
SLFD Logic: Elimination of data redundancy
in Knowledge Representation

P. Cordero, M. Enciso, A. Mora, and I.P. de Guzmán

E.T.S.I. Informática. Universidad de Málaga. 29071. Málaga. Spain.
{pcordero,enciso}@uma.es, {amora,guzman}@ctima.uma.es

Abstract. In this paper, we propose the use of formal techniques on
Software Engineering in two directions: 1) We present, within the general
framework of lattice theory, the analysis of relational databases. To do that,
we characterize the concept of f-family (Armstrong relations) by means of
a new concept which we call non-deterministic ideal operator. This charac-
terization allows us to formalize database redundancy in a more significant
way than it was thought of in the literature. 2) We introduce the Substitu-
tion Logic SLF D for functional dependencies that will allows us the design
of automatic transformations of data models to remove redundancy.

Keywords: Intelligent information systems; Database and knowledge-base systems

1 Introduction

Recently, there exists a wide range of problems in Software Engineering which
are being treated successfully with Artificial Intelligence (AI) techniques.Thus, [5,
6] pursue the integration between database and AI techniques, in [15, 17, 21] non
classical logics are applied to specification and verification of programs, [20] shows
the useful characteristics of logic for Information Systems, [11] introduces an au-
tomatic tool that translates IBM370 assembly language programs to C, etc.

Rough set theory [19] can be used to discover knowledge which is latent in
database relations (e.g. data mining or knowledge discovery in database [4, 13]).
The most useful result of these techniques is the possibility of “checking dependen-
cies and finding keys for a conventional relation with a view to using the solution
in general knowledge discovery” [3]. Moreover, in [14] the authors emphasize that
the solution to this classical problem in database theory can provide important
support in underpinning the reasoning and learning applications encountered in
artificial intelligence. The discovery of keys can also provide insights into the struc-
ture of data which are not easy to get by alternative means.

In this point, it becomes a crucial task to have a special kind of formal lan-
guage to represent data knowledge syntactically which also allows to automate
the management of functional dependencies. There exists a collection of equiv-
alent functional dependencies (FD) logics [2, 10, 16, 18, 22]. Nevertheless, none of
them is appropriate to handle the most relevant problems of functional dependen-
cies in an efficient way. The reason is that their axiomatic systems are not close
to automation.



2

In [12, 14, 16], the authors indicate the difficulties of classical FD problems
and they point out the importance of seeking efficient computational methods. In
our opinion, an increasing in the efficiency of these methods might come from the
elimination of redundancy in preliminary FD specification. Up to now, redundancy
in FD sets was defined solely in terms of redundant FD (a FD α is redundant in
a given set of FD Γ if α can be deduced from Γ ). Nevertheless, a more powerful
concept of FD redundancy can be defined if we consider redundancy of attributes
within FDs.

In this work we present an FD logic which provides:

– New substitution operators which allows the natural design of automated de-
duction methods.

– New substitution rules which can be used bottom-up and top-down to get
equivalents set of FD, but without redundancy.

– The FD set transformation induced by these new rules cover the definition of
second normal form. It allows us to use substitution operators as the core of
a further database normalization process.

Besides that, we introduce an algebraic framework to formalize the data redun-
dancy problem. This formal framework allows us to uniform relational database
definitions and develop the meta-theory in a very formal manner.

2 Closure Operators and Non-Deterministic Operators

We will work with posets, that is, with pairs (A,≤) where ≤ is an order relation.

Definition 1. Let (A,≤) be a poset and c : A → A. We say that c is a closure
operator if c satisfies the following conditions:

– a ≤ c(a) and c(c(a)) ≤ c(a), for all a ∈ A.
– If a ≤ b then c(a) ≤ c(b) (c is monotone)

We say that a ∈ A is c-closed if c(a) = a.

