
The Role of Problem Decomposition in Configuration

Diego Magro
Dipartimento di Informatica, Università di Torino

Corso Svizzera 185; 10149 Torino; Italy
magro@di.unito.it

Abstract. The paper discusses the role of problem decomposition in the auto-
matic configuration task. Configuration problem decomposition is mainly moti-
vated by the need of reducing computational effort, but it is useful also in sup-
porting interactive configuration. Two kinds of problem decomposition are intro-
duced, both exploiting the implicit decomposition provided by whole-part rela-
tion between the components and the subcomponents in a configurable object.
The decomposition policies resulting by combining these two kinds of decompo-
sition are discussed and compared experimentally by usinf PC domain as a test
bed.

1 Introduction

Configuration can be defined as the problem of assembling a set of pre-defined com-
ponents in order to build an artifact that meets a set of requirements. The components
interact in a set of pre-defined ways and during the configuration process no new com-
ponent type can be introduced, neither a component type can be modified.

In recent years many approaches to automatic configuration have emerged [8]. Some
of them make use of CSP framework and its extensions [6, 1, 7, 10] to model and solve
configuration problems; other approaches rely on logical frameworks either derived
from consistency-based diagnosis [2] or from logic programming [9]. Further frame-
works exploit the power of description logics (DL) to represent explicitly the structure
of the entities to be configured as well as the complex relations holding among them [5].

The present paper addresses the issue of decomposing a configuration problem into
a set of (simpler) subproblems; in particular, it introduces two kinds of configuration
problem decomposition, both exploiting the implicit decomposition provided by the
partonomic knowledge (i.e. the whole-part relation between the components and the
subcomponents): requirements-based decomposition and constraints-splitting decom-
position.

Since configuration can be computationally expensive (it is intractable, in the worst
case), one of the main motivations of problem decomposition is controlling complexity,
even if requirements-based decomposition can be useful also in interactive configura-
tion and in the task of checking the consistency of the requirements that a user imposes
on the entity to be configured.

Decomposition mechanisms are introduced in the
�����

framework [4].
�����

is a
KL-One like conceptual language, with a formal DL-based semantics, in which parto-
nomic relations play a major role.

�����
offers the capability of representing explicitly the structure of the configura-

tion domains and of expressing complex constraints that describe intensionally the set
of valid combinations of components and subcomponents in any configurable object.

Preliminary experimental results comparing the decomposition policies (that can be
defined by combining the two proposed kinds of decomposition) are also discussed.

2 Characterizing Configuration Problems

In the following, a conceptual language for modeling configuration domains is briefly
described; moreover, the concept of configuration problem is defined and two different
notions of solution to a such a problem are given.

2.1 The Conceptual Language

In the present paper the conceptual language
�����

(Frames, Parts and Constraints) is
adopted to model the configuration domains. Basically,

�����
is a frame-based KL-One

like formalism augmented with a constraint language.�����
is described here by means of an example. A formal description of the lan-

guage and its semantics can be found in [4].�����
allows one to describe classes of atomic or complex components and to orga-

nize them in taxonomies. Atomic components are the basic building blocks of configura-
tions and they are described by a set of features.

�����
represents such features by means

of descriptive slots associated with the classes of atomic components. Complex compo-
nents are structured entities whose characterization is given mainly in terms of their
(sub)components, which can be complex components in their turn or atomic ones. In�����

, whole-part relations between complex components and their parts are expressed
by means of partonomic slots associated with the classes of complex components.

