule (equation 3); the exploitation/exploration rate is

0.9; the learning step � is set at 0.1; the discount factor � is 0.3; the maximum

number of iterations allowed was set to 10000 and the results are the average of

25 epochs.

The system was implemented on a AMD K6-II-500MHz, with 256 MB RAM

memory, using Linux and GNU gcc. The time to run each iteration is less than

0.5 seconds for examples 1 and 3. Increasing the number of pieces require an

increasing iteration time in the learning algorithms.

7 Conclusion

From the experiments carried out we conclude that the combination of Rein-

forcement Learning, Heuristic Search and explicit domain information about

states and actions to minimize the search space used in the proposed Swarm

Intelligence Algorithm presents better results than any of the techniques alone.

The results obtained show that the Ant-ViBRA was able to minimize the

task execution time (or the total distance traveled by the manipulator) in several

con�gurations. Besides that, the learning time was also reduced when compared

to the Distributed Q Learning and Q-Learning techniques.

Future works include the implementation of an extension of this architecture

in a system to control teams of mobile robots performing foraging tasks, and the

exploration of new forms of composing the experience of each ant to update the

pheromone table after each iteration.
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