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Abstract. The Cellular Neural Network (CNN) is a bidimensional ar-
ray of analog dynamic processors whose cells interact directly within a
finite local neighborhood [2]. The CNN provides an useful computation
paradigm when the problem can be reformulated as a well-defined task
where the signal values are placed on a regular 2-D grid (i.e., image pro-
cessing) and direct interaction between signal values are limited within
a local neighborhood. Besides, local CNN connectivity allows its imple-
mentation as VLSI chips which can perform image processing based in
local operations at a very high speed [5]. In this paper, we present a
general methodology to extend actual CNN operations to a large family
of useful image processing operators in order to cover a very broad class
of problems.

1 Introduction

The Cellular Neural Network Universal Machine (CNN-UM) is a programmable
neuroprocessor having real-time power implemented in a single VLSI chip [8].
This neurocomputer is a massive aggregate of regularly spaced nonlinear analog
cells which communicate with each other only through their nearest neighbors.
Local connectivity allows its implementation as VLSI chips that can operate
at a very high speed and complexity [5]. This fact makes the CNN an useful
computation paradigm when the problem can be reformulated as a task where
the signal values are placed on a regular 2-D grid, and the direct interaction
between signal values are limited within a finite local neighborhood [2]. This
cellular structure and the local interconnection topology not only resemble the
anatomy of the retina, indeed, they are very close to the operation of the eye [10],
especially when photosensors are placed over each tiny analog processor. Several
of these tiny processors have been placed on a chip, which is also called visual
microprocessor or cellular processor. In this paper, a methodology to extend
local CNN computation capabilities to a very broad class of global operators is
presented. In Section II, the cellular neural network methematical model and the
architecture of the CNN-Universal Machine prototyping system is introduced, as
well as some standard CNN operators (also called templates). Sections IIT and IV
describe a general method for implementing any type of piecewise-linear output
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Fig. 1. Block diagram of the CNN.

function and how we can perform integral and wavelet transforms on the CNN-
UM framework. In Section V, several examples demonstrating the operation
and run-time of the algorithm are discussed. Finally, Section VI gives a brief
conclusion.

2 Description of the CNN-UM

The CNN-Universal Machine (CNN-UM) architecture [8] is an analogic spatio-
temporal array computer wherein analog spatio-temporal dynamics and logic
operations are combined in a programmable framework. A computational in-
frastructure exists in order to interface this computing analog technology to
digital systems.

The elementary instructions and the algorithm techniques are absolutely dif-
ferent from any digital computers because elementary instructions (templates)
perform complex spatio-temporal nonlinear dynamics phenomena by varying the
local interconnection patterns in the array.

2.1 Nonlinear Dynamics of the Network

CNN dynamics can be electronically emulated by a single capacitor which is
coupled to neighbouring cells through nonlinear controlled sources as can be
seen in Fig. 1. The dynamics of the array can be described by the following set
of nonlinear differential equations
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Input, state and output, represented by u;, ;, %;; and y; jare defined on 0 <
i < Np and 0 < i < Ny and N, represents the neighborhood of the cell with
aradius r as N, = {(k,j) : max{|k — |, |l — j|} < r}. Due to implementability
concerns, the template neighborhood radius is generally restricted to be as small
as possible, and templates are applied in a space-invariant manner (A and B are
the same for every cell).

2.2 TUniversal Machine Capabilities

The elementary image processing tasks performed on the input data by a single
template can be combined to obtain more sophisticated operation mode on the
CNN Universal Machine. The machine uses the simple CNN dynamics (1) in a
time multiplexed fashion by controlling the template weights and the source of
the data inputs for each operation.

The CNN-UM extends the CNN core of each cell in two main parts: (a)the
array of extended CNN cells and (b)the Global Analogic Programming Unit
(GAPU). Several extra elements extend the CNN nucleus (core cell) computa-
tional capabilities to a Universal Machine: (3)4 Local Analog Memories (LAM);
a few continuous (analog) values are stored in the LAM in each cell, (%)4
Local Logic Memories (LLM); several binary (logic) values are stored in the
LLM in each cell, (44)a Local Logic Unit (LLU); a simple programmable multi-
input/single-output analog operations is executed, the input and output is stored
in the LAM, and a (4v)Local Comunication and Control Unit (LCCU) which re-
ceives the messages from the central (global) ”commander”, the GAPU, and
program the extended cells accordingly.