Figure 1 contains a simplified conceptual model for PC configuration. Each rect-
angle represents a class of complex components, each oval corresponds to a class of
atomic components, each dashed arrow represents a descriptive slot, while each solid
arrow represents a partonomic slot. In the figure it is stated, for instance, that a PC
is a complex object having as direct parts one motherboard (that plays a partonomic
role named �	��
 �), from one to seven hard disks (see the partonomic slot �	��
 �	
),
one or two operating systems (playing a partonomic role named �	��
 ��
) and so on.
Hard disks and operating systems are atomic objects (i.e. they are considered as ba-
sic components in PC configuration), while a motherboard is a complex component. In
fact, its partonomic structure is expressed by means of the partonomic slots �	��
 ���	��� ,�	��
 ��
 , �	��
 ���	� and so on. A main printed circuit board is an atomic component whose
features are described by the descriptive slots ����
���� (whose value is a string), �	�������
(whose value is a real number) and �����	� (that takes value in the set of linguistic entities�� "!� "#%$�&�#(')&+*

) (the descriptive slots for the other classes are not shown in figure).
Each slot has a number restriction and a value restriction. For instance, slot �	��
 �	

has number restriction ,.-(/�0(1 (i.e. it can take from - to 0 values) and value restriction2 ����
 ' ��
43 (i.e. its values belong to the class of hard disks).

has_sc(0;1)

has_m(1;1)

has_c(1;1)

has_cdw(0;1)

has_cdw(0;1)

has_cdw(0;1)

PC

Case

has_os(1;2)

has_mon(1;1)

has_mon(1;1)

has_hd(1;7)

has_asw(0;20)

Application
Software

Unix_SwMS_Sw

Controller
SCSIhas_mpcb(1;1)

has_cs(0;1)

CPUhas_cpu(1;2)

RAM

has_ram(1;4)

Video
Card

has_vc(0;1)Sound
Card

Modem
has_mod(0;1) Motherboard

Network
Interface

has_ni(0;1)

Keyboard

has_k(1;1)

CD_writer

CDW_EIDE CDW_SCSI

CD_reader

CDR_EIDE CDR_SCSI

Monitor

Standard
Monitor

LCD
Monitor

Advanced
Appl. PC

Low Cost PC
has_cdr(0;1)

has_cdr(1;1)

has_cdr(0;1)

CD Tower has_cdr2(0;7)

has_cdw2(0;7)has_cdt(0;1)

Hard Disk

HD
EIDE

HD
SCSI

has_hd(1;7)

stringmodel(1;1)

type(1;1)

price(1;1)
real

{SCSI,EIDE}

Unix

Operating
System

Windows

Main Printed
Circuit Board

MPCB_SCSI MPCB_EIDE

{SCSI}

type(1;1)

{EIDE}

type(1;1)

DOMAIN CONSTRAINTS

Associated with PC class
[co1] (<has_m,has_mpcb>)(in MPCB_EIDE) (<has_hd>)(in HD_SCSI (1;7)) (<has_m,has_cs>)(1;1)
[co2] (<has_asw>)(in Unix_sw (1;20)) (<has_os>)(in Unix (1;2))
[co3] (<has_asw>)(in MS_sw (1;20)) (<has_os>)(in Windows (1;2))

Associated with Advanced Appl. PC class
[co4] (<has_cdw>)(0;0) (<has_cdt,has_cdw2>)(1;7)

Associated with Motherboard class
[co5] (<has_mpcb>)(in MPCB_SCSI) (<has_cs>)(0;0)
[co6] (<has_cpu>)(2;2) (<has_ram>)(4;4)

USER’S REQUIREMENTS FOR an Advanced Appl. PC (REQS)

[req1] true (<has_m,has_mpcb>)(in MPCB_EIDE)
[req2] true (<has_hd>)(in HD_SCSI (1;1))
[req3] true (<has_asw>)(in ApplX (1;1))

5 678
9

:

;<=

>

Fig. 1. A (simplified) conceptual model ?A@CB%D for PC configuration and the user’s requirements

Moreover, the figure shows, for example, that the class of PCs is partitioned into
two subclasses: the one of advanced application PCs and the one of low cost PCs.
Each subclass inherits all the slots of its superclass and it can refine the description
of the superclass by specifying additional (w.r.t. those inherited) slots or by restricting
the properties expressed by the inherited slots. For example, each advanced application
PC can have a CD tower (instead, this is not possible in a low cost PC); moreover, in

general, a PC can have an optional CD reader that can be of type either EIDE or SCSI
(see the partonomic slot E	F�G H�I�J associated with the K�L class), while for an advanced
application PC a CD reader of type SCSI is mandatory (see the same partonomic slot in
the MNI�O(F�PQH�R4ISMUT(T%V.W�K�L class).

