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Abstract. In this paper we address the problem of recognizing scenes
by performing unsupervised segmentation followed by matching the re-
sulting adjacency region graph. Our segmentation method is an adaptive
extension of the Asymetric Clustering Model, a distributional clustering
method based on the EM algorithm, whereas our matching proposal con-
sists of embodying the Graduated Assignement cost function in a Comb
Algorithm modified to perform constrained optimization in a discrete
space. We present both segmentation and matching results that support
our initial claim indicating that such an strategy provides both class
discrimination and individual-within-a-class discrimination in indoor im-
ages which usually exhibit a high degree of perceptual ambiguity.

1 Introduction

Scene recognition is a key element in mobile robotics tasks like self-localization
or exploration. Current approaches can be broadly classified as holistic [1] [2]
[3] [4] and region-based[5] [6] [7]. Holistic methods exploit texture,color, and
shape statistics without identifying objects previously. For instance, Torralba
and Sinha propose a low dimensional representation that encodes statistics of
Gabor filters’ outputs and it is suitable for distinguishing views associated to spe-
cific parts of the environment [2]. On the other hand, region-based approaches
allow the access to objects properties at the cost of incrementing the compu-
tational load due to the need of segmenting the images. One recent example
is Carson et al’s Blobworld framework [7], which relies on grouping pixels with
similar features in regions and then use their characteristic statistics for identify-
ing images with similar regions. We conjecture that inside indoor environments,
which tend to be very ambiguous, the integration of segmentation and structural
matching provides not only good recognition results at the class level, that is,
distinguishing between views of corridor-A and of room-123, but at the individ-
ual level, allowing us to discriminate which part of corridor-A are we visiting.
As this requires an extra cost and thus, the main contribution of this work is
to provide effective and efficient segmentation and matching algorithms to that
purpose.
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Our segmentation module, described in Sect.2, relies on the Asymetric Clus-
tering Model (ACM) proposed by Hoffman and Puzicha [8] [9], a distributional
strategy that outperforms the classical K-means approach. We extend this model
by making it adaptive, that is, able of identifying the optimal number of tex-
ture+color classes, and adaptivity is facilitated by the EM nature of the ap-
proach [10]. On the other hand, our proposal to region-matching is to embody
the quadratic cost function proposed by Gold and Rangarajan in their Gradu-
ated Assignment approach [11], in the Comb Algorithm, a random search method
proposed by Li [12], and adapt it to ensure matching constraints. In Sect.3 we
present several recognition results that support our initial claim about class and
individual performance. Our conclusions and future work issues are summarized
in Sect.4.

2 Unsupervised Segmentation

2.1 EM Algorithm for Asymetric Clustering

Given N image blocks x1, . . . , xN , each one having associated M possible features
y1, . . . , yM , the Asymetric Clustering Model (ACM) maximizes the log-likelihood

L(I, q) = −
N∑

i=1

K∑
α=1

IiαKL(pj|i, qj|α) , (1)

where: pj|i encodes the individual histogram, that is, the empirical probability of
observing each feature yj given xi; qj|α is the prototypical histogram associated
to one of the K classes cα; KL(pj|i, qj|α) is the symmetric Kullback-Leibler
divergence between the individual and the prototypical histograms; and Iiα ∈
{0, 1} are class-membership variables.

As pj|i are fixed, one must find both the most likely prototypical histograms
qj|α and membership variables Iiα. Prototypical histograms are built on all in-
dividual histograms assigned to each class, but such an assignment depends
on the membership variables. Following the EM-approach proposed by Hoffman
and Puzicha, in which the class-memberships are hidden or unobserved variables,
we start by providing good initial estimations of both the prototypes and the
memberships, feeding with them an iterative process in which we alternate the
estimation of expected memberships with the re-estimation of the prototypes.

