Mining Sequences of Item-sets

Juan Manuel Gimeno Illa! and Javier Béjar Alonso?
! Departament d’Informatica i Enginyeria Industrial
Universitat de Lleida
jmgimenoQeup.udl.es
? Departament de Llenguatges i Sistemes Informatics
Universitat Politeécnica de Catalunya
bejar@lsi.upc.es

Abstract. Given a sequence, mining sequential rules that account for
that sequence has been a problem widely solved. Also many algorithms
exist that, given a collection of item-sets, find the most frequent one. In
this paper, we address the combined problem, that is, given a sequence
of item-sets, find sequential rules that apply for that sequence. We do
this by combining one existent algorithm for finding the most frequent
item-sets with a sequential mining algorithm that takes into account
substitutivity relationships between symbols in the alphabet.

1 Introduction

Mining frequent patterns in time series, sequences or transaction databases has
been broadly studied in data mining research. The problems proposed in this
discipline depend on the characteristics of the input sequence, the characteristics
of the solution components and the definition of the associated frequency.

For instance, if the input sequence is a sequence over a given alphabet, we
can define the solution components as subsequences of the input sequence and
the frequency of a subsequence as the number of times this sequence appears in
the given input sequence. Frequent mining in this context consists in finding all
the subsequences whose frequency is greater than a minimum threshold [1, 6].

If the input sequence consists of a collection of sets of items, often called
item-sets, we can define the solution components as item-sets whose frequency
is the number of times each item-sets is included in the item-sets belonging to the
collection. Frequent mining in this context consists in finding all the item-sets
whose frequency is greater than a minimum threshold [2, 3].

In this paper, we propose a novel frequent mining algorithm that can be
characterised as:

— the input sequence consisting is a sequence of item-sets

— the solution components are subsequence of item-sets

— the frequency of each subsequence is the number of times each subsequence
appears in the sequence, where appearance means that the sets belonging to
the subsequence are included in the sets belonging to the sequence

The rest of the paper is organised as follows: in section 2 we formally define
the problem and outline the basic ideas behind our algorithm; sections 3 to 5
explain the different parts of our algorithm; section 6 solves an example step by
step and, finally, section 7 gives conclusions and outlines some future work to
do.

2 Problem definition

Let I = {i1,42,...,in} be the set of all items. We define an item-set as a non-
empty subset of I. A sequence is an ordered list of item-sets. A sequence S will
be denoted by< s1, sa,...,sr > where s; is an item-set, i.e. s; C I for 1 <i < L.
L is the length of the sequence S. An element or item-set in the sequence s; will
be denoted as {z1,Z2,...,Zn}, where each z; is an item. m is the size of the
item-set s;.

The consecutive item-sets < s;,...,s; > of § =< s1,582,...,5;, > form a
subsequence of S that starts at position ¢ and ends at position j.

Given two sequences of item-sets R and S, with equal length L, we say R is
covered ® by S (or S is covers R) Vir; C s; and we denote this by R C S. The
intuitive idea is that the item-sets in R are obtained by picking elements from
the corresponding item-sets in S.

For instance, < {a,b}, {c}, {e, f} > is covered by < {a,b,c},{c,d},{e, f} >
because {a,b} C {a.b.c}, {c} C {c,d} and {e, f} C {e, f}; but it is not covered
by < {a,u},{c}, {e, f} > because {a,u} Z {a,b,c}.

We also define the support of a sequence R in S as the number of subsequences
of S that cover R.

The support of the sequence R =< {a}, {b} > in S =< {a,c}, {a, b}, {b,c} >
is 2, because R is covers the subsequences of S < {a,c}, {a,b} > and < {a, b}, {b, c} >.

The problem to solve can be stated as: given a sequence of item-sets S and
a minimum support threshold minsup, find all the sequences whose support in
S is greater than or equal to minsup.

For instance, given the sequence S defined above and a minsup = 2, the
solution would be the sequences: < {a} >,< {b} >, < {¢{> and < {a}, {b} >.

If we analyse the solution of the last example, we observe that both < {a} >
and < {b} >are subsequences of < {a},{b} >. This is not a coincidence but a
consequence of the anti-monotone Apriori heuristic [1]: if any length k pattern
is not frequent, any length k + 1 pattern containing it cannot be frequent. That
is, any subsequence of a frequent sequence must also be frequent.

In our problem, as the elements both in the input sequence and in the solution
components are item-sets, we can reformulate this property in the following
terms: any item-set in any of the sequences of the solution must be frequent in
the input sequence.

