A dialogue manager for accessing databases

Salvador Abreu!, Paulo Quaresma!, Luis Quintano?, and Irene Rodrigues!

! spalpqlipredi.uevora.pt,

Tel: 351 266 745300; Fax: 351 266 745360
Departamento de Informéatica, Universidade de Evora,
7000 Evora, Portugal
2 ljcq@sc.uevora.pt,

Tel: 351 266 745300; Fax: 351 266 745360
Servigo de Computacédo, Universidade de Evora,
7000 Evora, Portugal

Abstract. We present a logic programming based dialogue system that
enables the access in natural language to the heterogeneous external
relational databases of the Evora University.

The proposed system has the capability of inferring user attitudes and
uses ISCO in order to view the University relational databases as a part
of a declarative/deductive object-oriented (with inheritance) database
allowing the mapping of relational tables to classes — which may be used
as logic (Prolog) predicates.

Keywords: dialogue managers, natural language processing, logic program-
ming, knowledge bases.

Topics: Intelligent User Interfaces, Natural Language Processing, Knowledge
Representation.

Session: Paper Track

A dialogue manager for accessing databases

Abstract. We present a logic programming based dialogue system that
enables the access in natural language to the heterogeneous external
relational databases of the Evora University.

The proposed system has the capability of inferring user attitudes and
uses ISCO [2,1] in order to view the University relational databases
as a part of a declarative/deductive object-oriented (with inheritance)
database allowing the mapping of relational tables to classes — which
may be used as logic (Prolog) predicates.

1 Introduction

Over the last couple of years Universidade de Evora has committed itself to
the development of an Integrated Information System (SIIUE) [2]. SIIUE is not
just a set of databases which have information about several aspects of the
University (Academic, Research, etc.) but also a group of applications built to
give that information an easy (read/write) access in conjunction with the ISCO
development tool [2, 1].

The main purpose of the dialogue system presented in this article is to enable
the users — eg. the administration — that are not aware of the University informa-
tion structure to obtain the information they need. For instance, in the context
of the University degrees evaluation the following question could be posed by
the administrative staff in order to evaluate the performance of computer science
professors that teach in the mathematics degree.

Que docentes de informéatica leccionam matemética?
(Which computer science professors teach mathematics?)

This information could be obtained in the University web pages (or with an
SQL or ISCO query) if the staff knows the internal structure of the university
information. The above natural language query will allow the staff to obtain the
answer even when they do not know the information structure.

This query has some ambiguities that our system must resolve before it an-
swers the user. The system is able to dialogue with the user to resolve ambiguities
such as the one introduced by the noun phrase “computer science professors”. In
the context of the University of Evora information system this phrase may refer

tol:

— professors that teach computer science courses

! This example will be detailed in the following sections where we show how is that
our system deals with the problems of this question.

— professors that teach courses from the computer science degree
— professors that belong to the computer science department

The phrase “mathematics” in this context may refer to:

— applied mathematic curriculum
— mathematic teachers curriculum
— mathematic courses

Note that the administrative staff may not be aware of all the possible inter-
pretations of their query. They may not know that the university has two degrees
with the word 'mathematics’ in their name but when they are confronted with
those options they are able to choose the right one.

The remainder of this article is structured as follows: in section 2, the ISCO
language is described. In section 3, the LUPS language is briefly described. In
section 4 the overall structure of the system is presented; section 5 deals with
the semantic/ pragmatic interpretation. In section 6 the dialogue manager is
presented more extensive example is presented and, finally, in section 7 we discuss
some current limitations of the system and lay out possible lines of future work.

2 ISCO

ISCO is anew Logic-Based development language implemented over GNU Prolog
that gives the developer several distinct possibilities, useful for the development
of applications such as SIIUE:

— It gives a simple database structure description language that can help in
database schema analysis. Tools are available to create an ISCO database
description from an existing relational database schema and also the opposite
action.

— View relational databases as a part of a declarative/deductive object-oriented
(with inheritance) database. Among other things, the system maps relational
tables to classes — which may be used as Prolog predicates.

— Gives simple access to arbitrary relational data through ODBC using a
GNU Prolog interface with unixODBC, which has been developed within the
SITUE project. Whenever appropriate, native interfaces to specific databases
have been developed; such is the case for PostgreSQL.