2.3 Local Processing Capabilities

In image processing applications, two independent input signal arrays S;(ij) =
u;,;(£) and S2(ij) = z;,;(0) can be mapped onto the CNN, while the output signal
array S,(ij) is associated with y; ;. The generic input can be time varying, but
the initial state z; ;(0) is usually fixed.

A lot of computational examples about capabilities of image processing on
the cellular neural network can be found in the literature [1], [9], [7]. In the
following one, it will be illustrated how CNN output are exclusively dependenp
on local properties (e.g., average gray level, intensity or texture). The processing
is based on using several templates defined as TEM;, = {A¥; B* I*} where
AFBF are 3 x 3 convolution matrices and I* is a biasing scalar.

From an input image Fig. 2(a), we can perform a linear low-pass filtering by
convoluting with TEM; = {A}; = 0; B}; = 0.1(1 + 82;02;); I* = 0,Vi,5} . Then
we can use the feedback convolution matrix A for thresholding the image by
means of TEM, = {A}; = 26,;00;; B}; = 0; I* = 2z* Vi, j} where 2* is the value
of the threshold. In the following stage, a border extraction template TEM; =
{A}; = 20200 Bl; = —=1(1 + 989;02;); I* = —0.5 Vi, j} is used. It can be noted
how the template extract the binary borders: matrix B controls the dynamics
of the CNN convoluting the input image by a linear high-pass filter. The design



Fig. 2. An example of image processing capabilities on the Cellular Neural Network.
(a)-(b) Input image and output after the low pass filter. (¢c) Thresholding of (b) with
template in the normalized scale [—1,1]. (c) Border detection.

of these templates is based in the geometric aspects of the matrices involved in
the nonlinear differential equation (1).

In these templates it can be seen how both linear classical filtering and dy-
namically evolving templates are based on convolution of a image with a 3 x 3
matrix, this fact makes CNN-UM ill-conditioned for achieving global operations
over the whole image (e.g., integral/wavelet transforms or statistical operations).

3 PWL Approximation on the CNN-UM

When considering the VLSI CNN chip model, we deal with the output function
(1). In this Section, we present a software-based method to implement any non-
linear output function on current CNNUM chips by superposition of simple
piecewise-linear (PWL) saturation blocks in order to approximate any given
continuous functions. This approximation is the basis of a novel method for
accomplishing global operations on the implemented chip.

3.1 Notation
The following notation is used. d;; denotes Kronecker delta, B, , denotes de
open ball B, , := {2 € Z: ||z — 2,|| <r},]|-]| is the weighted Euclidean norm

defined as ||z = (31, r,uizf)l/2 ywi > 0, |||, the weighted infinity norm,
Ah; := hjx1 — by, Xh; := hiy1 + h; and the simbol ’ denotes differentiate on
variable x.

3.2 Infinite Norm Criterion
In this paper, a superposition f(z) of PWL saturation functions is considered
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where y(z) is the function defined in (2); a4, b;, ¢;, m; € IR are the parameters of
the structure. Basically, (3) it is a nonlinear combination of linear affine lines,
m = 1 (@i —¢;) — 1| = |(aiz — ¢;) + 1] ,i € [1,0).

Now, the problem under study can be stated as follows: Given a smooth
function f : S — IR, where S C IR is compact, we want to design a PWL function
f that minimizes the error between them in some sense. Formally, given a fixed
number £ we want to find the optimal parameter vector 8* = [a}, b}, ¢}, m]] that
makes the objective functional J := || flz) — f(x)”oo =¢ Vz € S. The method
used to obtain the PWL function is based on the following

Theorem 1. (Minimaz) Let f(x) be a function defined in the open subset (x;,x;11),
Zi,Ziv1 € IR and P,(z) a polynomial with grade n. Then P,(x) minimizes

|| f(z) — Py(z)|| o if and only if f(x)—P,(x) takes the value e := max(|f(z) — P,(z)|)
at least in n+2 points in the interval (z;, ;1) with alternating sign.