As examples of closure operators we have the lower closure operator1. Hereinafter,
we will say lower closed instead of ↓-closed. Likewise, we will use the well-known
concepts of ∨-semilattice, lattice and the concept of ideal of an ∨-semilattice as
a sub-∨-semilattice that is lower closed. Now, we introduce the notion of non-
deterministic operator.

Definition 2. Let A be a non-empty set and n ∈ N with n ≥ 1. If F : An → 2A is
a total application, we say that F is a non-deterministic operator with arity
n in A (henceforth, ndo) We denote the set ndos with arity n in A by Ndon(A)
and, if F is a ndo, we denote its arity by ar(F ).

As usual, F (a1, . . . , ai−1, X, ai+1, . . . , an) =
⋃

x∈X

F (a1, . . . , ai−1, x, ai+1, . . . , an).

1 If (U,≤) is a poset, ↓: 2U→ 2U is given by X ↓=
⋃

x∈X

(x] =
⋃

x∈X

{y ∈ U | y ≤ x}.



3

As an immediate example we have that, if R is a binary relation in a non-empty
set A, we can see R as an unary ndo in A where R(a) = {b ∈ A | (a, b) ∈ R}.
We will use the following notation: R0(a) = {a} and Rn(a) = R(Rn−1(a)) for all
n ≥ 1. Therefore, we say that R is reflexive if a ∈ R(a), for all a ∈ A, and we say
that R is transitive if R2(a) ⊆ R(a), for all a ∈ A.2

Most objects used in logic or computer science are defined inductively. By this
we mean that we frequently define a set S of objets as: “the smallest set of objects
containing a given set X of atoms, and closed under a given set F of constructors”.
In this definition, the constructors are deterministic operators, that is, functions
of An to A where A is the universal set. However, in several fields of Computer
Science the ndos have shown their usefulness. So, the interaction of these concepts
is necessary.

Definition 3. Let A be a poset, X ⊆ A and F a family of ndos in A. Let us
consider the sets X0 = X and Xi+1 = Xi ∪

⋃
F∈F F (Xar(F )

i ) We define the nd-
inductive closure of X under F as C`F (X) =

⋃
i∈N Xi. We say that X is

closed for F if C`F (X) = X.

Theorem 1. Let F be a family of ndos in A. C`F is a closure operator in (2A,⊆).

Example 1. Let (A,∨,∧) be a lattice. The ideal generated by X is C`{∨,↓}(X) for
all X ⊆ A.

3 Non-Deterministic Ideal Operators

The study of functional dependencies in databases requires a special type of ndo
which we introduce in this section.

Definition 4. Let F be an unary ndo in a poset (A,≤). We say that F is a non-
deterministic ideal operator(briefly nd.ideal-o) if it is reflexive, transitive
and F (a) is an ideal of (A,≤), for all a ∈ A. Moreover, if F (a) is a principal
ideal, for all a ∈ A, then we say that F is principal.

The following example shows the independence of these properties.

Example 2. Let us consider the followings unary ndos in (A,≤):

F (x) = {0, x} G(x) = {0} H(x) =
{

(x] if x 6= 0
A if x = 0 0

@@I ���

a b
��� @@I

1

1. F is reflexive and transitive. However, F is not an nd.ideal-o because F (1) is
not an ideal of (A,≤).

2. G is transitive and G(x) is an ideal for all x ∈ A. But, G is not reflexive.
3. H is reflexive and H(x) is an ideal for all x ∈ A. However, H is not transitive

because H(H(a)) = A 6⊆ H(a) = (a].

The following proposition is an immediate consequence of the definition.
2 Or, equivalently, if Rn(a) ⊆ R(a), for all a ∈ A and all n ∈ N r {0}.



4

Proposition 1. Let F be an nd.ideal-o in a poset (A,≤) and a, b ∈ A. F is a
monotone operator of (A,≤) to (2A,⊆).