Initialization. Initial prototypes are selected by a greedy procedure: First pro-
totype is assumed to be a block selected randomly, and the following ones are
the most distant blocks from any of the yet selected prototypes. Given these
initial prototypes q̂0

j|α, initial memberships Î0
iα are selected as follows:

Î0
iα =

{
1 if α = arg minβ KL(pj|i, q̂

0
j|β)

0 otherwise
.
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E-step. Consists of estimating the expected membership variables Îiα ∈ [0, 1]
given the current estimation of the prototypical histogram qj|α:

Ît+1
iα =

ρ̂t
α exp{−KL(pj|i, q̂i|α)/T}∑K

β=1 ρ̂t
β exp{−KL(pj|i, q̂i|β)/T}

,being ρ̂t
α =

1
N

N∑
i=1

Ît
iα , (2)

that is, the probability of assigning any block xi to class cα at iteration t, and T
the temperature, a control parameter which is reduced at each iteration (we are
using the deterministic annealing version of the E-step, because it is less prone
to local maxima than the un-annealed one).

M-step. Given the expected membership variables Ît+1
iα , the prototypical his-

tograms are re-estimated as follows:

q̂t+1
j|α =

N∑
i=1

πiγpj|i ,where πiα =
Ît
iα∑N

k=1 Ît
kα

, (3)

that is, the prototype consists of the linear combination of all individuals pj|i.
The weights of such a combination are the ratios πiα between the membership
of each individual to cα and the sum of all memberships to the same class. This
is consistent with a distributional-clustering strategy.

Adaptation. Assuming that the iterative process is divided in epochs, our
adaptation mechanism consists of starting by a high number of classes Kmax

and then reducing such a number, if proceeds, at the end of each epoch. At that
moment we select the two closest prototypes q̂j|α and q̂j|β as candidates to be
fused, and we compute hα the heterogeneity of cα

hα =
N∑

i=1

KL(pj|i, qj|α)πiα , (4)

obtaining hβ in the same way. Then, we compute the fused prototype q̂j|γ by
applying Equation 3 and considering that Iiγ = Iiα + Iiβ , that is

q̂j|γ =
N∑

i=1

πiγpj|i . (5)

Finally, we fuse cα and cβ whenever hγ < (hα +hβ)µ, where µ ∈ [0, 1] is a merge
factor addressed to facilitate class fusion. After such a decision a new epoch
begins. A minimal number of iterations per epoch are needed to reach a stable
partial solution before trying two fuse two other classes.
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2.2 Segmentation Results

Considering indoor images of 320×240 pixels, the feature extraction step consists
on recovering texture and color statistics at blocks of size 32 × 32, that is, of
radius 16 pixels. These blocks are taken each 8 pixels, that is, there is a partial
overlap of 25%, providing N = 37×27 = 999 blocks per image. Texture features
rely on 8 Gabor filters with 4 orientations (0, 45, 90, and 135 degrees) and 2 scales
(σ = 1.0 and σ = 2.0, corresponding to 7× 7 and 13× 13 windows respectively).
Filter-output frequencies associated to each filter are registered in histograms
of 16 equally spaced bins. Thus, there are 8 × 16 = 128 texture features per
block, which are completed with 16 more features provided by the histogram
associated to the first HSB color component (hue or chromaticity) inside the
block. Consequently, the overall number of features is 144.

The unsupervised clustering algorithm proceeds through 10 epochs of 10
iterations each (100 iterations). Temperature range is fixed to [1.0 . . . 0.05], that
is, each iteration t, T value is 0.095 + e−t + 0.05 . On the other hand, the merge
factor µ is set to 0.8, and to Kmax = 10. In Fig. 1 we compare the segmentation
results obtained with and without adaptation. After clustering we proceed to
group neighboring blocks belonging to the same class in homogeneous regions.
Small regions (those with less than ν = 20 blocks) are removed and absorbed by
the more similar region in its neighborhood).

Fig. 1. Segmentation results. (a) Input indoor image.(b) Non-adaptive segmentation.
(c) Adaptive segmentation. (d) After removing spurious blocks in (c).
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3 Graph Matching

3.1 Stochastic Search for Assignement

Given an input segmented image we build an undirected data graph GD =
(VD, ED) with one vertex a ∈ VD per region and one edge (a, b) ∈ ED per pair
of adjacent regions. Similarly, we consider a stored graph GS = (VS , ES) with
vertexes i ∈ VS and edges (i, j) ∈ ED. Then, the adjacency matrices D and S of
both graphs are defined by

Dab =
{

1 if (a, b) ∈ ED

0 otherwise , and Sij =
{

1 if (i, j) ∈ ES

0 otherwise .

