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Abstract. In this paper we propose a multivaluated recurrent neural
network for vector quantization where the synaptic potential is given
by a weighted sum of values of a function that evaluates the consensus
between the states of the process units. Each process unit presents the
state with the largest activation potential, that is, it depends on the state
of the nearest process units (more strongly connected according to the
synaptic weights). Like Hop ēld network, it uses a computational en-
ergy function that always decreases (or remains constant) as the system
evolves according to its dynamical rule based on an energy function that
is equivalent to the distortion function of the vector quantization prob-
lem. It does not use tuning parameters and so it attains computational
e±ciency.

1 Introduction

Vector Quantization (VQ) is a well known technique that has been studied in
a variety of contexts but most prominently for signal coding. In particular for
speech coding and for image and video coding. In VQ the input space is divided
into a number of distinct regions, and for each region a reproduction (reconstruc-
tion or prototype) vector is de¯ned [5]. When the Euclidean distance is used as
a similarity measure to decide on the region to which that input belongs, the
quantizer is called Voronoi quantizer. However, practical use of VQ techniques
has been limited because of the prohibitive amount of computation associated
with existing algorithms. Artī cial Neural Networks (ANN) with unsupervised
learning have been succesfully applied to pattern recognition and signal detec-
tion problems. One objective of using unsupervised learning is to de¯ne the
classes or categories of the input data. These categories have to be discovered
by the network on the basis of correlations or similarity measures. A number of
competitive learning (CL) algorithms have been proposed for constructing VQ,
[1], [3], [7], [9], [12] . The major objective of the CL algorithms is to e®ectively
utilize the neural units as much as possible so that the average distortion for
quantizing the input data can be minimized.
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On the other hand, clustering is de¯ned as the partitioning of data into
classes with similar characteristics. This is done by allowing data samples with
common attributes to be grouped into the same class. In [11] the relationship
between clustering and vector quantization is shown; the problem of selecting a
clustering based on the least sum of squares becomes the problem of selecting
the reproduction codebook.

When the Euclidean distance is used then competitive neural networks can
be used for clustering and the synaptic vectors give us the prototypes (centroids).

In this paper, we propose a recurrent neural networks that could be used
with any similarity measure. Moreover, it evolves according to a dynamical rule
so that the distortion function (computational energy function) always decreases
(or remains constant).

This paper is organized as follows; in section 2 we brie°y describe the basic
theory of Vector Quantization. In section 3 we present our multivalued recurrent
neural network in order to be applied to Vector Quantization. The e®ectiveness
of the proposed model for a synthetic data set, real-world data (Anderson's
IRIS data) and for uniformly generated data is shown in section 4. Finally, the
conclusions are given in section 5.

2 Vector Quantization

Next a basic de¯nition of VQ and the structural properties are presented. They
are independent of any statistical considerations or distortion measures.

De¯nition 1
A vector quantizer Q of dimension k and size N is a mapping from a vector

in a k-dimensional Euclidean space, <k, into a ¯nite set C = (y1; y2; : : : ;yN )
containing N outputs or reproduction points, called code vectors yi 2 <k for
each i 2 f1; 2; : : : ; Ng. The set C is called the codebook.

Given a sample xj 2 <k , j 2 f1; 2; : : : ; ng, a quantizer with size N is optimal
if it minimizes the distortion function between those input vectors xj and the
reproduction vectors y i, i 2 f1; 2; : : : ; Ng.

The problem of ¯nding an optimal quantizer can be expressed as

Minimize E(y1; y2; : : : ; yN ) =
NX

i=1

X

j2Ri

kxj ¡ yik2 (1)

Each N points vector quantizer has associated a partition of <k into N
disjoint and exhaustive regions or cells, Ri for i 2 f1; 2; : : : ; Ng. The ith cell is
de¯ned by

Ri = fx 2 <k : Q(x) = yig; (2)

For a given partition fRi ; i = 1; 2; : : : N g, two necessary conditions to opti-
mum code vector are (see [5]):

{ C1) Centroid condition:

yi =
P

j2Ri xj
jRi j
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{ C2) Voronoi partition (competitiveness):
For a ¯xed representative vectors, (y1; y2; : : : ; yN ), the optimal partition
should be constructed in such a manner that