Our algorithm uses this property in the following way: first, we find all the
frequent item-sets in the whole sequence and next we use them as building blocks
in order to find the frequent subsequences.

3 Covering is the generalisation of set extension over sequences of sets.

3 Finding the frequent item-sets

Let us first characterise the subproblem to solve:

— the input is a collection* of item-sets

— the solution components are item-sets

— the frequency of an item-set is the number of item-sets in the collection that
include it

So the subproblem consists in finding all the frequent item-sets in a collection of
item-sets given a minimum threshold minsup. There are many algorithms that
solve this problem [2, 3] so we will not further detail this part of the algorithm.

For instance, given the item-set collection

[{a7 b}7 {$7 u}7 {l7 a7 b7 m7 n}7 {a7 C}7 {67 d}7 {':C7 U}7 {07 b7 a7p7 q}7 {m7 b}7 {m7 w}]
and a minsup threshold of 2, the frequent item-sets are {a}, {b}, {z} with fre-
quency 4 and {a, b} with frequency 3.

At this point, if the whole problem was mining the collection above as a
sequence, we would know that the solution of the whole problem would be se-
quences containing only these four item-sets. If only we could use these item-sets
as labels to recode the input sequence, any algorithm for finding frequent sub-
sequences over a finite alphabet would solve this subproblem. This idea can be
applied, but not directly and it will be developed in the next section.

4 Recoding the sequence

First we will assign an unique label to each of the frequent sets found in the
previous step. Let F' = {f1, fa,..., fs} the frequent item-sets, we will denote as
ly, the label assigned to item-set f;, and Ly = {ly,,ly,,...,1z, } will be the label
alphabet. In our example Ly = {l{a}, l{b}; l{w}, l{a,b}}-

Next, we will assign a label belonging to the alphabet to each of the item-sets
in the input sequence without losing or adding information about the frequent
sequences of item-sets this input sequence contains.

Let us consider item-set {a,b}. Which label will be assigned to it? As it
corresponds to a frequent item-set it is natural to use the same label, that is
I{a,5)- So the recoded input sequence will be S’ =< Ig,31,... >. And let us
consider that, when using a frequent mining algorithm for sequences over finite
alphabets, we are considering the frequency of sequence < lq) >. Aslf,) # l{ap}
the first appearance of I¢, 3} in S’ does not count as an appearance of I¢,} but
it might because {a} C {a,b} and both < {a} > and < {a, b} >are covered by
<{a,b} >.

4 In the whole problem we must take into account the ordering among the different
item-sets in the sequence. Now this ordering is not important and we substitute
the notion of sequence by the notion of collection or multi-set. The elements in a
collection will be enclosed between [and].

4.1 Partial order

As the last example shows, the labels in the alphabet are not independent but
related and, formally, they are related by a partial order relationship.

Let Ly = {lf,,ls,,...,1l;,} be the label alphabet, we can define over the
elements of Lg the following relationship:

g, 2y, & fiC fi
and (Lp, X) is a partial order because it is reflezive, antisimetric and transitive.

Over a partially ordered set we can define an element m € L to be minimal
in Lg if :

VieLpl#m = —(<m).

Intuitively, this partial order represents the relationship of substitutivity: if
label I; <15, I; can be substituted by lo when counting the number of appear-
ances of Iy, because each appearance of l; is also an appearance of /5. So a
requirement of the mining algorithm will be that, when counting the support of
a subsequence, consider all the labels it can substitute.

In the example above, the partial order consists in the following relationships:
lia,py 2 lgay and lg, 4y = {5y and the unique minimal item-set is I, 5}

4.2 Recoding

Given the label alphabet and the substitutability relationship, we proceed to re-
code the input sequence. For each item-set s; in the sequence, we consider the set
of labels contained® in it, that is, L(s;) = {l; € Lr| f C s;} and then we purge all
the labels in the set that cannot be substituted by any other label also in the set,
that is, labels that are not minimal L'(s;) = {l € L(s;) |lisminimalin L(s;)}
The label to assign depends on the cardinality of this set.

|L'(s;)] = 0 In this case, we assign the item-set the label # and no subsequence
of the coded sequence containing # will ever be considered frequent. The
reason to do so is the Apriori property. For instance, the fifth item-set in
the sequence s; = {e,d} contains no label of the alphabet, and will be
recoded as #.