Proposition 2. Let (A,≤) be a lattice. The following properties hold:

1. Any intersection of nd.ideal-o in A is a nd.ideal-o in A.
2. For all unary ndo in A, F , there exists an unique nd.ideal-o in A that is

minimal and contains F . This nd.ideal-o is named nd.ideal-o generated by
F and defined as F̂ =

⋂
{F ′ | F ′ is a nd.ideal-o in A and F ⊆ F ′}.3

Theorem 2. Let (A,≤) be a lattice.̂: Ndo1(A) → Ndo1(A) is the closure operator
given by F̂ (x) = C`{F,∨,↓}({x}).
Example 3. Let us consider the lattice (A,≤) and the ndo
given by: F (x) = {x} if x ∈ {0, c, d, 1}, F (a) = {b, c} and
F (b) = {0}. Then, F̂ is the principal nd.ideal-o given by:
F̂ (0) = {0}; F̂ (b) = {0, b}; F̂ (x) = A if x ∈ {a, c, d, 1}

We define the following order relation which can be read as
“to have less information that”.

0
���@@I

a b
�

��*
6 6
c d
��� @@I

1

Definition 5. Let (A,≤) be a poset and F,G ∈ Ndo1(A). We define:

1. F 4 G if, for all a ∈ A and b ∈ F (a), there exist a′ ∈ A and b′ ∈ G(a′) such
that a ≤ a′ and b ≤ b′.

2. F ≺ G if F 4 G and F 6= G.

Among the generating ndos of a given n.d.ideal-o we look for those that do not
contain any superfluous information.

Definition 6. Let (A,≤) be a poset and F,G ∈ Ndo1(A). We say that F and
G are ̂ -equivalents if F̂ = Ĝ. We say that F is redundant if there exists
H ∈ Ond1(A) ̂-equivalent to F such that H ≺ F .

Theorem 3. Let (A,≤) be a poset and F ∈ Ndo1(A). F is redundant if and only
if any of the following conditions are fullfilled:

1. there exists a ∈ A and b ∈ F (a) such that b ∈ F̂ab(a), where Fab is given by
Fab(a) = F (a) r {b} and Fab(x) = F (x) otherwise.

2. there exists a, b′ ∈ A and b ∈ F (a) such that b′ < b and b ∈ F̂abb′(a) where
Fabb′ is given by Fabb′(a) = (F (a)r{b})∪{b′} and Fabb′(x) = F (x) otherwise.

3. there exists a, a′ ∈ A and b ∈ F (a) such that a′ < a, b ∈ F̂ (a′) and b ∈ F̂aba′(a)
where Faba′ is given by Faba′(a) = F (a) r {b}, Faba′(a′) = F (a′) ∪ {b} and
Faba′(x) = F (x) otherwise.

We woulkd like to remark the fact that condition 1 is present in the database
literature, but conditions 2 and 3 are stronger than it4.
3 If F, G ∈ Ndon(A) then (F ∩G)(a) = F (a) ∩G(a).
4 In fact, previous axiomatic systems can not remove redundancy from FD sets in such

an easy (and automatic) way.



5

4 Nd.ideal-os and Functional Dependencies

In this section we summarize the concepts that are basic over functional dependen-
cies. The existence of conceptual data model with a formal basis is due, principally,
to H. Codd [7]. Codd conceives stored data in tables and he calls attributes the
labels of each one of the columns of the table. For each a attribute, dom(a) is the
domain to which the values of the column determined by such attribute belong.
Thus, if A is the finite set of attributes, we are interested in R ⊆ Πa∈Adom(a)
relations. Each t ∈ R, that is, each row, is denominated tuple of the relation. If t
is a tuple of the relation and a is an attribute, then t(a) is the a-component of t.

Definition 7. Let R be a relation over A, t ∈ R and X = {a1, . . . , an} ⊆ A. The
projection of t over X, t/X , is the restriction of t to X. That is, t/X(ai) = t(ai),
for all ai ∈ X.