— By virtue of the GNU Prolog implementation base, ISCO applications may
resort to Constraint Logic Programming techniques. More specifically, finite
domain constraints are supported in ISCO queries.

The dialogue modules use ISCO’s capability to establish connections from
Prolog to the relational databases in an efficient way. For example, the following
SQL table:

CREATE TABLE "aluno" (
"numero_aluno" int4 NOT NULL,
"nome" text,
"bi" text,
Constraint "numero_aluno_pkey" Primary Key ("numero_aluno")

);

Maps into the following ISCO class definition, which can be automatically gen-
erated by a support tool:

external (sac,aluno) class aluno.
numero_aluno: int. key.
nome: text.
bi: text.

Class aluno is mapped into clauses for a set of Prolog predicates that imple-
ment the four basic operations: query, insert, update and delete.

Variables occurring in queries are mapped to SQL and may carry CLP(FD)
constraints, which will be expressed in SQL, whenever possible. For example,
suppose variable X is an FD variable whose domain is (1..1000), the query
aluno(numero_aluno = X, nome = Y) will return all pairs (X, Y) where X is
a student registration number and Y is the student’s name. X is subject to the
constraints that were valid upon execution of the query, ie. in the range 1 to 1000.

ISCO class declarations feature inheritance, simple domain integrity con-
straints, global integrity constraints and a comprehensive and simple to express
access-control mechanism.

3 Dynamic LP and LUPS

LUPS (“Language of UPdateS” [3]) is a declarative language for knowledge
updates that describes transitions between consecutive knowledge states. It con-
sists of commands, which specify what updates should be applied to any given
knowledge state in order to obtain the next knowledge state.

The simplest update command consists of adding a rule to the current knowl-
edge state and has the form: assert (L < Li,...,L;). In general, the addition
of a rule to a knowledge state may depend upon some preconditions being true
in the current state. To allow for that, the assert command in LUPS has a more
general form:

assert (L < Ly,...,Ly) when (Lgt1,...,Ly) (1)
The meaning of this assert command is that if the preconditions Lg41,...,Lny
are true in the current knowledge state, then the rule L « Lq,..., L should

hold true in the successor knowledge state. The added rules are inertial, i.e.,
they remain in force from then on by inertia, until possibly defeated by some
future update or until retracted.

However, in some cases the persistence of rules by inertia should not be
assumed. Take, for instance, an user utterance. This is a one-time event that
should not persist by inertia after the successor state. Accordingly, the assert
command allows for the keyword event, indicating that the added rule is non-
inertial.

assert event (L < L1,...,Lg) when (Lgy1,...,Lm) (2)

In order to specify persistent update commands (which are called update laws)
it exists the syntax:

always [event] (L < L1, ...,L;) when (Lgy1,..., L) (3)

4 Natural Language Dialogue System

As was already stated the main goal of this work was to build a system that
could get a Portuguese natural language sentence sent by a user through a web
interface and respond accordingly.

To answer the question/sentence the system has to pass it from a web-based
interface to a GNU Prolog/ISCO active process (A), the process must analyze
the sentence accessing the relational database(s) when needed to get or check
any information (B) and finally when acquiring all needed information, it has to
build a comprehensive answer and pass it to the web-based interface (C).

GnuProlo
User + g

ISCO

Relational
Databases

Fig. 1. Simplified SITUE-NL system architecture

The processement of a natural language sentence is split in four subprocesses:
Syntax, Semantics, Pragmatics, Dialogue manager

The user sends the question about the information that exists in the SITUE.
For that he/she uses a web-based interface using the scripting language PHP
and the tools available by the php module of ISCO.

The question is then sent to an active Prolog process that already knows
all the relational database structure to be used. ISCO manages the conversion
of that structure to Prolog predicates that can access the relational databases
through SQL primitives as selects, inserts, updates or deletes. In our case, as
we’re facing a querying system we only need to use selects.

Besides all database structures, this Prolog process does all syntactic, seman-
tic and pragmatic analysis. After analyzing the sentence received, the process
has to generate an adequate answer, which will be shown to the user through
the web interface.

Syntax Analysis The syntactic interpreter was built using Chart Parsers[4]. This
is one of many techniques to build syntactic interpreters. The decision of devel-
oping the interpreter using this technique was mainly because chart parsers can
parse incomplete sentences. The user can place complete or incomplete questions
and the system must be able to answer them accordingly, so the need to parse
incomplete sentences is essential.