|L'(s;)| =1 The code assigned to the item-set is the label corresponding to this
item-set. For instance, the third item-set in the sequence is s3 = {l,a,b,m,n}
which contains the labels L(s3) = {l{4}.I{p},!{a,p} } and, after purging we get
L'(s3) = {l{a,p}} 0 we assign label I¢, 5} to s3.

|L'(s;)| > 1 In this case, none of the labels can represent the same information
as s;. We must generate a new label for this item-set. We do so by assigning
a new label to this item-set and, for all the labels in L'(s;), stating that
those labels are greater than the current one. For instance, sg = {z,b} and
so we create a new label I, ;3 and we add the following order relationships:

lapy = Uiz and Iz 5y = lgpy-

% Those are the labels corresponding to item-sets that are contained in it. I have
abused the language so as not to repeat the word “item-set”many times.

After doing this, we have a base alphabet consisting of the labels® Liays Linys Uap)
l{m}and l{w,b}; the order relationships l{a,b} = l{a}, l{a,b} = l{b}; l{%b} = l{m} and
liz,py = l{py; and the recoded sequence
S' =<lgapy> lays lapys Uays 5 oy Lapys Ha) liay >
Now, we must find all the frequent sequential patterns in S’ over the given
alphabet and we must take the partial order into account when computing the
support of the subsequences of S’. This is covered in the next section.

5 Finding the frequent subsequences

In order to mine the sequence we will modify a previous algorithm defined by
Jaak Vilo [6] to take into account the partial order defined over the alphabet.

The naive algorithm for finding all the frequent subsequences of a sequence
would generate all the subsequences of the given sequence, compute the support
of each one and output only those with support greater than minsup. This
solution would be impractical for medium size sequences.

In order to do this generation and counting efficiently there exists a data
structure that allows us to represent and manipulate all the subsequences of a
given sequence in a very efficient way. This structure is called suffiz-tree.

5.1 Suffix trees

A suffiz-tree T for a character string” S$ of length I 4+ 1 is a rooted directed
tree with exactly [leaves numbered 1 to [+ 1. Each internal node, other than
the root, has at least two children and each edge is labelled with a non-empty
substring of S. No two edges out of a node can have edge-labels beginning with
the same character. The key feature of the suffix-tree is that, for any leaf ¢, the
concatenation of the edge labels on the path from the root to leaf i exactly spells
out the suffix of S that starts at position i. That is, spells out < s;,..., 8141 >.
It is possible to construct, for a given input sequence, the suffix-tree associated
to it in linear time [4, 5].

So every prefix of a path from the root to a leaf spells out a different subse-
quence of the given sequence.

5.2 Algorithm for simple patterns

In [6], Jaak Vilo presents different algorithms dealing with finding frequent pat-
terns in nucleotide sequences. In order to present the basic concepts used by his
algorithm, and ours, we will first review his algorithm for finding simple patterns
(i.e. patterns consisting only of simple characters). Both algorithms construct

5 As # is only used to mark non-frequent patterns, this symbol is not considered to
belong to the label alphabet.

" The last character $ is added to make all suffixes of the sequence non nested, that
is, that no suffix of the sequence is prefix of another suffix. From now on we will
assume $ exists in the sequence.

a quadratic version of the suffix-tree, called suffiz-trie, in which each edge label
has unit length, that is, it is a character.

Suffix trie Each node N in the tree can be identified with a string a over the
trie label alphabet that spells out the labels on the path from the root to node
N. We denote that node N by N(a). Hence N(ac) is the child of node N(«) that
corresponds to extending the string a with character ¢. The root node represents
the empty string .

Every node in the trie has some internal structure for representing the ad-
ditional information about the relation it has with other nodes in the trie, and
the substring corresponding to the node. We will use dot-notation to represent
subfields, that is N.parent, N.child, N.char and N.sibling. The substring a
is spelled out by the character labels N.char along the path from the root to
the node N(a). N(aX).char = X and N(aX).parent = N(«). Given node N,
we denote its children by N.child(c) meaning the child P of node N such that
P.char = c. The siblings of node N can be identified by N.sibling(c) where this
is shorthand for N.parent.child(c).

Also, each node has information about the occurrences of the substring it
represents. Actually, each node N(a) has the list of occurrences that substring
a has in the string. To represent the occurrence that ends at position j of string
S we store number j + 1 (that is, we store the position in which this substring
can be extended). This list is denoted by N.pos.