In the following, the attention is restricted to partonomic slots only, since in this
framework partonomic knowledge is the basis for problem decomposition.

In a X�Y�Z model, a set (possibly empty) of constraints is associated with each class
of complex components. These constraints restrict the set of valid combinations of
components and subcomponents in complex entities. The conceptual model in figure 1
contains only six of the many constraints present in a real PC configuration domain.
Let us consider constraint H�[�\ . It is associated with the class of PC, thus it holds for
each instance of that class. The three slot chains]�E	F�G ^`_�E	F�G ^�T	H�a�b ,]�E	F�G E	I�b and]�E	F�G ^`_�E	F�G H�G4b , occurring in H�[�\ , denote the main printed circuit board (subcompo-
nent of any PC), the hard disks (direct components of any PC) and the controller SCSI
(optional subcomponent of any PC), respectively. H�[�\ means that ”if in a PC there is an
EIDE main printed circuit board and at least one SCSI hard disk, then a controller SCSI
is needed”. Constraint H�[�c means that ”if in a PC there is at least one Unix application
program, then at least one Unix operating system has to be installed”; an analogous con-
straint for Microsoft application programs and Windows operating systems is expressed
by H�[�d . Constraint H�[�e is relevant to motherboards and it states that ”no controller SCSI
has to be inserted into a motherboard with a SCSI main printed circuit board”; H�[�f states
that any motherboard with c CPUs has to contain four RAM slots. 1

In a X�Y�Z model each subclass inherits the constraints of its superclass and it can
also specify additional constraints w.r.t. those inherited. For example, H�[4g states that in
any advanvanced application PC at least one SCSI CD writer must be present either as a
direct part (slot E	F�G H�I�h) or as a subpart in a CD tower (slot chain]�E	F�G H�I�i4_�E	F�G H�I�hSc(b).

2.2 Configuration Problems and their Solutions

In this context, a configuration problem is a 3-uple L�Kkjl]�L�mn_�L�_�oNp�q�r"b , whereL�m is a X�Y�Z conceptual model, L is a class of complex components most specific
in the L�m taxonomies and oNp�q�r is a set of X�Y�Z constraints whose slot chains start
in L , expressing the user’s requirements. L�K represents the problem of configuring
a complex object of type L (called target object) in such a way that both the user’s
requirements oNp�q�r and the conceptual model L�m are satisfied.

As usual in configuration task, we assume the consistency of L�m , i.e., we assume
that for each class s in L�m , it is possible to determine an instance I of s satifying
both the parto-taxonomic description of s and the constraints occurring in L�m for all
the classes involved in the specification of I .

A complete configuration t solving a configuration problem L�Knjn]�L�mn_�L�_�oNp�q�r"b
is a description of an instance H of L such that: (1) t explicitly lists all the components
occurring in H ; (2) for each component I occurring in t , each slot T associated withH�V�F�G4G(u�I�v in L�m is explicitly instantiated, that is all its values are specified such that

1 This constraint has been inserted in this simplified sample conceptual model because of its
usefulness in the example of section 4.

they respect both the number and the value restrictions of w (x�y�z�{4{(|�}�~ is the taxonom-
ically most specific class in ��� to which } belongs); (3) each constraint stated in��� for the classes of the components occurring in � is satisfied; (4) the requirements�N�����

are satisfied.
As we shall see, in some situations it is useful to be able to introduce into the con-

figuration only those components possibly critical for the satisfaction of the user’s re-
quirements. Thus, in the following the concept of partial configuration is defined.