Definition 8 (Functional Dependency). Let R be a relation over A. Any af-
firmation of the type X 7→Y , where X, Y ⊆ A, is named functional dependency
(henceforth FD) over R.5 We say that R satisfies X 7→Y if, for all t1, t2 ∈ R we
have that: t1/X = t2/X implies that t1/Y = t2/Y .
We denote by FDR the following set FDR = {X 7→Y | X, Y ⊆ A,R satisfies X 7→Y }

In an awful amount of research on Data Bases, the study of Functional De-
pendencies is based on a fundamental notion: the notion of f -family (Amstrong’s
Relation) which can be characterized in the framework of the lattice theory (and
without the strong restriction of working at 2U level for a U set with finite cardi-
nality) we present in this section.

Definition 9. Let U be a non.empty set.6 A f-family over U is a relation F in
2U that is reflexive, transitive and satisfies the following conditions:

1. If (X, Y ) ∈ F and W ⊆ Y , then (X, W ) ∈ F .
2. If (X, Y ), (V,W ) ∈ F , then (X ∪ V, Y ∪W ) ∈ F .

Theorem 4. Let A be a non-empty set and F a relation in 2A. F is a f-family
over A if and only if F is a nd.ideal-o in (2A,⊆).

Proof. Let us suppose that F is a nd.ideal-o in (2A,⊆). If Y ∈ F (X) and W ⊆ Y ,
since F (X) is lower closed, we have that W ∈ (Y ] ⊆ F (X). Therefore, the item 1
in definition 9 is true. On the other hand, if Y ∈ F (X) and W ∈ F (V ) then, by
proposition 1, Y ∈ F (X) ⊆ F (X ∪ V ) and W ∈ F (V ) ⊆ F (X ∪ V ). Therefore,
since F (X ∪V ) is an ∨-semilattice, we have that Y ∪W ∈ F (X ∪V ) and the item
2 in definition 9 is true.

Inversely, let us suppose that F is a f -family over A and we prove that F is
a nd.ideal-o in (2A,⊆). Since F is reflexive and transitive, we only need to probe
that F (X) is an ideal of (22A

,⊆) for all X ∈ 2A: the item 1 in definition 9 ensures
that F (X) is lower closed and, if we consider V = X, item 2 ensures that F (X) is
a sub-∪-semilattice.

5 This concept was introduced by Codd in 1970.
6 In the literature, U is finite.



6

It is immediate to prove that, if R is a relation over A, then FDR is a f -family
(or equivalently, a nd.ideal-o in (2A,⊆)) The proof of the inverse result was given
by Armstrong in [1]. That is, given a non-empty finite set, U , for all f -family,
F , there exists a relation R (named Armstrong’s relation) such that F = FDR.
The characterization of f -families as nd.ideal-o.s turns the proof of the well-known
properties of FDR in a trivial matter:
Proposition 3. Let R be a relation over A. Then 7

1. If Y ⊆ X ⊆ A then X 7→Y ∈ FDR.
2. If X 7→Y ∈ FDR then X 7→XY ∈ FDR.
3. If X 7→Y, Y 7→Z ∈ FDR then X 7→Z ∈ FDR.
4. If X 7→Y, X 7→Z ∈ FDR then X 7→Y Z ∈ FDR.
5. If X 7→Y ∈ FDR then X 7→Y−X ∈ FDR.
6. If X 7→Y ∈ FDR, X ⊆ U ⊆ A and V ⊆ XY then U 7→V ∈ FDR.
7. If X 7→Y, X ′ 7→Z∈FDR, X ′ ⊆ XY , X ⊆ U and V ⊆ ZU then U 7→V∈FDR.

Proof. Since FDR is reflexive and lower closed, we have that (X] ⊆ FDR(X).
That is, (1). Since FDR is an ∨-semilattice, we have (2) and (4). Since FDR is
transitive, we have (3). Since FDR is lower closed, we have (5).

(6): Effectively, V
1
∈ FDR(XY )

(2)

⊆ FDR(X)
(1)

⊆ FDR(U).