The interpreter also uses a lexicon to identify the syntactic properties of
the words in the sentences. For that the interpreter is connected with a rela-
tional database (Polaris) which has syntactic (and semantic) information about
Portuguese words. This integration is possible through ISCO because this tool
already knows the Polaris database structure and can access it through ODBC.

This module will produce an output that consists in a list with all possible
syntactic representations of the sentence placed by the user. As an example, if
the user placed the following sentence as input to the system:

"Que docentes de informaética leccionam a matemaética?"

(“Which computer science professors teach mathematics?”)

The syntax module will return a list with the sentences’ syntactic parse:

phrase([np([det(que,_+_+_), n(’docente’,3+p+m),
pp(de,np([name(’informatica’,3+s+£)]1))1),
vp(v(’leccionar’,3+p+_)),
args_v([np([name(’matematica’,3+s+£)]1)]1)]).
%(phrase([np([det(which,_+p+_), n(’professor’,_+p+m),

% pp (of ,np([name (’ computer science’,_+s+m)]))]),
% vp(v(’teach’,3+p+_)),
% args_v([np([name(’mathematic’,_+p+m)])]1)]1).)

Semantic Interpretation The syntactic parsing output will be sent to the se-
mantic module. This module will get the syntactic structure and rewrite it in a
First-Order Logic. The technique used for this parsing is based on DRS’s (Dis-
course Representation Structures)[6].

This technique identifies triggering syntactic configurations on the global
sentence structure, which activates the rewriting rules. We always rewrite the
pp’s by the relation ’rel(A,B)’ postponing its interpretation to the semantic
pragmatic module.

This module returns a DRS build with two lists, one with the new sentence
rewritten and the other with information about the referents that were created
in this analysis.

For instance, if this module receives the syntax module output presented in
the previous sections it will return as semantic representation of the sentence
the expression:

professor(A), name(B, ’computer science’), name(C,’mathematics’),
rel(A,B), teaches(A,C).

and the list with the discourse referents:

1

[ref (A,p+_+_,which) ,ref(B,s+_+_,undef) ,ref (C,p+_+_,undef)]

5 Semantic/Pragmatic Interpretation

The semantic/pragmatic module receives the sentence rewritten (into a First
Order Logic form) and tries to interpret it in the context of the SITUE databases
information.

In order to achieve this behavior the system tries to find the best expla-
nations for the sentence logic form to be true in the knowledge base for the
semantic/pragmatic interpretation. This strategie for interpretation is known as
“Interpretation as abduction” [5].

The knowledge base for the semantic/pragmatic interpretation is built from
the ISCO description of the SITUE databases. The Kb rules are generated from
the databases descriptions. This process was described in detail in [9)].

From the description of the relation si_teaches the KB has rules for the
interpretation of the predicates: teaches(A,B) and rel(A,B).

class si_teaches.
lecture: si_individual.id.
degree: si_degree.code.
course: si_course.code.
year: int.

The rules in semantic/pragmatic Knowledge base are like the one below and
they enable the interpretation of a sentence like “lecture teaches course” as the
ISCO expression si_teaches(course = B, lecturer = A).

rel(A,B) <-
si_lecturer(A),
si_course(B),
abduct (si_teaches(course = B, lecturer = A)).

During the semantic/pragmatic interpretation the evaluation of a predicate
like “si_course(A)” is done by an access to the relational databases through
ISCO. The result of such an evaluation is the constraint of variable A to database
identifiers of objects from class course.

The interpretation of names (eg. name(A,mathematics)) is done by accessing
the SITUE in order to collect in (constraint) A all entity identifiers that have in
their name the word 'mathematics’.

The result of interpreting the sentence represented by:

professor(A), name(B, ’computer science’), name(C,’mathematics’),
rel(A,B), teaches(A,C).