A partial configuration � solving a configuration problem �����������n����� �N�����"�
is a description of an instance x of � such that: (1) � explicitly lists only the compo-
nents of x possibly critical for the satisfaction of the requirements

�N�����
(i.e. those

components involved in the constraints potentially interfering with the requirements�N�����
); (2) for each component } occurring in � , a slot w associated with x�y�z�{4{(|�}�~

in ��� is explicitly instantiated (such that both its number and value restrictions are
respected) only if it occurs in a constraint potentially interfering with the requirements�N�����

; (3) each constraint stated in ��� for the classes of the components occurring
in � and such that it potentially interferes with the requirements

�N�����
is satisfied; (5)

the requirements
�N�����

are satisfied.
It is worth noting that the partial configuration requires that the description of the

target object x is complete enough to assure that both the requirements
�N�����

and the
constraints stated in ��� and potentially interfering with

�N�����
are satisfied. This is

enough to have the guarantee that each partial configuration � can be extended to a
complete configuration ��� still representing a solution for ��� . In fact, the set of valid
combinations of the components and subcomponents of x that are not explicitly listed
in � is not influenced by the user’s requirements: the consistency of ��� (see above)
assures that this set is not empty.

As we shall see, the bound relation defined in section 2.3 provides a formal charac-
terization of the concept of potentially interfering constraints.

2.3 Recognizing Potentially Interfering Constraints

Partonomic knowledge plays a major role in defining the decomposition mechanisms
since it can be straightforwardly used in recognizing possibly interacting constraints.

We assume that the following exclusiveness assumption on parts holds: in any
configuration � (either complete or partial), a component can not be a direct part of two
different (complex) components, neither a direct part of a same (complex) component
through two different whole-part relations.

Potential interference among constraints is captured by the bound relation. Intu-
itively, two constraints are bound iff the choices made during the configuration process
in order to satisfy one of them may interact with those actually available for the satis-
faction of the second one. If x is a complex component in a configuration, the bound
relation �"� is defined in the set ����� � � �N� |�x�~ of the ����� constraints that x must
satisfy, as follows: let �����%�����`����� � � �N� |�x�~ . If � and � contain both a same parto-
nomic slot w of x�y�z�{4{(|�x�~ then �%����� (i.e. if � and � refer to a same part of x , they are
bound); if �%����� and ���"�4� then �%�"��� (transitivity).

It is easy to see that ��� is an equivalence relation. If � is an equivalence class
in the quotient set ����� � � �N� |�x�~.����� , every constraint in � may interact with any

other constraint in the same class during the configuration process of � . Instead, if �� ¡�¢�£`¤�¥S¦N¤U§ ��¨.©�ª"« is different from ¬ , because of exclusiveness assumption on parts,
the constraints in � and those in ¬ refer to different (sub)parts of � , and thus these two
sets of constraints do not interact each other.

3 The Decomposition Policies

The automatic configuration task can be, in general, computationally expensive. In fact,
the set of constraints specific to the domain and those imposed as additional require-
ments usually link together many components and subcomponents in a configurable
object. Therefore, a configuration can rarely be computed by a process making only a
set of local choices. In most cases, a configuration is built by means of a search process:
when a choice is made for a component during the configuration activity that prevents
another (or even the same) component to be configured, the process backtracks (if pos-
sible), revises a past choice and explores a different path in the search space. In many
cases, this space is quite huge and many paths in it do not lead to any solution. More-
over, even if the domain model is consistent, there is no guarantee that a solution always
exists for each configuration problem, since the user’s requirements can be inconsistent
either by themselves or w.r.t. the domain model.

Controlling complexity is one of the main motivations for decomposing configura-
tion problems even if it is not the only one.