Q(x) = yi , kx ¡ yik · kx ¡ yrk; 8r6= i

The problem (1) can be formulated in an alternative way and that is estab-
lished in the following proposition:

Proposition 1
The problem (1) is equivalent to ¯nd the partition fC1;C2; : : : ;CNg of the

input vector set fx1; x2; : : : ; xng that minimizes the expression

E =
NX

i=1

1
jCij

X

r;s2Ci
r<s

kxr ¡ xsk2 (3)

Proof:
It is easy to see that

1
jCi j

X

r;s2Ci
r<s

kxr ¡ xsk2 =
X

j2Ci
kxj ¡ yik2:

In the following section a recurrent neural network is proposed in order to
solve the above problem.

3 Multivalued Neural Network

3.1 Topology

The principal characteristics of our multivalued neural model H are

{ The state of the neuron i is characterized by its output. So, the global state of
the network with n neurons is determined by its state vector (x1; x2; : : : ; xn).

{ The neurons outputs belong to a given set M where M can be <, <L,
f1;2; : : : ; Ng or even a symbolic set.

{ The network is fully connected and a weight wij 2 < is associated to each
connection. The matrix of weights W = (wij ) is symmetric.

{ Each state of the network has an associated energy given by

E = ¡1
2

NX

i=1

1
PN

j=1 S(xi ; xj )

NX

j=1

wijS(xi; xj) (4)

where wij measures the in°uence of neuron i into neuron j and the appli-
cation S : M £M ! <+ measures the matching between the outputs of
neurons i and j.
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The state of a neuron i indicates the group where the vector xi is assigned. So
a con¯guration of the network (x1; x2; : : : ; xi ; : : : ; xn) re°ects the group where
each vector x i 2 <k in the sample is assigned.

The outputs of the neurons belongs to the setM = f1; 2; : : : ; Ng where N is
the size of the quantizer. It means that when xi = j, j 2 M, then the network
assigns the sample vector xi to the group j.

Each state of the network has an associated energy given by (4) where the
function S is given by (5), it establishes the consensus between the state of the
neurons.

S(xi ; xj ) =
n 1 if xi = xj

0 otherwise.
(5)

In next section a computational dynamics is proposed where the computa-
tional energy function decreases. The network will evolve using that computa-
tional dynamics in order to get a maximum decrease in the energy associated to
the con¯guration of the network at each step.

If each con¯guration of the network is associated with a possible solution for
the Vector Quantization problem then the network will look for a con¯guration
that minimizes the expression (3). So, the synaptic weights are identi¯ed as
wij = ¡kxi ¡ xjk.

3.2 Computational Dynamics

Let xr(t) be the state of neuron r at time t, xr(t) 2 f1; 2; : : : ; Ng, and let
x(t) = (x1(t); x2(t); : : : ; xn (t)) be the global state of the recurrent network at
time t. In order to de¯ne a dynamics two concepts are used: the synaptic potential
hr and the activation potential h¤r of neuron r.

De¯nition 2
The synaptic potential hr of neuron r is de¯ned by the expression

hr(x1(t); x2(t); : : : ; xN (t)) =
NX

j=1

wrjS(xr(t); xj(t))

where a pair of neurons r and j in the network are connected by a synaptic
weight, wrj , which specī es the contribution of the output signal xr(t) of neuron
r to the synaptic potential acting on neuron j, and the function S is a function
that measures the consensus between the states of the neurons.

De¯nition 3
The activation potential ¢hr of neuron r when xr(t) = b, is de¯ned by

¢hbr(t) =
1

1 + jCbj
[hr(t)¡ µb]

where

µb =
1
jCbj

X

i2Cb

1
2
hi(t) and Cb = fi 2 f1; 2; : : : ; Ng : xi(t) = b; i6= rg



Lecture Notes in Computer Science 5

Note that µb is a half of the mean synaptic potential of neurons in state b.
If the neuron r is selected at time t, its state will be modi¯ed according to

the deterministic rule.

xr(t + 1) = a si har(x1(t); : : : ; xr¡1(t); a; xr+1(t); : : : ; xN (t)) = (6)

max
b2M

hbi(x1(t); : : : ; xi¡1(t); b; xr+1(t); : : : ; xN (t))

this rule that updates the unit is called computational dynamics.
The particular state of neuron r that satis¯es the condition (6) is called the

best matching for the input vector xr .
The selection of a neuron to perform updating is done randomly. The asyn-

chronous (serial) updating procedure is continued until there no further changes
to report. The state x(t) = (x1(t); x2(t); : : : ; xN (t)) that satis¯es the condition
xi(t+k) = xi(t), 8k > 1, is called a stable state or ¯xed point of the phase space
of the system.