[ref (A,p+_+_,which) ,ref (B,s+_+_,undef) ,ref (C,p+

+_,undef)]
is the following ISCO expressions:

1. teaches(lecturer=A course=B,degree=C)
— A=_#(7001...7852) — A is constraint to all lectures
— B=_#(1046..1049:1345:1456..1457) — B is constraint to courses that
have in their name the expression ’computer science’
— C=_#(3046:3123) — C is constraint to degrees with the word ’mathe-
matics’ in their name.
2. teaches(lecturer=A:,course=C:,degree=B:)
— A=_#(7001...7852) — A is constraint to all lectures
— B=_#(3012) — B is constraint to degrees with the word ’computer science’
in their name.
— C=_#(1265..1281:1431:1454..1455:1784:1791) —is constraint to cour-
ses that have in their name the word 'mathematics’.
3. department(key=B:, lecturer=A:), teaches(lecturer=A: ,degree=C:)
— A=_#(7001...7852) — A is constraint to all lectures
— B=_#(101) — B is constraint to departments with the word ’computer
science’ in their name.
— C=_#(3046:3123) — C is constraint to degrees that have in their name
the word 'mathematics’.
4. department(key=B:, lecturer—A:), teaches(lecturer=A:,course=C:)
— A=_#(7001...7852) — A is constraint to all lectures
— B=_#(101) — B is constraint to departments with the word ’computer
science’ in their name.
— C=_#(1265..1281:1431:1454..1455:1784:1791) — C is constraint to
courses that have in their name the word 'mathematics’.

The above ISCO expression contains the possible interpretations of the sen-
tence in the context of the University information.

6 Dialogue Manager

The Dialogue Manager must disambiguate the sentence possible semantic prag-
matic interpretations. It has to recognize the speech act associated with the
sentence (in this domain it can be an inform, a request, or a askif speech
act), to model the user attitudes (intentions and beliefs), and to represent and
to make inferences over the dialogue domain.

This task is achieved through the use of a logic programming framework rules
and the LUPS language (see [8, 7] for a more detailed description of these rules).

For instance, the rules which describe the effect of an inform, a request, and
a ask-if speech act from the point of view of the receptor are:

always bel(A,bel(B,P)) when inform(B,A,P)
always bel(A,int(B,Action)) when request(B,A,Action)
always bel(A,int(B,inform-if(A,B,P))) when ask-if(B,A,P)

In order to represent collaborative behavior it is necessary to model how
information is transferred between the different agents:

always bel(A,P) when bel(A,bel(B,P))
always int(A,Action) when bel(A,int(B,Action))

These two rules allow beliefs and intentions to be transferred between agents
if they are not inconsistent with their previous mental state.

There is also the need for rules that link the system intentions and the
databases accesses:

always yes(P) < query(P), one-sol(P) when int(A, inform-if(A, B, P))
always no(P) + query(P), no-sol(P) when int(A, inform-if(A, B, P))
always clarif(P) + query(P), n-sol(P) when int(A, inform-if(A, B, P))

These three rules update the system’s mental state with the result of access-
ing the databases: yes, if there is only one solution; no, if there are no solutions;
and clarification, if there are many solutions (the predicates that determine the
cardinality of the solution are not presented here due to space problems, but
there implementation is quite simple).

After accessing the databases, the system should answer the user:

always confirm(A,B,P) when yes, int(A, inform-if(A, B, P))

always reject(A,B,P) when no, int(A, inform-if(A, B, P))

always ask-select(A,B,C) « cluster(P,C) when clarif(P), int(A, inform-
if(A, B, P))

The first rule defines that, after a unique solution query, the system confirms
the answer. The next rule defines that, after a no solution query, the system
rejects the question. The last rule defines that, after a multiple solution query,
the system starts a clarification answer, asking the user to select one of the
possible solutions. In order to collaborate with the user we have defined a cluster
predicate that tries to aggregate the solutions into coherent sets, but its complete
definition is outside the scope of this paper.

Considering the question:

Which computer science professors teach mathematics?

As we presented in the previous section the semantic/pragmatic interpreta-
tion will give rise to the following expression:

R = [ref(A,p+_+f_,which),ref(B,s+_+_,undef) ,ref(C,p+_+_,undef)]

- - =

v= [(A1,B1,C1),(A2,B2,C3),(A3,B3,C3),(A4,B4,C4)]

I = [si_teaches(lecturer=A1, course=Bl, degree=C1),

si_teaches(lecturer=A2, course=C2, degree=B2),

(si_department (key=B3, lecturer=A3),
si_teaches(lecturer=A3, degree=C3)),

(si_department (key=B4, lecturer=A4),
si_teaches(lecturer=A4, course=C4))]

After having the sentence re-written into its semantic representation form, the
speech act is recognized and we’ll have:

ask-if (user, system, [R,V,I])
Using the "ask-if" and the transference of intentions rules we’ll have:
int (system, inform-if (system, user, [R,V,I])).

