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Abstract. In this paper we present a neural network model and new formulation for the p-median 
problem. The effectiveness and efficiency of our algorithm under varying problem sizes are analyzed in 
comparison to conventional heuristic methods. The results for small-scale problems (less than 100 points) 
indicate that our implementation of algorithm is effective. Furthermore, we also have applied our 
algorithm to solve large-scale problems, demonstrating that a simple recurrent neural network, with an 
adapted formulation of the problem, can generate good solutions in a few seconds. 

1 Introduction 

One of the most popular problems in the facility location literature is the p-median problem. This model 
locates p facilities in some space (such as Euclidean plane or a network) that will attend n demand points. The 
objective of the model is to minimize the total (weighted) distance between the demand points and the 
facilities. 

Kariv and Hakimi [20] showed that the p-median problem on a general network is NP-hard. This  has 
resulted in the development of heuristic solution techniques in an effort to solve large-scale problems to near-
optimality with a reasonable computational effort. Perhaps the most popular p-median heuristic was 
developed by Teitz and Bart [27]. This is a node-exchange procedure that attempts to improve the objective 
function value at each iteration. It is a simple to implement and it produces relatively good solutions to 
smaller problems when it is applied with multiple starting solutions. 

There are more sophisticated heuristics for the p-median problem. A number of solution procedure 
have been developed for general networks. Most of the proposed procedures have been based on 
mathematical programming relaxation and branch-and-bound techniques. However, recently have been 
developed new procedure based on tabu search, neural networks, genetic algorithms and tree search. Thus, 
some proposed procedures include tree search (Christofides and Beasley [3], Bartezzaghi and Colorni [1]), 
lagrangian relaxation coupled with branch & bound (Narula, Ogbu and Samuelsson [24], Galvao [13]), tabu 
search (Ohlemüller [23]), heuristic and decision techniques (Hribar and Daskin [20], Hansen, Mladenovic and 
Taillard , Drezner and Guyse [18]), as well as Kohonen maps (Lozano, Warrior, Onieva and Larrañeta [23]). 

Researchers have focused recently on the design of modern heuristics to solve the p-median problem. 
Modern heuristics can generate better results than the simple node-exchange procedure. But this modern 
heuristics usually are laborious and difficult to understand and to implement. 

We have designed a simple neural network (such as Hopfield neural network) that generates good 
solutions to the p-median problem, comparable in quality to those of the node-exchange heuristics. 

The rest of this paper is organized as follow: Section 2 describes the problem and gives a preliminary 
analysis. Section 3 shows how to apply a simple recurrent neural network to the problem. Section 4 contains 
illustrative and comparative simulation results. Finally, section 5 provides a summary and conclusions. 

2 Problem Formulation 

The p-median problem is well known and it has been studied during years. The p-median problem concerns 
the location of p facilities (medians) in order to minimize the total weighted distance between the facilities 
and the demand points. This problem is a multi-facility extension of the Weber problem which is widely 
accepted as the first formalized facility location problem in the literature. Operational generalizations of the 



problem have been investigated by Cooper [1] using iterative approximation methods. ReVelle and Swain 
[26] provided an integer programming formulation for the discrete P-median problem, which is given below 
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where  
 N is the considered number of points 

 P is the number of facilities or medians 

ijd  is the distance (cost) between the demand point i and the facility j 
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The restriction (2) prevents that a demand point i is free, that is to say that does not have any facility 
associated to him. The restriction (3) establishes the number of facilities or medians. The last condition (4) 
assures the coherence of the solutions, a demand point i cannot be associated to the facility j ( 1?ijx ) and in 

the point j not to be established a facility ( 0?jjx ). 

To the above formulation they have been applied numerous and different algorithms, but we do not 
know anyone that has been applied a neural network like the Hopfield network, because the restriction (4) not 
you ready to their application.  

For that reason, in this paper we intends a new more appropriate formulation to the p-median problem: 
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where 
N  is the number of points 
P  is the number of facilities (medians) to locate 

ijd  is the distance among the points i and j 
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Notice the existence of two types of neurons: 
1
iqS  (allocations neurons) and 

2
jqS  (facilities location 

neurons). Even, it is observed that the restrictions are much simpler that in the previous formulations. With 
the restriction (6) we only allow that a point associates to an only group, and with the condition (7) we make 
sure that in each group there is only one facility or median. 