Remark 1. In manifold cases, the condition required by the previous theorem
can be analytically expressed. This is the case when f(z) is a concave or convex
function in the approximating interval.

Theorem 2. Let f(z) be a function with f" > 0 in the interval (z1,%2), 1,22 €
R and Pi(z) := Mz + B. Then P, (z)" minimizes ||f(z) — P (z)||, if and only
if M = Af] Azy; B =L (f(z2) + f(za) — Afi] Azi (2o + 22)] where z, is ob-
tained by solving f'(z,) = Af;/Az;

Proof. Tt follows from minimax theorem that it must be three points 1, 22, 3 in
(%, %i+1) which maximize E(z) := f(z)— P (). This condition implies that x5 is
an intermediate point in the interval (z;, z;41) with E'(z)|,_,, = 0; this is the
same that f'(z)|,_,, = M. Since f"(z) > 0, f'(z) is a growing function strictly
and can equate M only once, this means that z, is the only one intermediate
point in the interval. Thus z; = z;—1 and zs = z;. Applying the minimax
condition, we obtain f(z;) — Pi(z;) = — [f(z2) — Pi(z2)] = f(zir1) — Pr(®iz1)-
By solving these equations we can conclude

Afi Afi

M:A—%,B:%[f(z;z-l—l)'i'f(xa)_A

2
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Corollary 1. Under the previous conditions the infinity norm is given by the fol-
lowing expression ¢ = f(z) — [i’: T+ i (f(xzurl) + f(za:) — ﬁ—ﬁ(wai — 1)

Theorem 3. Let f(z) be a function with f"(x) > 0 in the interval (x4, Ts),
zq, 2y € R, € an arbitrary small real number and f(z) = > ;_, i, where m; :=
% [[(a;z —¢;) — 1] — |(a;z — ¢;) + 1]],% € [1,0]; as, b5, ¢5,m; € R, i € [1,0]. Then
f(z) makes ||f(x) - f(x)”oo = &* minimizing o if the parameters of f(x) fulfill
the following conditions

a; = 2/ A.’L’i, b; = 2/ Afi, c; = E.’L’l/ 2,1 € [1,0’],’

m1:Efi/2—5*,mj:Efj/2—f(xj)—6*,j€[2,a] (4)
! This straight line is called Chebyshev line in the literature.



where x; is defined by the following set of discrete equations

% 1 _ ! _ Afl
€ 3 z; + A—.’I:i(xal -'I"z) f(xaz) =0, f ("I"al) = Az

Proof. In order to demonstrates this theorem we can express 7; as

m; —b; ", Vz € [e; +a; ", 00)

7= mi+ i’: (x —¢), Vz € BCi,ai_l

m; +b;', Vo € (—00,c; —a;!
Replacing the values of the parameters given in the statement of the theorem

&1; (f(m:) —€*), Yz € [e; + a; ', 00)
mi =4 01 (f(ms) —€*) + ﬁ—ﬁ(m —x;), Yz € Bcz,’al_l
61i (f(zs) —€*) + Afi, Vz € (—00,¢; — aj ']

If we consider z, € (;,;+1) and expand f(z,) taking into account the value of
e* and the shape of 7; with the parameters given in the theorem it is obtained

fl@y) =m + 23;21 w5 + mj + Z;Hl 7
= () —e) + S5 Afi+ [ @ - 2y)]
= flz;) —* + 3L (z — ;)

455+ L [f@in) + f(2a) = 32 (@0 + 7is1)]

this is the equation of the Chebyshev line that approximated f(xz) in the interval
(%j,z541) with || f(z) — Pi(z)||,, = €* as it was expressed in corollary 4.