(7): Effectively, Z ∈ FDR(X ′)
(1)

⊆ FDR(XY )
(2)

⊆ FDR(X)
(1)

⊆ FDR(U). Finally,
by (2), ZU ∈ FDR(U)) and, by (1) we have that V ∈ FDR(U).

5 The FDL and SL
F D

logics

The above algebraic study and, specifically, the notion of nd.ideal-o (as an equiv-
alent concept to the f -family concept) has guided the definition of the Functional
Dependencies Logic (FDL) that we present in this section.

Definition 10. Given the alphabet Ω∪{7→} where Ω is an infinite numerable set,
we define the language LFD = {X 7→Y | X, Y ∈ 2Ω and X 6= ∅} 8.

5.1 The FDL logic

Definition 11. FDL is the logic given by the pair (LFD,SFD) where SFD has
as axiom scheme AxFD : `SF D

X 7→Y, if Y ⊆ X9

and the following inference rules:
(Rtrans.) X 7→Y, Y 7→Z `SF D

X 7→Z Transitivity Rule
(Runion) X 7→Y, X 7→Z `SF D

X 7→Y Z Union Rule

In SFD we dispose of the following derived rules (these rules appear in [18]):
(Rg.augm.) X 7→Y `SF D

U 7→V , if X ⊆ U and V ⊆ XY
Generalized Augmentation Rule

7 If X and Y are sets of attributes, XY denote to X ∪ Y .
8 In the literature, attributes must be non-empty. In FD logic, we consider the empty

attribute (>) to ensure that the substitution-operators introduced in section 5.2 (see
definition 15) are closed.

9 Particulary X 7→> is an axiom scheme.



7

(Rg.trans.) X 7→Y, Z 7→U `SF D
V 7→W , if Z ⊆ XY , X ⊆ V and W ⊆ UV

Generalized Transitivity Rule

The deduction and equivalence concepts are introduced as usual:

Definition 12. Let Γ, Γ ′ ⊆LFD and ϕ ∈LFD. We say that ϕ is deduced from Γ
in SFD, denoted Γ `SF D

ϕ, if there exists ϕ1 . . . ϕn ∈ LFDsuch that ϕn = ϕ and,
for all 1 ≤ i ≤ n, we have that ϕi ∈ Γ , ϕi is an axiom AxFD, or it is obtained by
applying the inference rules in SFD.
We say that Γ ′ is deduced of Γ , denoted Γ `SF D

Γ ′, if Γ `SF D
α for all α ∈ Γ ′

and we say that Γ and Γ ′ are SFD-equivalents, denoted Γ ≡SF D
Γ ′, if Γ `SF D

Γ ′ and Γ ′ `SF D
Γ

Definition 13. Let Γ ⊆LFD we define the SFD-closure of Γ , denoted ClFD(Γ ),
as ClFD(Γ ) = {ϕ ∈ LFD | Γ `SF D

ϕ}

Now is evident the following result.

Lemma 1. Let Γ and Γ ′ ⊆LFD. Then, Γ and Γ ′ are SFD-equivalentes if and
only if ClFD(Γ ) = ClFD(Γ ′).

5.2 The logic SLF D

Although the system SFD is optimal for meta-theoretical study, in this section,
we introduce a new axiomatic system (SL

F D
) for LFD more adequate for the

applications. First, we define two substitution operators and we illustrate their
behaviour for removing redundancy.
Note that the traditional axiomatic system treats the redundancy type described
in the item 1. of the theorem 3. We treat in a way efficient, the redundancy
elimination described in item 2 and 3 of theorem 3.

Definition 14. Let Γ ⊆LFD, and ϕ = X 7→Y ∈ Γ . We say that ϕ is superfluous
in Γ if Γ\{ϕ} `FD ϕ. We say that ϕ is l-redundant in Γ if exists ∅ 6= Z ⊆ X
such that (Γ\ϕ)∪{(X −Z)7→Y } `SF D

ϕ. We say that ϕ is r-redundant in Γ if
exists ∅ 6= U ⊆ Y such that (Γ\ϕ)∪{X 7→ (Y −U)} `SF D

ϕ. We say that Γ have
redundancy if it have an element ϕ that it is superfluous or it is l-redundant or
it is r-redundant in Γ .