3 Competitive recurrent neural network model 

The proposed neural network consists of a single layer of N interconnected binary neurons or processing 

elements. Each neuron i  has an input ih and an output }1,0{?iS . In order to design a suitable neural 
network for this problem, the key step is to construct an appropriate energy function E for which the global 
minimum is simultaneously a solution of the above formulation. The simplest approach to constructing a 
desired energy function is the penalty function method. The basic idea in this approach is to transform the 
constrained problem into an unconstrained one by adding penalty function terms to the objective function (5). 
These terms cause a high cost if any constraint is violated. More precisely, some or all constraints are 
eliminated by increasing the objective function by a quantity which depends on the amount by which the 
constraints are violated. That is, the energy function of the neural network is given by the Liapunov energy 
function defined as 
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where 0?i?  are penalty parameters that they determine the relative weight of the constraints.  The penalty 
parameters tuning is an important problem associated with this approach. 

In order to guarantee a valid solution and avoid the parameter tuning problem, we will divide our neural 
network in disjoint groups according to the two restrictions, that is, for the P-median problem with N points, 
we will have N groups, according to restriction (6), plus P groups, according to restriction (7). Then, we will 
reorganize our neurons in two matrices (one matrix per neuron type) where a group is represented by a row or 
column of the matrix according to neuron type. 

N group

2 group

1 group

11
2

1
1

1
2

1
22

1
21

1
1

1
12

1
11

?

?

?

NPNN

P

P

SSS

SSS

SSS

?
?????

?

?

 

 



PN group2N group1N group

22
2

2
1

2
2

2
22

2
21

2
1

2
12

2
11

???
???
PNPP

N

N

SSS

SSS

SSS

?
????

?

?

 

Fig. 1. Neurons organization of the neural network for the P-median problem with N points. This shows two matrices, the 
first matrix contains the allocation neurons and the second contains the location neurons. The allocation neurons inside 
same group are in the same row of the matrix, and the location neurons inside same group are in the same column 

In this model one and only one neuron per group must have one as its outputs, so the penalty terms are 
eliminated from the objective function. The neurons inside same group are updated in parallel. Then we can 
introduce the notion of group update. Observe that the groups are updated sequentially. Then, the energy 
function of the neural network is reduced to 
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Applying a gradient descent method, we obtain the inputs of the neurons of the network 
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The dynamics of the neural network are given by 
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then the energy function is guaranteed to decrease (see [12]). Thus, this energy decrease is maximized at 
every time. The following procedure describes the proposed algorithm based on the above neural network. 

1. Set the initial state by randomly setting the output of one neuron in each group to be one and all the 
others neurons in the group to be zero. 

2. Evaluate the initial value of the energy function (9). 
3. Select a group g 
4. Compute the inputs of the neurons in the group g, by (10) if Ng ??1  or by (11) otherwise. 
5. Interchange the activated neuron in the group with the neuron with maximum input. 
6. Repeat from step 3 until the neurons with the maximum input in each group are activated. 

 
On step 3 we select a group randomly or sequencely. On step 5, if there are different neurons with the 

maximum input value, the algorithm must randomly select one of them. 



Fig. 2 illustrates the energy decrease for a small-scale problem. In the first iterations, the curve slope is 
pronounced due to this energy decrease is maximized at every iteration. In fact, a good solution is obtained 
from iteration 400 with minimal error. In this case, the optimal solution is reached at 1003rd iteration. 
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Fig. 2. Graphical representation of the values of the energy function on every iteration step in the 5-medians problem with 
100 demand points 

 

4 Simulations results 

A random number generator has been used to generate the two-dimensional points. All points are distributed 
uniformly within the unit square. 

For a comparison, we tested all algorithms on an Origin 2000 computer (Silicon Graphics Inc.). The 
computation of the optimal solutions has been carried out with an exact algorithm [13], using branch & 
bound .  

We choose to compare the performance of proposed algorithm (NN) with the performance of the 
interchange algorithm proposed by Teizt and Bart [27] (T&B), since T&B is very simple to understand and 
implement, and it produces good solutions with limited computational effort. We recognize, however, that it 
is possible to generate better solutions for some instances of the p-median problem using other heuristics, 
such as langrangian relaxation or tabu search. 