Corollary 2. Since the PWL function is continuous in the intervals (z;, ;1)
and the term %7 11 i 18 null in the ezpansion of f(x,) performed in the pre-
vious proof, it can be affirmed that lima, o f(z; + Azx) = lima, o f(z; — Az),
and f(z) is a PWL continuous function.

Remark 2. Theorem 3 gives us the possibility of approximating any contiuous
function f(x) with f”(z) > 0 by means of a PWL function as defined by f(z)
with an arbitrary infinite norm £*. Besides, the intervals of the approximation
function can be obtained in a forward way if we know the analytical expression
of f(z), by means of solving the uncoupled discrete equations stated at the final
of theorem 3.

The functional proposed in this paper is an alternative to the (f(z) — f(z))?
functional studied in several papers [3], [4]. This cuadratic criterion yields a
nonlinear optimization problem characterized by the existence of several local
minima. One practical technique used to solve this problem consist in the use
of iterative algorithms which produce new random search direction when a local
minimum in reached. This fact emphasize the advantage of the direct method
based on theorem 3 to design the intervals of approximation opposite to the
annealing iterative method needed in the minimization of the cuadratic norm.



3.3 Approximation of Useful Functions

In this point it will be analytically derived the parameter vector #* for several
concrete function that will be used in the process of performing integral trans-
formation on the CNN. In this approximation it will be used a value e* = 27
because of the physical implementation of the CNN-UM chip allows an analog
accuracy of this magnitude.

In the case of f(x) being a logarithmic or exponential functions the discrete
equation in theorem 3 yields the following implicit discrete equations

A.’L'i Alnl o %
In (Alni)+(Axi)xl_ln(xl)_1_26 (5)

Aexp; Aexp;
Az, [ln ( Az, ) +z; + 1] — exp(z;) (6)

where Aln; = In(2;41) — In(z;), Aexp; = exp(z;11)exp(x;) and e* = 277,
Both equation can be easily solved by standard numerical methods in order to
obtain in a sequential and forward way the neighboring points of the intervals
that construct the PWL approximating function f(z). Similar equation can be
obtained for the functions z2? and tan~!(z). The parameter vector defined as
0* := [a}, b7, 1, m, a3,b5, ...] can be easily obtained as it was shown in theorem
3

In(z); @; = {0.368,0.608,1.004, 1.657,2.735} in the interval limited by the
conditions? f(z;) = -1, f(z,) = 1.

— eap(@); @ = {~2,—1.5,—1,—0.310,0.202, 0.610, 0.949, 1.239, 1.699, 1.856, 2}
~ 22, 2; = {0,0.354,0.708, 1.062}

— tan~'(2); & = {0,0.697, 1.425, 2.672, 5.617, 16.963}

3.4 Algorithmic Description of the PWL Approximation

The stages in the approximation process are: (i) modification of the saturation
PWL original saturation as defined in (2) to adopt it to every interval obtained
previously and (i%) superposition of these modified saturation in order to obtain
f(@).

The original saturation function y(z) is modified by the affine transforma-
tion given by b%y(aix — ¢;) + m;. This transformation translates the corners
from (-1,-1) and (1,1) to (¢; — &, mi — ), (¢i + 2, mi + ). This transforma-
tion is performed on the CNN by means of the following two templates run in
a sequential way TEMpy r; = {A}; = 0; BY; = agds;0:); I* = —ager, Vi, j},
TEMpw ks = {A}; = 0; BY; = by, 62;02:); I¥ = my, Vi, j}.

The way to obtain the desired approximating function is by shaping the
output saturation by templates given by TEM pyy 1 ; and TEMpyy 1 o with the
coeficients obtained in the manifold stages needed to approximate the function.

% The reason for selecting these intervals will be shown in the following section.
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Fig. 3. Algorithmic diagram of the Integral Transformation.

Once we have modified the first stage, we apply this shaped output to the input
image and save the result into the LAM, then the second stage is modified and
the same input image is passed through this saturation and the results is added to
the value previously saved in the LAM. Making this process through every stage
we finally obtain the image processed by a point operation that approximately
performs a desired function f(z).