The operators that we will introduce are transformations of SFD -equivalence. This
way, the application of this operators does not imply the incorporation of wff , but
the substitution of wffs for simpler ones, with an efficiency improvement 10.

Theorem 5. Given X, Y, Z ∈ 2Ω,

{X 7→Y } ≡SF D
{X 7→(Y −X)} and {X 7→Y, X 7→Z} ≡SF D

{X 7→Y Z}

The following theorem allow us to introduce the substitution operators.

Theorem 6. Let X 7→Y, U 7→V ∈LFD with X ∩ Y = ∅.
10 It is easily proven that the reduction rule and union rule are SFD -equivalence trans-

formations.



8

(a) If X ⊆ U then {X 7→Y, U 7→V } ≡SF D
{X 7→Y, (U − Y )7→(V − Y )}. Therefore,

if U ∩ Y 6= ∅ or V ∩ Y 6= ∅ then U 7→V is l-redundant or r-redundant in
{X 7→Y,U 7→V }, respectively.

(b) If X 6⊆ U and X ⊆ UV then {X 7→Y, U 7→V } ≡SF D
{X 7→Y, U 7→(V − Y )}.

Therefore, if V ∩ Y 6= ∅ then U 7→V is r-redundant in {X 7→Y, U 7→V }.

Proof. (a)
⇒) : 11 ⇐) :
1. X 7→Y Hypothesis 1. U 7→X AxFD

2. (U -Y )7→Y 1, Rg.augm. 2. X 7→Y Hypothesis
3. (U -Y )7→(U -Y ) AxFD 3. U 7→Y 1, 2, Rtrans.
4. (U -Y )7→UY 2, 3, Runion 4. (U -Y )7→(V -Y ) Hypothesis
5. (U -Y )7→U 4, Rg.augm. 5. U 7→V Y 3, 4, Runion
6. U 7→V Hypothesis 6. U 7→V 2, 5, Rg.augm.
7. (U -Y )7→V 5, 6, Rtrans.
8. (U -Y )7→ (V -Y ) 7, Rg.augm.

(b)
⇒) : ⇐) :
1. U 7→V Hypothesis 1. U 7→X AxFD

2. U 7→ (V − Y ) 1, Rg.augm. 2. X 7→Y Hypothesis
3. U 7→Y 1, 2, Rtrans.
4. U 7→(V -Y ) Hypothesis
5. U 7→V Y 3, 4, Runion
6. U 7→V 2, 5, Rg.augm.

The above theorems allow us to define two substitution operators as follows:

Definition 15. Let X 7→Y ∈LFD, we define ΦX 7→Y , Φr
X 7→Y :LFD−→LFD, de-

nominated respectively (X 7→Y )-substitution operator, and (X 7→Y )-right- sub-
stitution operator (or simply (X 7→Y )-r-substitution operator):

ΦX 7→Y (U 7→V ) =
{

(U − Y )7→(V − Y ) if X ⊆ U and X ∩ Y = ∅ 12

U 7→V otherwise

Φr
X 7→Y (U 7→V ) =

{
U 7→(V − Y ) if X 6⊆ U,X ∩ Y = ∅ and X ⊆ UV
U 7→V otherwise

Now, we can define a new axiomatic system, SFDS , for LFD with a substitution
rule as primitive rule.

Definition 16. The system SFDS on LFD has one axiom scheme:
AxFDS : ` X 7→Y , where Y ⊆ X. Particulary, X 7→> is an axiom scheme.