3.3 Convergence

If the network is updated according to (6), the new con¯guration adopted will
be a new state with less energy than the previous one. The network will evolve
until a minimum of energy function is reached. It means that when the network is
stabilized, then any change in one neuron will augment the value of the associated
energy or will not cause any change in the previous energy.

Theorem 1
If the synaptic weight matrix is symmetric with null self-connections and S is

given by (5) then the computational energy function decreases in each iteration
when the networks evolves according to the computational dynamics (6).

Proof:
If the neuron r is updated at t + 1, then the energy associated to the new

state of the network is

E(t + 1) = ¡1
2

NX

i=1

NX

j=1

wij
S(xi(t + 1); xj(t+ 1))

PN
k=1 S(xi(t + 1); xk (t + 1))

Clearly

¡2E(t + 1) =
NX

i=1
i6=r

NX

j=1
j6=r

wij
S(xi(t+ 1); xj (t+ 1))

PN
k=1 S(xi(t + 1); xk(t + 1))

+

NX

i=1
i6=r

wir
S(xi(t + 1); xr(t + 1))

PN
k=1 S(xi(t + 1); xk(t + 1))

+
NX

j=1

wrj
S(xr(t+ 1); xj (t + 1))

PN
k=1 S(xr(t + 1); xk(t + 1))

Since wii = 0 8i and wij = wji 8i; j, the second and third terms at the
right are equals. It can be noticed that when S(xi(t + 1); xr(t + 1)) = 1 then
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PN
k=1 S(xi(t+1); xk(t+1)) =

PN
k=1 S(xr(t+1); xk (t+1)) (that is, denominators

have same values in the above expression). So we have

¡2E(t + 1) =
NX

i=1
i6=r

NX

j=1
j6=r

wij
S(xi(t + 1); xj (t + 1))

PN
k=1 S(xi(t + 1); xk(t + 1))

+2
NX

j=1

wrj
S(xr(t+ 1); xj (t+ 1))

PN
k=1 S(xr(t + 1); xk(t + 1))

Moreover, as xi(t+ 1) = xi(t), 8i6= r, then the ¯rst term at the right can be
written as

NX

i=1
i6=r

NX

j=1
j6=r

wij
S(xi(t + 1); xj (t + 1))

PN
k=1 S(xi(t + 1); xk(t + 1))

=
NX

i=1
i6=r

NX

j=1
j6=r

wij
S(xi(t); xj (t))PN

k=1 S(xi(t+ 1); xk(t+ 1))

Let Ca be the set de¯ned by Ca = fi 6= r : xi(t) = ag and Cb = fi 6= r :
xi(t) = bg. Suppose that xr(t) = a and xr(t + 1) = b. Then we have that the
only terms in the above expression updated from t to t + 1 are

X

i2Ca

NX

j=1
j6=r

wij
S(xi(t); xj(t))PN
k=1 S(xi(t); xk (t))

+
X

i2Cb

NX

j=1
j6=r

wij
S(xi(t); xj(t))PN
k=1 S(xi(t); xk (t))

=

X

i2Ca

NX

j2Ca
wij

S(xi(t); xj(t))
jCa j+ 1

+
X

i2Cb

NX

j2Cb
wij

S(xi(t); xj(t))
jCbj

Thus,

¡2[E(t + 1)¡ E(t)] =
X

i2Ca

NX

j2Ca

wij
S(xi(t); xj(t))

jCaj
+
X

i2Cb

NX

j2Cb

wij
S(xi(t); xj (t))
jCb j+ 1

+2
X

j2Cb
wrj

S(xr(t + 1); xj(t + 1))
jCbj + 1

¡
£ X

i2Ca

NX

j2Ca
wij

S(xi(t); xj(t))
jCa j+ 1

+
X

i2Cb

NX

j2Cb
wij

S(xi(t); xj (t))
jCbj

+2
X

j2Ca
wrj

S(xr(t); xj (t))
jCa j+ 1

¤

=
1

jCaj + 1

X

i2Ca

NX

j2Ca
wij

S(xi(t); xj (t))
jCa j

¡ 1
jCb j+ 1

X

i2Cb

NX

j2Cb
wij

S(xi(t); xj(t))
jCb j

+
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1
jCbj + 1

X

j2Cb
wrjS(xr(t + 1); xj(t+ 1))¡ 1

jCaj + 1

X

j2Ca
wrjS(xr(t); xj(t + 1))