4 Gabor Transform Computation

This Section describes the design of a CNNUM program which compute the out-
put of integral transforms. The base of the algorithm is described in Fig. 3. In
this figure can be seen how the input image is directly irradiated on the Chip sur-
face through the optical devices and sensed by the photosensors implemented on
the silicon. Once we have the image in the LAM I(x,y), we perform the approx-
imation of the logarithmic function In(I(z,y) + 1.5), adding a bias on the whole
image to translate the swing of analog values into the interval (0.5,2.5) where
the logarithmic approximation is valid. Then we add in the LAM the logarith-
mically shaped image with the logarithmic base Biog(z,y) := In(B(z,y) + 1.5),
where B(x,y) is the transformation base used. Then we pass this results through
an exponential approximation stage to obtain

ezp [In(I(z,y) + 1.5) + In(B(z,y) + 1.5)]
= (I(z,y) + 1.5) (B(z,y) + 1.5)
= I(z,y)B(z,y) + 1.5(I(z,y) + B(=,y)) + 1.5

It is easy to correct this result to obtain the product by simply substracting
the term 1.5(I(z,y) + B(z,y)) + 1.52 which is computing scaling the addition
of input and base including a biasing term. Lastly, we perform the averaging
by means of a template that emulated the PDE of temperature diffusion. This
template gives us the value of the correlation between the image and the base



and the value of the transform at the frequency point of the base is directly
calculated.

5 Experimental Results

In this section, it is presented a Gabor transform example providing run-time
of the algorithm. Gabor filters has been used as preprocessors for different tasks
in computer vision and image processing [6]. Gabor filters exists or signal of
arbitrary dimension where an n-dimensional signal is defined to be a mapping
from IR™ to IR or €. For n-dimensional signals, the impulse response g(#) of
a two-dimensional Gabor filter is a complex exponential modulated by an n-
dimensional Gaussian

1

2wo

e~ (& +17)/20% i(Waoz+wy09)

g(z,y) =

which is tuned to spatial frequency (wgo,wyo). This filter responds maximally to
edges which are oriented at an angle 6 = tan™! (wy,/wy,) where 8 is defined to
be an angle between the horizontal axis and the line perpendicular to the edge.

Table 1. Comparision table of execution times of the different imaging processors (grey
scale and 64 x 64 image resolution).

|| Run-time of elementary steps ||| Sub-tasks of the algorithm ||
CNN PC CNN
100nsec |@Q4,1GHz 100nsec
. Logarithmic
I/0 image | 6 psec | 10 psec approgimation 24,4 psec
Conversion Exponential
LLM/LAM 100 nsec approxrimation 61 psec
Binary .
Save/Load 6 psec Biasing 6,1 psec
Arithmetic 100 nsec| 9 psec PDE 8 psec
operation K (Heat dif fusion) K
. Image
Logical 50 nsec | 8 psec LAM transfer 6 psec
Convolution Coef ficient
3% 3 1,4 psec| 32 psec LAM transfer 6 psec

Several illustrative images obtained along the transformation process are
showed in Fig. 3. In table 1, we compare this architecture considering the pro-
cessing time of different elementary steps in CNN and digital technologies. In
our comparison we define equivalent operations between the parallel CNN and
the serial processors.



6 Conclusions

In this paper, it has been introduced the equations that govern the complex
CNN spatio-temporal dynamics and the CNNUM computational infrastructure
implemented on silicon. After this, we have presented a general technique that
allows us to approximate any nonlinear output function on the CNNUM VLSI
Chip. For this purpose, we have given a theoretical analysis of an approximation
technique based on the infinity norm criterion. Also, it has been comment the
advantages of this technique in comparison with the cuadratic error criterion.
Lastly, we have use this technique to implement the algorithm on the fully paral-
lel architecture in order to implement Gabor filters. The main motivation of this
work is to release CNNUM emphanalogic (analog+logic) architecture from using
emphdigital computers when CNN image processing computing capabilities are
unable to perform any required nonlinear filtering step or global transformation.
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