This section introduces two kinds of decomposition of a configuration problem¡�­�®�¯�¡�°n±�¡�±�¦N²�³�¤"´
:

1. Requirements-based decomposition: this decomposition technique decomposes
¡�­

into two subproblems: the subproblem of computing a partial configuration for
¡�­

and
the subproblem of extending this partial configuration in order to compute a complete
one (actually, it is worth noting that in those tasks in which only a partial configuration
is required the latter subproblem do not need to be solved). The ability of individuating
these two subproblems has (at least) four main motivations: (1) given the consistency
assumption of the conceptual model (section 2.2), if

¡�­
has no solution, this is due

to the requirements
¦N²�³�¤

. By first considering the components potentially involved
in the satisfaction of

¦N²�³�¤
(i.e. by first building a partial configuration for

¡�­
), it is

expected that the inconsistency of the requirements can be detected early in the con-
figuration process (saving useless work); (2) even if

¡�­
is consistent, whenever the

configuration process enters a failure state in the search space in which a requirement is
violated, a revision of any choice made for a component that can be recognized a priori
not to be critical for the satisfaction of

¦N²�³�¤
would be useless and it can be easily

avoided by considering such components in a second phase (if needed); (3) if the task
is the consistency testing of

¦N²�³�¤
, the configuration of the whole object would be, in

many cases, a useless effort and the computation of a partial configuration is enough (in
this case, only the first of the two subproblems needs to be solved); (4) when supporting
an interactive configuration, the configurator can not assume that all the requirements
are always known from beginning, since they can be incrementally added by the user. In
this scenario, the configurator should not be too eager to configure the entire complex
object, but it should build only a partial configuration by leaving the user the possibility

Requirements-based
c no reqs c reqs p reqs

Costraints- no co 1 2 4
splitting yes co – 3 5

Table 1. Decomposition policies

of adding some requirements for the components not yet introduced into the (partial)
configuration [3].
2. Constraints-splitting decomposition: in general, many constraints in µ�¶ (both
those occurring in µ�· and those in ¸N¹�º�») can be bound (and thus a choice made
in order to satisfy one of them may restrict the choices available for satisfying another
one). However, in many cases it does not happen that every constraint interacts with
each other and the ability of recognizing the sets of interacting constraints is the basis
for decomposing the whole configuration problem into a set of smaller and independent
subproblems each one relevant to a set of bound constraints.

If there is more than one set of bound constraints, µ�¶ is said to be constraints-
splitting decomposable.

By combining these two decomposition techniques, it is possible to define a set of
decomposition policies. Table 1 summarizes those considered in the present paper (each
number identifies a policy). In this table, ¼ ½Q¾ ¿�À4Á�Â and ¼ ¿�À4Á�Â mean that a complete
configuration is searched for without performing a requirements-based decomposition
(¼ ½Q¾ ¿�À4Á�Â) or by performing such a decomposition (¼ ¿�À4Á�Â); Ã ¿�À4Á�Â means that this
kind of decomposition is used to search for a partial configuration only; Ä(À4Â ¼�¾ means
that a constraints-splitting decomposition is attempted and ½Q¾ ¼�¾ means the opposite.
The ”finer” constraints-splitting decomposition is not attempted when the ”coarser”
requirements-based one is not performed, thus the combination ¼ ½Q¾ ¿�À4Á�Â - Ä(À4Â ¼�¾ is
not considered.

4 An Example

In order to illustrate how the decomposition techniques are used in a configuration
process, let’s consider the configuration problemµ�¶ÆÅÈÇ�µ�·ÊÉ�ËSÌ.ÍNÎ�Ï(Ð�½Q¼�À4Î�ÍUÃ(Ã%Ñ.ÒQ¶�µ�Ì�¸N¹�º�»"Ó , i.e. the problem of configuring an
advanced application PC, given the PC domain µ�·ÔÉ�Ë shown in figure 1 and the user’s
requirements ¸N¹�º�» listed in the same figure (the requirements specify that the PC has
to contain an EIDE main printed circuit board, exactly one SCSI hard disk and the Unix
application ÍUÃ(Ã%ÑÖÕ). Moreover, let’s suppose that policy × (table 1) is adopted. 2