The idea is that each node in the tree represents a different subsequence of the
original subsequence. Two nodes in the tree corresponding to two subsequences.

Algorithm 1 Frequent substring generation for simple substrings
root = new node;
root.char = A
root.pos = (1,2,...,|S|)
enqueue(Q,root)
while N = dequeue(Q)
for-each character ¢
set(c) = 0
for-each p € N.pos
add p + 1 to set(S[p])
for-each character c such that |set(c)| > K
N.child(c) = new node P with label P.char=c
P.pos = set(c)
enqueue(Q,P)
delete N.pos
return root

Basic algorithm The algorithm constructs incrementally the suffix trie cor-
responding to the given sequence. Initially we only have the root node (that

represents the empty suffix) that can be extended at every position in the
sequence.

Then it groups these positions when expanding a node depending on the
character present at the extended position and creates nodes for all of them
(these nodes represent the subsequences found so far). Due to that the list of
extension positions also represents the different appearances of the subsequence,
those nodes whose list has length below the minsup threshold need not be further
expanded.

So only the partial suffiz-trie for the subsequences that pass the threshold is
built. Pseudo-code is shown in algorithm 1.

5.3 Allowing for substitutions

Our algorithm is a generalisation of Vilo’s algorithm that allows group-characters
in the patterns. For instance, pattern A[GC]T matches both AGT and ACT because
at the second position both G and C are allowed. Our generalisation consist in
defining a substitution relationship (represented by the partial order) between
characters®. For instance, pattern AXT covers the same patterns as the example
given before if character X can be substituted by G or C.

Vilo’s algorithm only allows the use of group-characters in the patterns but
not in the input sequence. As our sequence is constructed by any symbol in the
alphabet we must also consider this possibility. So our algorithm extends Vilo’s
in these two directions:

1. We allow a substitutability relationship among characters. Its only require-
ment is to be a partial order.

2. We allow characters in any level of the partial order both in the input se-
quence and in the patterns explored.

Computation of the extension positions In order to allow substitutions,
we have to consider how the extension positions are calculated because a non-
minimal character in the input sequence extends patterns formed by this char-
acter but also those formed by any minimal character that can substitute it.
Only the minimals are considered because, if not, we could possibly count more
than once a symbol in the input.

For instance, if symbol Ig,} appears in the input at position pos, we must
include pos not only in set(l;,}) but also in set(ls, ;)) due to the fact that we
have l(q5) = l{q) and Iy, 3) is @ minimal symbol.

So in the algorithm we consider first the case where the extension symbol is
a minimal symbol, that is, a symbol that is not a substitutive for any symbol in
the alphabet. For these symbols, we proceed as in the basic procedure (algorithm
2).

8 Vilo’s simple characters are equivalent to minimal characters in our formulation.
Vilo’s group-characters are equivalent to our non-minimal ones. But our substitutiv-
ity relationships allows for group characters inside groups characters not allowed in
Vilo’s formulation.

Algorithm 2 processing minimal_symbols

for-each minimal symbol m such that |set(m)| > K
N.child(m) = new node P with label P.char=m
P.pos = set(m)
enqueue(Q,P)

Then we proceed with the non minimal symbols. These symbols get position
appearances from themselves and (as they can appear in the input) and from
the minimal symbols they can substitute. But this produces over generalisation:
it constructs more patterns than necessary because, for any pattern, it creates
all the patters obtained by substituting a character in the original pattern with
a character that can substitute it.

For instance, given the sequence < l;, ;) > we obtain patterns < g, 4y >, <
l{ay >and < Iy > all of them with support = 1. As we know the substitutability
relationship only the first one is informative because the last two can be deduced
from it.

The solution to this problem is to consider only patterns generalising other
patterns when the generalised pattern has more support than the previous one.
So we purge those whose support is not greater than the support of the concrete
one (the purging procedure is shown in algorithm 3). This purging only affects
the current symbol considered but not any symbol previously found.

