
Automatic Adaptation of a Natural Language

Interface to a Robotic System

Ramón P. Ñeco, Óscar Reinoso, José M. Azoŕın,
José M. Sabater, and M. Asunción Vicente

Dpto. Ingenieŕıa, Miguel Hernández University, Avda. Ferrocarril s/n, 03202 Elche
(Alicante), Spain ramon.neco@umh.es

http://lorca.umh.es

Abstract. This paper shows an application of four neural networks
architectures for the automatic adaptation of the voice interface to a
robotic system. These architectures are flexible enough to allow a non-
specialist user to train the interface to recognize the syntax of new com-
mands to the teleoperated environment. The system has been tested in
a real experimental robotic system applied to perform simple assembly
tasks, and the experiments have shown that the networks are robust and
efficient for the trained tasks.

1 Introduction

Learning of natural language can be divided in two different tasks: (1) learn-
ing of the syntax and (2) learning of the semantics. In the case of learning the
syntax, the objective is to extract a set of grammatical rules, starting from a
sequence of examples of sentences grammatically correct (and possibly of sen-
tences grammatically incorrect). In the case of the semantics, the objective is
to obtain an association between the emitted commands and the corresponding
internal representation of those commands (intermediate language to a robot in
the experiments presented in this paper).

The automatic learning of the syntax, also known as grammatical inference,
has been studied from the theoretical point of view in numerous works [1], [2].
There exists two sets of learning techniques: symbolic and connectionist. The
symbolic techniques try to obtain the grammatical rules directly from each learn-
ing example, while the connectionist technique obtains the grammar’s model as
a neural network. Most works that learn the semantics try to learn the meanings
of new words from examples, in the symbolic paradigm [3], but some authors
have also developed neural networks solutions [4]. In this paper, we show how
neural networks architectures can be used to adapt the grammar of a natural
language interface to a robotic system.

2 The system

As in all teleoperated robotic applications, the experimental system considered
here consist of a remote environment, as well as a local environment that control

Fig. 1. Teleoperated system used for the experiments on natural language.

and supervise the remote environment. The devices that interact with the task
have been located in the remote area (figure 1). The elements of the remote
environment are the following: A robotic arm (Mitsubishi PA-10) of 7 degrees of
freedom, that executes the commands emitted by the operator; a computer that
acts as the robot controller; a computer for image processing; wide range area
cameras; and a camera located at the end of the robotic arm, to obtain more
precise visual information in the manipulation of the objects on the part of the
robot.

In the local environment all the elements such that the operator can interact
to send and to receive the commands to the remote environment can be found.
These elements are the following: graphic computation system, by means of
which the operator knows in real time the state of the task and can control
in a complete way the remote system; a master device; and a computer for
speech recognition that make the speech recognition together with the natural
language processing so that the operator can command the teleoperated system
using voice commands [5].

2.1 Formal Grammars and Grammatical Inference

We give in this section a short introduction to formal grammars, grammatical
inference and natural language. For a more detailed description we recommend,
for example, [6]. A grammar G is a four-tuple (N,T, P, S) where N and P are sets
of terminals and nonterminals symbols comprising the alphabet of the grammar,
P is a set of production rules, and S is the start symbol of the grammar. The
language L(G) associated to this grammar is the set of strings of the terminal
symbols that the grammar recognizes. We define grammatical inference as the
procedures that can be used to obtain the production rules of an unknown gram-
mar G (the syntax) based on a finite set of strings of L(G) (and possibly also a
finite subset of the complement of L(G)). In this paper we apply grammatical
inference using neural networks in order to learn the syntax of new commands
in a natural language interface to a teleoperated robot.

Natural language processing has traditionally been handled using symbolic
methods and recursive processes. The most used of these symbolic methods are
based on finite-state descriptions such as n-grams or hidden Markov models.
However, finite-state models cannot represent hierarchical structures as found in
natural language commands to a robot. Recurrent and feedforward neural net-
works have been used for several small natural language problems [7], [8]. Also,
in speech recognition some neural network models have been used to account
for a variety of phenomena in phonology, morphology and role assignment [8],
[9]. The main motivation for the work presented in this paper was the fact that
a natural interface to a robot needs to be flexible enough to allow the users to
adapt the underlying system grammar.