Now, using the rules presented in the previous section, the system may access
the databases (using the ISCO modules). The first step is to decide what is the
meaning of the user sentence since there are four possible interpretations for
each discourse referent (the V' list has four elements). Using the following rule,
the system is able to detect if there are many possible interpretations, and to
obtain, for each referent variable, its respective classes. Then, it will ask the user
to disambiguate the question:

always ask-select(A,B,[VC,R,V.I]) + int(A, inform-if(A, B, [R,V,I])),
cardinality (V,N), N > 1, get classes(V, VC).

get _classes is a predicate that obtains the set of possible classes for each variable
referent. For instance, in our example we have:

get_ classes([(A1,B1,C1),(A2,B2,C2),(A3,B3,C3),(A4,B4,C4)], [([lecturer],
[course, degree, department], [degree, course])])

The ask _select predicate chooses the first referent variable which has more
than one possible class (B in the example) and, as a consequence, the dialogue
system is able to ask if the user wants ’computer science’ to refer to:

— course
— degree
— department

Suppose the user selects the option department. In this situation, there are
two possible options for variable C': degree and course. The system will ask again
the user to select the class of variable C'. Suppose the user selects degree. Now,
there is only one possible interpretation.

I = [teaches(lecturer=A, degree=C), department(key=B, lecturer=A)]

After having disambiguated the question interpretation, the system will use
the rule presented previously and it will access the databases: query(I)

Suppose there are two possible solutions for the variable referent C': one for
the degree of "Applied Mathematics" and another for "Mathematic Teachers".
In this situation the n_sol predicate holds and the system will start a clarify
interaction (using the ask select rule and the cluster predicate):

ask-select(system, user, ["Applied Mathematics", "Mathematic Teachers"]).

Now, suppose the user answers "Applied Mathematics". Using the inform
and the transference rules, the system is able to add the information to the
constraints of the current question and to, finally, answer the user question.

7 Conclusions and Future Work

The dialogue system described in this paper is still in an experimental stage and
it has not been tested in "real" situations. We intend to have it available to all
users using the University’s internal web interface, via Universidade de Evora’s
web page (http://www.uevora.pt/) in a short period of time.

Clearly, and due to its complexity, all modules have aspects that may be
improved:

— The syntactical coverage of the Portuguese grammar

— The coverage of the semantic analyzer (plurals, quantifiers, ...)

— The capability of the dialogue manager to take into account previous inter-
actions and the user models

References

1. Salvador Abreu. Isco: A practical language for heterogeneous information system
construction. In Proceedings of INAP’01, Tokyo, Japan, October 2001. INAP.

2. Salvador Pinto Abreu. A Logic-based Information System. In Enrico Pontelli and
Vitor Santos-Costa, editors, 2"¢ International Workshop on Practical Aspects of
Declarative Languages (PADL’2000), volume 1753 of Lecture Notes in Computer
Science, pages 141-153, Boston, MA, USA, January 2000. Springer-Verlag.

3. J.J. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przymusinski, and P. Quaresma.
Preliminary exploration on actions as updates. In M. C. Meo and M. Vilares-Ferro,
editors, Procs. of the 1999 Joint Conference on Declarative Programming (AGP’99),
pages 259-271, L’Aquila, Italy, September 1999.

4. Gerald Gazdar and Chris Mellish. Natural Language Processing in PROLOG.
Addison-Wesley, 1989.

5. Jerry Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. Interpretation as
abduction. Technical Report SRI Technical Note 499, 333 Ravenswood Ave., Menlo
Park, CA 94025, 1990.

6. H. Kamp and U. Reyle. From Discourse to Logic. Kluwer, Dordrecht, 1993.

7. P. Quaresma and J. G. Lopes. Unified logic programming approach to the ab-
duction of plans and intentions in information-seeking dialogues. Journal of Logic
Programming, 54, 1995.

8. Paulo Quaresma and Irene Rodrigues. Using logic programming to model multi-
agent web legal systems — an application report. In Proceedings of the ICAIL’01 -
International Conference on Artificial Intelligence and Law, St. Louis, USA, May
2001. ACM. 10 pages.

9. Luis Quintano, Irene Rodrigues, and Salvador Abreu. Relational information re-
trieval through natural lanaguage analysis. In Proceedings of INAP’01, Tokyo,
Japan, October 2001. INAP.