A feasible solution to the graph matching problem between GD and GS is en-
coded by a matrix M of size |VD| × |VS | with binary variables

Mai =
{

1 if a ∈ VD matches i ∈ VS

0 otherwise ,

satisfying the constraints defined respectively over the rows and columns of M

|VS |∑
i=1

Mai ≤ 1,∀a and
|VD|∑
a=1

Mai ≤ 1,∀i . (6)

Cost Function. Gold and Rangarajan formulated the problem in terms of
finding the feasible solution M that maximizes the following cost function,

F (M) =
|VD|∑
a=1

|VS |∑
i=1

|VD|∑
b=1

|VS |∑
j=1

MaiMbjCaibj , (7)

where Caibj = DabSij , that is, when a ∈ VD matches i ∈ VS , and also b ∈ VD

matches j ∈ VS , it is desirable that edges (a, i) ∈ ED and (b, j) ∈ ES exist, that
is, that Mai = Mbj = 1. However, this cost only encodes structural compatibility
between both graphs. In order to enforce the preference of matching vertexes
(regions) with compatible features (texture and color) we redefine Caibj as

Caibj = DabSij exp{−KL(qa, qi)} , (8)

where qa = qj|α(a) and qi = qj|α(i) are respectively the prototypical his-
tograms of the classes of vertexes a and i.

Constrained Maximization. Gold and Rangarajan’s deterministic annealing
algorithm proceeds by estimating the averaged matching variables at each tem-
perature T , while enforcing the satisfaction of matching constraints for the rows
and columns of the candidate solution. Our preliminary matching experiments
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with this method showed that it assigns each vertex with another one with sim-
ilar structure but this does not usually ensures that the mapping is globally
consistent. This is why we replaced annealing phase by a global strategy, a mod-
ified Comb (Common structure of the best local maxima) algorithm, originally
applied to labeling problems in MRF models, which explores the set of extended
feasible solutions. An extended feasible solution is a matching matrix M̂ with
one more row and one more column, corresponding to slack variables (which are
very useful to deal with noisy nodes), whose rows and columns add up to the
unit, that is, a permutation matrix of binary variables.

The Comb algorithm maintains a population P = {M̂ (1), . . . , M̂ (L)} with the
L (experimentally set to 10 individuals) best local maxima found so far. Such
a population is initialized according to an uniform distribution over the space
of feasible solutions. Each iteration begins by selecting, also randomly, a pair
of local maxima M̂ (a) and M̂ (b). As this method relies on the assumption that
local maxima share some matching variables with the global maxima, it derives
a new candidate to local maximum M̂ (0) by combining the latter pair. Such a
combination consists of (i) retaining common variables, (ii) randomly generating
new values for components with different variables and (iii) ensuring that the
result is still a permutation matrix. This provides the starting point of a hill-
climbing process which consists of randomly changing the value at a component
while ensuring that the resulting matrix satisfies the matching constraints and
then testing whether it provides a better solution. If so, a new hill-climbing step
begins. Otherwise, if after A = 10 attempts it is not possible to improve the
current matrix a new local maximum M̂∗ is declared. Such a local maximum
updates P as follows: If

F (M̂∗) > M̂worst where M̂worst = arg min
M̂∈P

F (M̂) , (9)

then the worst local maximum so far M̂worst is replaced by M̂∗. Otherwise the
population does not change. Such an updating rule ensures that the quality of
the individuals in P is improved, expecting that such an improvement eventually
reaches the global maximum. Thus, if we detect that the quality of P can not
be improved we assume that the algorithm has found the global maximum (the
best local maximum so far). The algorithm also terminates when the latter
termination condition is not satisfied after I = 1000 iterations.