Some authors have addressed the problem of induction of simple grammars -
e.g. [10] - and there has been some interest in learning more than regular gram-
mars with recurrent neural networks, such as recursive auto-associative memories
(RAAMs) [11] or recurrent neural networks tied to external trainable stacks [12].
In all these works the grammars learned were not large, while other authors such
as [13] tried to learn considerably more complex grammars. However, in the last
case the obtained grammars where not intuitively interpretable from a logical
point of view. In the practical applications presented in this paper, the phrases
to be analyzed are not too large so we expected that a connectionist architec-
ture can learn the syntax of new commands not included initially in the designed
interface.

In the next sections the results obtained in the training of two categories
of recurrent neural architectures for grammatical inference in the robotic appli-
cation will be described. Section 3 describes the first category of experiments,
performed using simple recurrent networks. In the second category of experi-
ments, described in section 4, a combination of recurrent nets will be used in
order to obtain a “neural” interpretation of the presented command.

3 Simple Recurrent Networks

This section describes the application of three recurrent neural network architec-
tures : (1) totally connected recurrent network [14]; (2) Elman recurrent network
[15]; and (3) Back-Tsoi network [16].

3.1 Network Architectures

Totally Connected Network The architecture of this network consists of
three layers, shown in Figure 2 (left): One input layer in which the code of the
input sentence is introduced; one hidden layer that represents the internal state
of the network; and one output layer where the network stores the result, which
is the feedback toward the nodes in the hidden layer. The output of node k in
the output layer is given by the following expression:

yk = f

(

Nl−1
∑

y=0

wkihi

)

(1)

....

....

....

Z
-1

INPUTS

HIDDEN LAYER

OUTPUTS

....

....

....

Z
-1

INPUTS

HIDDEN LAYER

OUTPUTS

Fig. 2. Totally connected and Elman networks.

where f is a sigmoid function, Nl is the number of nodes of the hidden layer, wki

is the weight of the connection between the node i of the hidden layer and the
node k in the output layer, and hi is the activation of the node i of the hidden
layer which in turn is computed according to the following expression:

hk = f

(

Ne−1
∑

i=0

wkiei +

Ns−1
∑

i=0

vkisi

)

(2)

where ei is the input corresponding to node i in the input layer, si is the activa-
tion of node i in the output layer, wki is the value of the connection between the
node i in the input layer to the node k in the hidden layer, and vki is the value
of the connection between node i in the output layer to node k in the hidden
layer.

Elman Recurrent Network The second network architecture considered for
the learning of the syntax is an Elman recurrent network, also known as simple
recurrent net (SRN) [15]. This network has feedback from each node in the
hidden layer toward all the nodes of the same layer. In Figure 2 an scheme of
this architecture is shown.

The dynamics of this net is given by the following expression:

sk = f

(

D
∑

l=1

wklel +

H
∑

l=0

vklsl(t− 1)

)

(3)

where sk is the activation of the node k in the hidden layer, vkl is the value
of the connection between the node l of the input layer and the node k in the
hidden layer, vkl is the value of the recursive connection between the node 4 of
the hidden layer and the node k of the hidden layer, and sl(t − 1) is the value

of the node l of the hidden layer at the previous discrete time step. Starting
from sk at time t, the output of the net is obtained according to the following
expression:

yp = f

(

H
∑

l=0

v
(2)
lp sl(t)

)

(4)

where vlp is the value of the connection between the node l of the hidden layer
and the node p of the output layer, and sp(t) is the value of the node p of the
hidden layer at the current time step t. The error measure used is the quadratic
error, given by the expression

E(t1, t2) =

t=t2
∑

t=t1

E(t) =

t=t2
∑

t=t1

1

2

M
∑

p=1

(dp(t)− yp(t))
2

(5)