The inferences are the following:
(Rfrag.) X 7→Y `SF DS

X 7→Y ′ , if Y ′ ⊆ Y Fragmentation rule

(Rcomp.) X 7→Y, U 7→V `SF DS
XU 7→Y V Composition rule

(Rsubst.) X 7→Y, U 7→V `SF DS
(U -Y )7→(V -Y ) , if X ⊆ U , X ∩ Y = ∅

Substitution rule

11 In 2 we use X ⊆ U − Y and in 4 we use Y (U − Y ) = UY .
12 Notice that V − Y may be >. In this case we will remove the wff using axiom AxFD.



9

Theorem 7. The SFD and SFDS systems on LFD are equivalent.

Proof. Let Runion be a particular case of Rcomp., then all we have to do is to
prove that (Rtrans.) is a derived rule of SFDS :
1. X 7→Y Hypothesis 6. XY 7→(Z − Y ) 4, 5, Rsubst.
2. Y 7→Z Hypothesis 7. (Y −X) 7→(Y −X) AxFDS

3. X 7→ (Y −X) 1, Rfrag. 8. X 7→(Z − Y ) 3, 6, Rsubst.
4. Y 7→ (Z − Y ) 2, Rfrag. 9. X 7→ZY 1, 7, Rcomp.

5. X 7→> AxFDS 10. X 7→Z 9, Rfrag.

The example 4 shows the advantages of the Φ and Φr operators, and the example
5 show how is possible to automate the redundance remove process.

Example 4. Let Γ = {ab7→c, c7→a, bc7→d, acd 7→b, d 7→eg, be7→c, cg 7→bd, ce7→ag}. We
apply the Φ, and Φr for obtaining a non redundant wffs set and equivalent to Γ .
In the following table, we show by rows how we obtain successively equivalent
wff sets, but with less redundancy. We emphasize with both wffs that allow to

apply the operator. We cross out with �� the removed wff after the application
of the operator. We remark in each row the operator or the rule applied.

Φc 7→a(acd7→b) {ab 7→c, c7→a, bc 7→d,���acd 7→b, d7→eg, be7→c, cg 7→bd, ce7→ag}

Φc 7→a(ce7→ag) {ab 7→c, c7→a, bc 7→d, cd7→b, d7→eg, be7→c, cg 7→bd,���ce7→ag}

Φr
bc7→d(cg 7→bd) {ab 7→c, c7→a, bc7→d, cd7→b, d7→eg, be7→c,���cg 7→bd, ce7→g}

Γ ′ = {ab 7→c, c7→a, bc7→d, cd7→b, d7→eg, be7→c, cg 7→b, ce7→g}

Example 5. Let Γ the FD set showed in the first row of the table.

Φb7→c(bc 7→de)+Runion Γ = {a7→b, b 7→c︸︷︷︸, ae 7→cfh,���bc 7→de︸ ︷︷ ︸, bd7→ce, afh 7→ce,

bcd7→aef}
Φb7→cde(bd 7→ce)13 Γ = {a7→b, b 7→cde︸ ︷︷ ︸, ae 7→cfh,���bd 7→ce︸ ︷︷ ︸, afh 7→ce, bcd7→aef}

Φb7→cde(bcd7→aef)+Runion Γ = {a7→b, b 7→cde︸ ︷︷ ︸, ae 7→cfh, afh 7→ce,����
bcd 7→aef︸ ︷︷ ︸}

Φr
ae7→cfh(b 7→acdef) Γ = {a7→b,����

b 7→acdef︸ ︷︷ ︸, ae 7→cfh︸ ︷︷ ︸, afh 7→ce}

Φr
ae7→cfh(afh 7→ce) Γ = {a7→b, b 7→ade, ae 7→cfh︸ ︷︷ ︸,����afh 7→ce︸ ︷︷ ︸}

Rg.trans. Γ = {a7→b︸︷︷︸, b 7→ade︸ ︷︷ ︸, ae 7→cfh,����afh 7→e︸ ︷︷ ︸}
Γ ′ = {a7→b, b 7→ade, ae 7→cfh}

Due to space limitations, we can not go further into comparison with other
axiomatic systems, nevertheless we would like to remark that SFDS allow us to
design (in a more direct way) an automated and efficient method which remove
redundancy efficiently. In this case, the example 4 taken from [22] requires the
application of seven SFD rules in a non deterministic way.
13 Notice that the Φ operator renders b 7→> and we remove it by using axiom AxFDS .