3.2 Recognition Results

In order to test the adequacy of our approach in scene recognition, we have
build two subjective classes of images, each one registering different viewpoints
of two different places (natural landmarks) in our lab (see Fig. 2): class-A (images
A1,A2,A3, and A4) and class-B (B1 and B2). Sample matching results between
images of the same class (A1 and A2) and of different classes (A1 and B1) are
showed in Fig. 3. The main question addressed here is whether these classes
are not subjective but real classes. In Table 1 we show the best costs for each
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Fig. 2. Experimental set. Images A1 (first reference), A2 (15-degrees-rotation), A3
(2-meters-backwards), A4 (4-meters-backwards), B1 (second reference) and B2 (90-
degrees-rotation
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Fig. 3. Matching results. Top: Images A1 , A2, and B1; Middle: Matching between A1
and A2; Bottom: Matching between A1 and B1.
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matching. Self matchings appear in boldface, matching between class-A images
are emphasized, whereas matchings between class-B images, and between class-
A and class-B images appear in normal text. We also show the a sort list of the
three preferred matchings for each image (row in the matrix). Each image not
only prefers itself, as expected, but its second and third choices are images in
the same subjective class, when possible). In the case of B1 and B2, their third
choice is A4, the more distant image from the first reference A1. Furthermore,
we also show the degrees of ambiguity of the first and second matchings (ratios
between the best costs of the second and the first matching, and between the
best costs of the third and the second ones, respectively) and these degrees tend
to be low at least for the winner matching.

Such a good performance is due to the co-occurrence of structural and ap-
pearance information between viewpoints of the same landmark. However, when
we relax such a constraint and evaluate each matching only on behalf of struc-
tural compatibility, classes A and B are no longer distinct. In Table 2 we see that
in many cases a given image does not prefer itself or even an image of the same
subjective class. Furthermore, the analysis of the degrees of ambiguity reveals
that the highest ambiguity in the latter case (0.62) is even lower that the current
lowest ambiguity, reaching even 1.0 in the case of B2.

The averaged segmentation time was of 7.1 secs. in an ATHLON-XP-1700
processor, whereas the averaged processing time of the graph-matching step was
of 4.8 secs, given an averaged size of 22 nodes per graph.

Table 1. Cost matrix when fusing structure and appearance.

A1 A2 A3 A4 B1 B2 Sorted Preferences Ambiguities

A1 1.55 0.96 0.42 0.15 0.03 0.01 A1, A2, A3 0.62, 0.44
A2 1.07 2.92 0.49 0.20 0.02 0.01 A2, A1, A3 0.37, 0.46
A3 0.36 0.49 2.66 0.23 0.02 0.03 A3, A2, A1 0.18, 0.73
A4 0.20 0.23 0.29 1.47 0.03 0.19 A4, A3, A2 0.20, 0.79
B1 0.03 0.03 0.03 0.04 3.06 0.68 B1, B2, A4 0.22, 0.06
B2 0.01 0.01 0.03 0.19 0.68 2.00 B2, B1, A4 0.34, 0.28

4 Conclusions

There are two main contribution in this paper: the adaptation and integration
of state-of-the-art algorithms for unsupervised clustering and graph matching to
the context of scene recognition, and the finding that this framework provides
promising results for addressing the appearance-based localization problem in
indoor environments. Future work includes the automatic inference of visual
landmarks in the environment as well as the development of incremental local-
ization algorithms.
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Table 2. Cost matrix when using only structural information.

A1 A2 A3 A4 B1 B2 Sorted Preferences Ambiguities

A1 1.73 1.69 1.66 1.30 1.76 2.00 B2, B1, A1 0.88, 0.98
A2 1.85 2.92 1.33 1.69 1.24 1.00 A2, A1, A3 0.63, 0.72
A3 1.50 1.16 2.66 0.83 1.66 2.00 A3, B2, B1 0.75, 0.83
A4 1.30 1.24 1.83 1.80 1.29 2.00 B2, A3, A4 0.92, 0.98
B1 1.65 1.54 1.66 1.65 3.41 2.00 B1, B2, A3 0.59, 0.83
B2 2.00 1.00 2.00 2.00 2.00 2.00 B1, B2, A3 1.00, 1.00
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