Back-Tsoi Network The third architecture used in the experiments is the FIR
net of Back-Tsoi [16] (FIR, Finite-duration Impulse Response). The basic idea
of this architecture is the inclusion of a FIR and a gain term in each synapsis.
The net has L processing layers, excluding the input layer, without feedback. In
the layer l there exists Nl nodes. The output of the node k in layer l at the time
step t, k = 1, 2, · · · , Nl, l = 0, 1, · · · , L, is given by the following expression:

yl
k(t) = f

(

xl
k(t)

)

(6)

where f is a sigmoid function, computed according to the expression:

xl
k(t) =

Nl−1
∑

i=0

cl
ki(t)

Nb
∑

j=0

wl
kij(t)y

l−1
i (t− j) (7)

3.2 Training and Experiments

The experiments with these three architectures used sets of 124 training com-
mands, positives and negatives. All these commands have been or imperative
sentences or declarative sentences describing situations of the robot’s environ-
ment. The training commands are shown to each one of the nets one to one,
applying the two learning algorithms that are described next for each time of
training. The learning is considered successful when one of the following condi-
tions is completed:

1. The quadratic error is less than an established value.
2. A maximum number of steps is reached, considering in this case that the

net has failed in the learning of the grammar corresponding to the training
samples.

The number of units in the output layer of each net was set to 2. One of these
two units is called the acceptance unit, while the other one is called the rejection

unit. The network is trained in such a way that the desired value of the output
units for a grammatically correct sentence (a positive example) is a value close
to 1 in the case of the acceptance unit and a value close to 0 in the case of the
rejection unit.

For the input to each net pattern, the data are encoded in a window of
fixed size constituted by segments included in c possible clusters, where c is
the number of different grammatical categories (noun, verb, adverb, etc.). The
training samples are labelled using thesse categories. For the training of the nets
two types of algorithms have been used: Backpropagation through time (BPTT)
[18] for the recurrent nets and the classic backpropagation for the non-recurrent
network.

The results obtained for these three networkss are described next. In Table
1 the rates of correct recognition cases are shown on the group of commands
used for training the networks, and in Table 2 the same rates are shown for
commands not presented in the training samples. The experiments corresponding
to Table 2 have been carried out generating 500 commands syntactically correct
or incorrect. The maximum number of iterations in the learning algorithms has
been set to 3500 in all the cases.

Table 1. Successful rates for training commands

Large input window Small input window

Totally connected network 90 95
Elman network 100 100
BT FIR network 100 70

Table 2. Sucessful rates for generalization commands

Large input window Small input window

Totally connected network 50 60
Elman network 70 85
BT FIR network 65 55

The results have been obtained for a window size of 2 words in the case of
the small window, and a size of 8 words for the case of the large window. In
all the cases 10 nodes have been used in the hidden layer. What is interesting
in these experiments is that for the natural language processing task in the
robot’s teleoperation is feasible the use of one of these three nets to extract
new grammatical rules which are added to the rules initially considered in the

teleoperation interface. This property is very useful to make the interface easily
adaptive for the operator.

4 Compound Recurrent Network

Another possibility of using recurrent neural nets for grammatical learning con-
sists on applying the capacity that these systems have to learn distributed codes
of input sequences. Some authors called this approach of obtaining an internal
“neural” code of a data structure holistic computation [1].