At the beginning of the process only the component Ð�Ð4Ã	¼ (representing the target
object) is inserted into the configuration. The set of constraints that the target advanced
application PC Ð�Ð4Ã	¼ must satisfy is

2 The backtracking mechanism is out of the scope of this paper, thus we describe a particular
case in which the configuration process goes ”straight” to the solution without any backtrack-
ing.

aapc

{req1,req2,co1}
{has_m,has_hd}

a) b)

aapc

{req1,req2,co1}
{has_m,has_hd}

has_m

has_hd

mb

{req1,co1,co5}
{has_mpcb,has_cs}

hd_scsi

c)

aapc

{req1,req2,co1}
{has_m,has_hd}

has_m

has_hd

mb

{req1,co1,co5}
{has_mpcb,has_cs}

hd_scsi

has_mpcb

has_cs

mpcb_eide

c_scsi

e)
unix

aapc has_m

has_hd

mb

hd_scsi

has_mpcb

has_cs

mpcb_eide

c_scsi

has_aswhas_os
applX

T =

d)
unix

aapc

has_aswhas_os
applX

{req3,co2,co3}
{has_asw,has_os}

Fig. 2. A configuration example

Ø�Ù�Ú`Û�ÜSÝNÛUÞ�ß�ß4à	á�âäã�å�æ�ç4è�é(ê�æ�ç4è�ë%ê�æ�ç4è�ì%ê�á�í�é(ê�á�í�ë%ê.á�í�ì%ê�á�í4î%ï
(i.e. it must satisfy all the

domain constraints associated with the ðNñ�ò ß�óQá�ç ñ+ð à(à%ô.õ�ö�Ø class plus the user’s re-
quirements

ÝN÷�ø�Û
). Policy ù makes use of requirements-based decomposition, thus the

set of constraints bound to the requirements is computed:
Ø�Ù�Ú`Û�ÜSÝNÛûúQü"ý�þ"Þ�ß�ß4à	á�âäãå�á�í�ÿ��`Ø�Ù�Ú`Û�ÜSÝNÛUÞ�ß�ß4à	á�â��+Þ��%æ�ç4è����`ÝN÷�ø�Û"â�Þ�á�í�ÿ
	�����
��äæ�ç4è���ïNãå�æ�ç4è�é(ê�æ�ç4è�ë%ê�æ�ç4è�ì%ê�á�í�é(ê�á�í�ë%ê.á�í�ì�ï

; constraint
á�í4î

is not critical for the satisfaction ofÝN÷�ø�Û
, therefore it is not included in

Ø�Ù�Ú`Û�ÜSÝNÛQúQü"ý�þ"Þ�ß�ß4à	á�â
. Moreover, policy ù

requires only a partial configuration, thus
á�í4î

will never be considered (i.e. the subprob-
lem of completing the partial configuration does not need to be solved). The constraints-
splitting decomposition is attempted and

Ø�Ù�Ú`Û�ÜSÝNÛûúQü"ý�þ"Þ�ß�ß4à	á�â
is partitioned into a

set of classes of bound constraints w.r.t. the relation
	�����
��

:
Ø�� Ø�Ù�Ú`Û�ÜSÝNÛUÞ�ß�ß4à	á�âäãØ�Ù�Ú`Û�ÜSÝNÛ	úQü"ý�þ�Þ�ß�ß4à	á�â���	�����
��Nãkå�����ê����4ï

, where
���Sãkå�æ�ç4è�é(ê�æ�ç4ë%ê�á�í�é�ï

and
���Nãå�æ�ç4è�ì%ê�á�í�ë%ê�á�í�ì�ï

.
Ø�ö

is constraints-splitting decomposable, in fact� Ø�� Ø�Ù�Ú`Û�ÜSÝNÛUÞ�ß�ß4à	á�â ��� é
. Each class of bound constraints induces a subproblem.