10

References

1. William W. Armstrong. Dependency structures of data base relationships. Proc.
IFIP Congress. North Holland, Amsterdam, pages 580–583, 1974.

2. Paolo Atzeni and Valeria De Antonellis. Relational Database Theory. The Ben-
jamin/Cummings Publishing Company Inc., 1993.

3. D.A. Bell. From data properties to evidence. IEEE Transactions on Knowledge and
Data Engireering, 5(6):965–968, 1993.

4. D.A. Bell and J.W. Guan. Computational methods for rought classifications and
discovery. J. American Society for Information Sciences, To appear. Special issue
on Data Mining.

5. Elisa Bertino, Barbara Catania, and Gian Piero Zarri. Intelligent Database Systems.
ACM Press. Addison-Wesley, ISBN 0-201-87736-8, 2001.

6. L. E. Bertossi and J. C. Ferretti. SCDBR: A reasoner for specification in the situation
calculus of database updates. In 1st International Conference on Temporal Logic,
Berĺın, 1994.

7. Edgar F. Codd. The relational model for database management: Version 2. reading,
mass. Addison Wesley, 1990.

8. Manuel Enciso and Angel Mora. FD3: A functional dependencies data dictionary.
Proceedings of the Fourth Conference on Enterprise Information Systems (ICEIS).
Ciudad Real, Spain, 2:807–811, 2002 Apr.

9. Manuel Enciso, Carlos Rossi, Juan Manuel Frias, and Angel Mora. Logic modeling
of cooperative database systems. Information Resources Management Association
(IRMA), IDEA Group Publishing, 1999.

10. Ronald Fagin. Functional dependencies in a relational database and propositional
logic. IBM. Journal of research and development., 21 (6):534–544, 1977.

11. Yishai A. Feldman and Doron A. Friedman. Portability by automatic translation: A
large-scale case study. Artificial Intelligence, 107(1):1–28, 1999.

12. Rusell Greiner. Finding optimal derivation strategies in redundant knowledge bases.
Artificial Intelligence, 50(1):95–115, 1991.

13. J. W. Guan and D. A. Bell. Rough computational methods for information systems.
Artificial Intelligence, 105:77–103, 1998.

14. J.W. Guan and D.A. Bell. Rough computational methods for information systems.
Artificial Intelligence, 105:77–103, 1998.

15. Erika Hajnicz. Time structures. formal description and algorithmic representation.
In Lecture Notes in Artificial Intelligence. Num. 1047. Springer-Verlag, 1996.

16. Toshihide Ibaraki, Alexander. Kogan, and Kazuhisa Makino. Functional dependen-
cies in horn theories. Artificial Intelligence, 108:1–30, 1999.

17. Zohar Manna and A. Pnueli. Temporal verification of reactive systems: Safety.
Springer-Verlag, 1995.

18. Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Van Gucht. The structure
of the relational database model. EATCS Monographs on Theoretical Computer
Science, 1989.

19. Z. Pawlak. Rough Set: teoretical aspects of reasoning about data. Kluwer, 1991.
Dordercht, Netherlands.

20. David Robertson and Jaum Agust́ı. Lightweight uses of logic in conceptual modelling.
Software Blueprints. ACM Press. Ed. Addison Wesley, 1999.

21. Alexander Tuzhilin. Templar: a knowledge-based language for software specifications
using temporal logic. ACM Transactions on Information Systems, 13:269–304, July
1995.

22. Jeffrey D. Ullman. Database and knowledge-base systems. Computer Science Press,
1988.