4.1 Network Architecture

The general idea of the use of autoassociative nets for syntactic analysis is sum-
marized in Figure 3. Connectionist or neural representations are obtained for the
input sentence and for its syntactic tree. The analysis is then made by a corre-
spondence between the representation of the sentence with the representation of
its syntactic structure (holistic transformation). The input sentence is encoded

RECURSIVE
ENCODING

HOLISTIC
TRANSFORMATION

RECURSIVE
DECODING

Symbolic
representation

of the input
sentence

Symbolic
representation
of the syntactic

structure

Connectionist
representation of
the input sentencde

Connectionist
representation of the
syntactic structure

Fig. 3. Autoassociative nets for syntactic analysis.

using RAAM networks (Recusive Autoassociative Memories) [17]. The encoder
is, therefore, a recursive function that takes as input a vector of [0, 1]N × [0, 1]K .
The implementation of the encoder is carried out as a simple perceptron:

ri(t) = g

N
∑

j=1

W rr
ij rj(t− 1) +

N
∑

j=1

W ru
ik uk(t) + W r

i

 (8)

where W rr
ij are the recursive weights, W ru

ik are the weights connecting the input
and hidden units, W r

i is the bias corresponding to the i-th hidden unit, and g is
a sigmoid function.

The net has, therefore, N + K input units, and N output units. With this
formulation of the encoder, an input sentence i with length Li can be encoded
placing a binary representation of the first terminal symbol in the K first input

units, and a representation of the empty string in the N remaining units. Then,
the encoder produces an internal representation for the first symbol in its N

hidden units. The activations of the hidden units are copied recursively in the
last N input units, placing the representation of the second terminal symbol
of the sentence in the K first input units. This process is repeated until the
encoder has processed all the terminal symbols of the input sentence, obtaining
a representation for the sentence in the N hidden units of the net. The encoder
of the syntactic tree operates in a similar way.

4.2 Training and Experiments

This architecture has been trained with sentences used in the natural language
interface to the robot. A total number of 80 sentences have been used together
with their corresponding syntactic analysis trees. A random subset of 60 sen-
tences has been chosen for training, while the 20 remaining sentences have been
used to check the generalization capacity. The length of the longest sentence has
been of 15 words, and the more complex tree analysis had 5 levels. The net-
work has been trained using the BPTT algorithm [18] for the encoders, and the
standard backpropagation algorithm the net that performs the transformation
between the representation of the input sentence and the representation of the
syntactic analysis tree. The generalization obtained in the experiments has been
of 100 % in all the cases.

Experiments to show the error recovery capability of the network have also
been made. The types of errors that have been introduced in the sentences for
the recovery capacity experiments are the following:

1. Substitution of a input terminal for another terminal that does not make
sense in the sentence. This substitution simulates the situation in which the
voice recognizer fails to recognize a word in the sentence.

2. Insertion of a new terminal symbol in the sentence. This simulates the in-
clusion of some incorrect sound, emitted by the user, and that the voice
recognizer has recognized as the nearest word to the signal received by the
microphone.

3. Deletion of a terminal symbol of the sentence. The recovery of this error
depends on the importance of the terminal eliminated in the semantics of
the sentence.

With these modifications types on the 60 original training sentences, a test set
of 40 sentences has been obtained for each type of errors. These input sentences
are entered to the network that has been trained. In the experiments a sentence
is considered correctly recovered if the two following conditions are completed:
[1]:

1. The generated tree corresponds to a correct sentence from the syntactic point
of view.

2. The sentence corresponding to the tree doesn’t differ much from the erro-
neous sentence.

The second condition is justified since if a small recognition error had taken
place in the sentence, the analysis tree should not differ much from the analysis
tree corresponding to the original sentence without errors. In the experiments,
the condition 2 is considered satisfied if two (sub)conditions are completed:

1. The length of the sentence corresponding to the generated tree is correct or
differs in one symbol from the correct sentence.

2. The maximum number of terminal symbols with errors is 2.

The percentages of recovery errors following the previous conditions is shown in
the Table 3. The best generalization results have been obtained for a total of
N = 9 input neurons.

Table 3. Error recovery rates

Substitution Insertion Deletion

91% 71% 76 %

5 Conclusions

The experiments presented in this paper have shown that the use of autoassocia-
tive networks is useful to obtain additional grammatical rules to those that exist
originally in the grammar, with the objective that the voice interface can adapt
its syntactic structure to new environments or new users. This method is not
considered appropriate to obtaining the initial grammar (and, therefore an ini-
tial grammar design is needed). The experiments also have shown that sentence
encoding using RAAM networks is a quite robust technique for the experienced
task.