Algorithm 3 processing non-minimal symbols

for-each non_minimal symbol s

positions = set(s)

max = 0

for-each minimal symbol m such that m <'s
positions = merge(positions,set(m))
max = maximum (max, |set(m)|)

if |positions| > mazx and |positions| > K
N.child(s) = new node P with label P.char=s
P.pos = positions
enqueue(Q,P)

6 Applying the algorithm

Now we must apply the algorithm to the recoded sequence

S' =<y la}> Uapys lays F Ueys Lap) Hap) s Ly § >
over the alphabet Lr = {l{a},l{s},!{a,b}s!{z}> {25} }, given the order relation-
ships l{a,b} < l{a}, l{a,b} < l{b}, l{z,b} < l{w} and l{z,b} < l{b} whose minimal
symbols are Iy, 3y and Iy, py-

Initially we only have the root node with root.char = X and root.pos =
{1,2,... 10}, as we have appended symbol $ in the sequence. This is the only
node we can expand, so we take it from the queue and compute the positions at
which we can expand using the different characters. Scanning the input we get:

set(lia,py) = {2,4,8} set(l{s)) = {3,7,10} set(l{a)) = {5}
set(liz,p1) = {9} set(lgpy) =0

We can process the minimal characters now, and we construct node N (I{,,5})
(a node for I,) is not created because its position list has less length than
minsup) and we point root.child(l¢, 3}) to it.

We have to extend the position list of each non-minimal symbol with those
of the corresponding substitutive minimal symbols. For instance, set(l{;)) that
initially was empty, get positions from both l;, syand I, 3. So the new position
lists are

set(l{z}) ={3,7,9,10} Set(l{a}) ={2,4,5,8} Set(l{b}) ={2,4,8,9}

All these symbols pass the minsup threshold and are informative so we create
nodes for them. Next we open node N (I, ;)) and we can extend it at positions
{2,4,8}. The initial values for the extension positions are

set(lfap}) =0 set(lizy) = {3} set(liay) = {5}
set(lizpy) = {9} set(lppy) =0
and none of the minimal symbols passes the threshold. For the non-minimal
symbols, the only one which passes the threshold is I,y with positions set(l{,}) =
{3,9} and which is also informative. So we create N(I14,5/{2})-

Next we expand N (I{,}), extendible at {3,7,9,10} and calculate its possible

extensions. We get
set(lapy) = {4,8} set(lyy) = {10} set(ley) =0
Set(l{Lb}) =0 Set(l{b}) =0
and minimal symbol Iy, 4y passes the threshold, so N(lf;3l54,1) is created. For
the non-minimal we compute their possible extensions getting
set(l{z}) = {10} set(l{a}) = {4,8} set(l{b}) = {4,8}

and only I,y and I pass the threshold but none of them is informative. For
example, set(l{,}) = set(l{,5}), so we don’t add any new node to the trie. Figure
1 shows the trie constructed in the example.

The patterns found by the algorithm are

<Aa,b},{z} > < {z},{a, b} > < {a},{z} > < {b},{z} >

all with support = 2 but the last which has support = 3.

7 Conclusions and future work

In this paper we have presented an algorithm for finding frequent subsequences
in sequences of item-sets. This algorithm consists in the combination of two
algorithms for solving two different frequent mining problems:

— finding all the frequent item-sets in a collection of item-sets
— finding all the frequent subsequences over a character set with a substitutiv-
ity relationship

{1,2,3,4,5,6,7,8,9, 10}

{2, 4,8} {3,7,9,10} {2,4,5,8 {2, 4,8, 9}
'1x) '{a, b} '{x) '{x)

{3, 9} {4, 8} {3, 9} {3,9, 10}

Fig. 1. Trie generated by the algorithm

The later algorithm is also a contribution of this paper.

Future work must be done to further improve the efficiency of the algorithm

both in space and time. For instance in the example, we obtain patterns <
lia,p},l{ey > and < (43,15} >, both of them with the same support and, clearly,
the later can be deduced from the former. Our purging procedure is not powerful
enough to cope with this case. Better purging techniques must be developed.
Parallelisation by clustering can also been considered.

References

1.

2.

R.Agrawal and R.Srikant. Fast algorithms for mining sequential rules. In VLDB’94,
487-499. 1994.

J. Han, J. Pei and Y.Yin. Mining frequent patterns without candidate generation. In
2000 ACM SIGMOD Intl. Conference on Management of Data, pp 1-12, 2000.
J.Pei, J.Han and R.Mao. CLOSET: An Efficient Algorithm for Mining Frequent
Closed Itemsets. ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discover, 21-30,2000.

E.M.McCreight. A space-economical suffiz tree construction algorithm. Journal of
the ACM, 23:262-272, 1976.

E.Ukkonen. On-line construction of suffiz-trees. Algorithmica, 14:249-260, 1995.
J.Vilo. Discovering Frequent Patterns from Strings. Technical Report C-1998-9, De-
partment of Computer Science, University of Helsinki, 1998.