Figure 2.a reports the subproblem associated with
���

. Only the (sub)components possi-
bly critical for the satisfaction of

�
�
are considered while solving this first subproblem;

therefore only the set
ö Û��äÙNÜSÛUÞ�ß�ß4à	á�âNãlå� 	ß�! "`ê# 	ß�! ñ ï of the partonomic slots

of ðNñ�ò ß�óQá�ç ñ)ð à(à%ô.õ%ö�Ø class occurring in the constraints belonging to
���

are taken
into consideration. The direct components of

ß�ß4à	á
relevant to these slots are then in-

serted into the configuration (i.e. the motherboard
"%$

and the SCSI hard disk
 ñ !4á�!4ÿ :

see figure 2.b).
"%$

is a complex component, hence it has to be configured.
"%$

must sat-
isfy all the constraints that it inherits from

ß�ß4à	á
(i.e. all the constraints in

���
involving

some components of
"%$

), plus the local ones (i.e. those associated with & í�'# 	ç4æ�$�í�ß�æ ñ
class in

Ø &)(�*):
Ø�Ù�Ú`Û�ÜSÝNÛUÞ�"%$�â`ãÈå�æ�ç4è�é(ê�á�í�é(ê�á�í ù ê�á�í�+�ï . All the inherited con-

straints are bound to the requirements, thus all (and only) the local constraints bound
to the inherited ones w.r.t.

	-,/.
have to be considered:

Ø�Ù�Ú`Û�ÜSÝNÛ úQü"ý�þ"Þ�"%$�é4â`ãå�æ�ç4è�é(ê�á�í�é(ê�á�í ù ï (
á�í�+

is discarded, in fact it is not critical for the satisfaction of
ÝN÷�ø�Û

).
Again, only the components of

"%$
relevant to the partonomic slots

ö Û��äÙNÜSÛUÞ�"%$�âAãå� 	ß�! "�à	á�$�ê# 	ß�! á�!�ï
are inserted into the configuration (i.e. the EIDE main printed

circuit board
"�à	á�$ ç4ÿ ñ ç and the controller SCSI

á !4á�!4ÿ
). The partial configuration de-

picted in figure 2.c represents a solution to the subproblem induced by 0�1 . A solution
to the subproblem induced by 0�2 is computed in a similar way (figure 2.d). The two
solutions are then merged to produce a partial configuration solving the whole problem3�4

(figure 2.e).
The final partial configuration 5 describes only a portion of the advanced appli-

cation PC; it is worth noting that in an interactive scenario, the user could specify an
additional set of requirements involving some of those components not explicitly men-
tioned in the partial configuration (e.g. she could state that she wants two CPUs and
no internal CD writer). In this case, the configurator searches for an expansion of the
partial configuration satisfying these new constraints. In this process, no choice relevant
to the partial configuration 5 needs to be revised.

5 Experimental Results

A test set of 6�7�8 configuration problems (containing also some inconsistent problems)
has been designed to test the performance of the different policies w.r.t. the computa-
tional effort. All the problems are relevant to a same real domain of PC configuration.
The configuration system has been implemented in Java using JDK 1.3 and the ex-
periments have been performed on a Duron 700/Windows 2000 PC with 128 Mbytes
of memory. A configuration problem

3�4
is considered solved iff the configurator ei-

ther provides a solution for
3�4

or detects its inconsistency, within the timeout of 360
seconds.

Policy 6 was able to solve only 9�: problems out of 6�7�8 (i.e. its competence was of;�<�= 6�>). For the 9�: solved cases the average computation time was 15016 msec. (with
3494 backtrackings in average). Policy ? obtained much better results, since it solved
6 <�@ problems (i.e. its competence was of 9�6 = 7�>). For the 6 <�@ solved cases the average
computation time was 6�8 @�@�A�= <�B%C�D�E�= (with 6 <�@�@�= ; backtrackings in average). That is,
policy ? was able to solve most of the difficult problems that policy 6 was unable to
solve, without penalizing the average cost.