In general, the connectionist analyzers can learn the grammatical regularity
that exists in the training sentences in a inductive way. As a consequence, the
application of any explicit analysis algorithm is not assumed. This characteristic
is relevant in natural language phenomena which are difficult to capture with
formal grammars or with transition nets and difficult to analyze with symbolic
algorithms.

The main problem in the applicability of these nets is its lack of scalability to
adapt to complex problems. In spite of this important disadvantage, these tech-
niques are still very useful in the adaptation of the grammars initially designed
in the system. Also, in the teleoperation application, the problem of scalability
lack is more limited because the natural language expressions (commands to the
robot) are not too long.

Acknowledgements

This work has been supported by the Spanish Government inside the Plan Na-
cional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2000-2003
through project DPI2001-3827-C02-02.

References

1. Shin Ho, E.K., Wan, L.C.: How to Design a Connectionist Holistic Parser. Neural
Computation 11, p. 1995-2016 (1999).

2. Lawrence, S., Giles, C.L., Fong, S.: Natural Language Grammatical Inference with
Recurrent Neural Networks. IEEE Transactions on Knowledge and Data Engineer-
ing (2000).

3. Regier, T.: A Model of the Human Capacity for Categorizing Spatial Relations.
Cognitive Linguistics 6-1 (1995), pp. 63-88.

4. Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor,
P., Martin, R., Van Ess-Dykema, C., Meteer M.: Dialogue Act Modeling for Auto-
matic Tagging and Recognition of Conversational Speech. Computational Linguis-
tics 26(3), pp. 339-373 (2000).

5. Ñeco, R.P., Reinoso, O., Garcia, N., Aracil, R.: A Structure for Natural Language
Programming in Teleoperation. In: Proc. of the 6th International Conference on
Control, Automation, Robotics and Vision, Singapur, December 2000.

6. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Prentice Hall. (2000).
7. Stolcke, A.:Learning feature-based semantics with simple recurrent networks, TR-

90-015, ICSI, Berkeley, California (1990).
8. St. John, M.F., McClelland, J.: Learning and applying contextual constraints in

sentence comprehension, Arificial Intelligence 46 (1990) 5-46.
9. MacWhinney, B., Leinbach, J., Taraban, R., McDonald, J.: Language learning: cues

or rules?, Journal of Memory and Language 28 (1989) 255-277.
10. Watrous, R., Kuhn, G.: Induction of finite-state languages using second-order re-

current networks, Neural Computation 4(3) (1992).
11. Sperduti, A., Starita, A., Goller, C.: Learning distributed representations for the

classification of terms. Proceedings of the International Joint Conference on Artifi-
cial Intelligence (1995) pp. 509-515.

12. Zeng, Z., Goodman, R., Smyth, P.: Discrete recurrent neural networks for gram-
matical infence. IEEE Transactions on Neural Networks 5(2) (1994) 320-330.

13. Giles, C.L, Horne, B., Lin, T.: Learning a class of large finite state machines with
a recurrent neural network. Neural Networks 8(9) (1995) 1359-1365.

14. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems
using neural networks. IEEE Trans. on Neural Networks, 1(1):4-27 (1990).

15. Elman, J.L.: Distributed representations, simple recurrent networks and grammat-
ical structure, Machine Learning, 7(2/3):195-226 (1991).

16. Back, A.D., Tsoi, A.C.: FIR and IIR synapses, a new neural network architecture
for time series modelling Neural Computation, 3(3):337–350 (1991).

17. Pollack, J.B.: Recursive distributed representations, Artificial Intelligence, 46, 77-
105.

18. Williams, R.J., Zipser, D.:Gradient-based learning algorithms for recurrent connec-
tionist networks, in Chauvin, Y., Rumelhart, D.E. (eds.), Backpropagation: Theory,
Architecture, and Applications. Erlbaum, Hillsdale, NJ, (1990).