Hence ¢E = E(t + 1)¡ E(t) =

=
1

jCa j + 1

h
hr(t)¡

1
2jCaj

X

i2Ca
hi(t)

i
¡ 1
jCb j+ 1

h
hr(t+ 1)¡ 1

2jCbj
X

i2Cb
hi(t + 1)

i

=
1
2

[¢har (t)¡¢hbr(t+ 1)] · 0

Theorem 2
The recurrent network is stable and the stable states of the network are the

local minima of the computational energy function.
Proof:
This recurrent network could oscillate between adjacent states with equal

synaptic potential. However, if xi(t) = b, xi(t + 1) = a, b 6= a only when
¢hi(t + 1) > ¢hi(t), then the recurrent network is stable since the compu-
tational energy function can take only a ¯nite number of values, Nn, at most,
and decreases in each iteration. Moreover, if (x1(t); x2(t); ; xj (t); ;xN (t)) is a
stable state but it is not a local minima then there exists an adjacent state
(x1(t);x2(t); ; x?j (t); ; xN (t)) with energy E?(t), E?(t) < E(t). From theorem 1,
we have ¢h?j (t) > ¢hj (t) and so the state (x1(t); x2(t); ; xj(t); ; xN (t)) is not
stable, a contradiction.

4 Experimental results.

4.1 Iris data

We use Anderson's IRIS data [2] as an experimental data set. Properties of the
data are well known [4] and has been used in many papers to illustrate various
clustering (unsupervised). In ¯gure 1(b) we present the clustering obtained for
IRIS data with a network constituted by 150 process units and 3 states. Typi-
cal error rates for unsupervised designs are around 15 `mistakes'. The network
¯nds a clustering with 13 classi¯cation errors. Note that our network does not
use learning parameters or prototypes (centroids). The algorithms with unsu-
pervised learning such as k-means, Lloyd [8] or LBG [7] ¯nd clustering between
13 and 17 misclassi¯cations. All errors occur in the overlapping region between
Versicolor and Virginica (see [10] and [13]) . In ¯gure 1(a) we can see the de-
creasing energy function associated. It is interesting notice that the minimum
energy is obtained after a few iterations that is because the considered dynamics
provides the maximum diminution of the energy at each step.
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Fig. 1. (a)Evolution of the energy function. (b)IRIS data clustering with the recurrent
network.

4.2 Uniform data.

In this experiment a set containing 200 points uniformly distributed in [0; 1]£
[0; 1] is used. In ¯gure 2 we present the clustering obtained by our proposed
neural model. The network achieves 4 groups with similar sizes as it could be
expected. It is interesting to note that the network suitably builds a Voronoi
partition. It has been included a representation of the energy function and it
can be observed that the minimum value is reached very fast, at 5 epochs.

5 Conclusions.

We have proposed a multivaluated recurrent neural network for vector quan-
tization where the synaptic potential is given by a weighted sum of synaptic
weights of process units with the same value. This synaptic potential is used
to de¯ne the activation potential associated to the neural units. The synaptic
weights are the opposite values of the distance between the sample patterns.
Each process unit presents the state with maximum activation potential and
the system evolves according to this dynamical rule so that the computational
energy function (distortion function) always decreases (or remains constant) and
it does not use tuning parameters. The network has n process units where n is
the sample size, and eventually reaches a stable state at a local minimum of the
energy function, that is a local minimum of the distortion function in Vector
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Fig. 2. (a)Evolution of the energy function. (b)Uniform data clustering with recurrent
network.

Quantization problem. Moreover, the solution attained here forms the clusters
or cells using the distances between the sample vectors, it does not use centroids.
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