We first compare our implementation of NN with T&B and random search (RS) on several small-scale 
problems. Table 1 lists the comparison of results from different algorithms with optimal solutions. For each 
instance, which it is represented by a row in the table, 50 randomly problems are generated and tested. T&B 
and N&N report 100% of optimality for their 50 randomly generated problems with 75 demand points (N=75) 
and 5 medians (P=5). The average error figures in the table represent the average percentage deviation from 



the best solution calculated by an exact algorithm [13]. 

Table 1. Results for the three algorithms applied to small scale problems  

 
N 

(demand points) 
P 

(medians) 
NN 

Avg. Error (%) 
T&B 

Avg. Error (%) 
RS 

Avg. Error (%) 
75 5 0.00 0.00 0.10 
75 10 0.00 0.09 0.12 
75 20 0.10 0.17 0.30 
100 5 0.00 0.05 0.10 
100 10 0.01 0.21 0.25 
100 20 0.09 0.39 0.41 

 
 RS is the fastest among these algorithms because there is virtually no processing overhead involved. 
RS performs so well in these cases because the difference between the number of feasible solutions evaluated 
and the total number of solutions is similar. However, RS is not likely to perform similarly well for larger 
problems due to size of the solution space. It is included here only to demonstrate that a simple random search 
method can generate good solutions for small-scale problems in less time. 
 In Table 2 we compare the iterations and time of NN and T&B for the same problems. In this table 
we demonstrate that our implementation of NN produce better results in less time due to less number of 
iterations. Parallelism of the neural networks justified the less number of iterations, since the input of each 
neuron is calculated in parallel. In addition, our neural network is divided in groups and all neurons in the 
same group are parallel updated in only one iteration. Although an iteration of NN is slower than an iteration 
of T&B, our implementation of NN needs less time due to the great difference of iterations between NN and 
T&B. For example, the first row of Table 2 shows that T&B is faster than our NN, nevertheless our NN needs 
much less iterations to obtain optimal results. For the rest of problems evaluated, the time of NN is lower than 
the time of T&B due to the less increase of iterations. 

Table 2. Comparison of NN with T&B for small scale problems 

 
N P NN T&B 

(demand points) (medians) Avg. Iterations Avg. Time (s) Avg. Iterations Avg. Time (s) 
75 5 1246 0.74 7051 0.68 
75 10 1445 1.00 15253 1.47 
75 20 1432 0.93 21422 2.01 
100 5 1254 0.81 10965 1.05 
100 10 1583 1.20 28199 2.52 
100 20 2230 2.15 33241 3.14 

 
 The increase of average error or gap is another important characteristic. Fig. 3 shows the increase of 
average error according to number of medians for instances of randomly problems with 200 demand points. In 
this case, we test 100 randomly large-scale problems to evaluate the error. This figure illustrates the good 
results obtained. In fact, our implementation of NN guarantees a solution with 99.4% of optimality for 50-
medians problems with 200 demand points. Note that, this large-scale problem has more than 47105.4 ?  
feasible solutions and the solution is calculated in a few seconds, less than 4 seconds. 
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Fig. 3. Graphical representation of the relative error (gap) with 200 demand points 

 
 

5 Conclusions  

In this paper, we applied a neural network to solve the p-median problem. Our objective was to exploit the 
features of neural networks and demonstrate that a simple recurrent neural network can generate good 
solutions to location-allocations problems. 

With the proposed mathematical model, we have tried to reduce the complexity of the problem that was 
observed in the resolution of the same one with other formulations. Besides the simplicity of this formulation, 
a decrease of the number of variables has been gotten, with the rising improvement in the yield of the 
methods or algorithms to apply. Also, the utility of the neural networks has been shown to treat optimization 
problems. Although, the proposed model guarantees that every converged state of neural network is 
equivalent to a feasible solution, and tuning the penalty parameters is not needed. Based on our computational 
tests, we believe that neural networks have the potential to be useful heuristic  for the p-median problem. 

In summary, in this paper we have achieved related with success two research areas, Localization and 
Neural Networks, to solve a classic NP-complete optimization problem, demonstrating this way, the fruitful 
existent cooperation among these areas. 
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