As concerns the comparison between policies ? and 8 , it came out that their compe-
tence was the same (i.e. they both solved the same 6 <�@ problems), while policy 8 was
slightly better since in average it saved 7 = A > of CPU time and

;�= A > of backtrackings
on the 6 <�@ solved cases. However, the benefits of policy 8 become much more evident
if we compare them on the set of the

< 7 solved problems that were actually constraints-
splitting decomposable. For these problems, policy 8 was able to save in average ?�: = 8�>
of CPU time and a corresponding ?�: = 6�> of backtrackings.

The comparison between policies
<

and 7 gave similar results.

6 Discussion and Future Work

In the present paper, we have described two kinds of decomposition techniques for at-
tacking the problem of automatically decomposing a configuration problem into a set of
independent subproblems. The first one (requirements-based decomposition) is based
on the capability of singling out the (sub)components of the configurable object that are
related to the user’s requirements and by first configuring that portion of the target object

involving these components. The other decomposition technique (constraints-splitting
decomposition) is based on the possibility of partitioning the constraints holding for the
target object into sets of (potentially) interacting constraints. Such constraints partition-
ing induces a decomposition of the main configuration problem into a set of smaller
independent subproblems.

Different decomposition policies obtained by combining these two decomposition
methods have been compared experimentally among them in a real PC configuration
domain. The preliminary experimental results showed that the first kind of decomposi-
tion allows the configurator to solve (within a time threshold of 360 sec.) many difficult
configuration problems that the approach without decomposition was not able to solve
(within the same time threshold). Moreover, the experimental results demonstrate that
further improvements can be obtained by complementing requirements-based decom-
position with constraints-splitting decomposition.

In the experiments, a centralized approach was adopted in which the subproblems
resulting from constraints-splitting decomposition were sequentially considered by a
configurator; further experiments are needed in order to measure the advantages of dis-
tributing these subproblems among a set of configurators running in parallel.

Moreover, many problems in the test set used in the experiments were not constraints-
splitting decomposable. This fact suggests the opportunity of investigating a recursive
constraints-splitting decomposition technique that attempts to partition the constraints
not only in the target object, but also in its components and subcomponents.

References

1. G. Fleischanderl, G. E. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Con-
figuring large systems using generative constraint satisfaction. IEEE Intelligent Systems,
(July/August 1998):59–68, 1998.

2. G. Friedrich and M. Stumptner. Consistency-based configuration. In AAAI-99, Workshop on
Configuration, 1999.

3. D. Magro and P. Torasso. Interactive configuration capability in a sale support system: Lazi-
ness and focusing mechanisms. In Proc. IJCAI-01 Configuration WS, pages 57–63, 2001.

4. D. Magro and P. Torasso. Supporting product configuration in a virtual store. LNAI,
2175:176–188, 2001.

5. D. L. McGuinness and J. R. Wright. An industrial-strength description logic-based configu-
rator platform. IEEE Intelligent Systems, (July/August 1998):69–77, 1998.

6. S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In Proc. of the
AAAI 90, pages 25–32, 1990.

7. D. Sabin and E.C. Freuder. Configuration as composite constraint satisfaction. In Proc.
Artificial Intelligence and Manufacturing. Research Planning Workshop, pages 153–161,
1996.

8. D. Sabin and R. Weigel. Product configuration frameworks - a survey. IEEE Intelligent
Systems, (July/August 1998):42–49, 1998.

9. T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Unified configuration knowledge repre-
sentation using weight constraint rules. In Proc. ECAI 2000 Configuration WS, pages 79–84,
2000.

10. M. Veron and M. Aldanondo. Yet another approach to ccsp for configuration problem. In
Proc. ECAI 2000 Configuration WS, pages 59–62, 2000.

