
A Multi-Agent System for Knowledge Management in

Software Maintenance
Aurora Vizcaíno1, Francisco Ruiz1, Mario Piattini1, Jesús Favela2

1Grupo Alarcos, Escuela Superior de Informática, Ciudad Real (Spain)
2CICESE, Ensenada (México)

Abstract. Knowledge management has become an important topic as
organisations wish to take advantage of the information that they produce and
that can be brought to bear on present decisions. This work describes a system
to manage the information (and knowledge) generated during the software
maintenance process, which consumes a large part of the software lifecycle
costs. The architecture of the system is formed of a set of agent communities.
The agents can learn from previous experience and share their knowledge with
other agents, or communities. Different scenarios showing the system's
functionality and the convenience of using it during the maintenance process
are also described in this paper.

1. Introduction

Knowledge is a crucial resource for organizations [16]. Knowledge allows people and
organizations to obtain power, money, and to become more competitive. For this
reason, companies are currently researching techniques and methods to manage their
knowledge systematically.

Organizations have different types of knowledge that are often related to each other
and which must be managed in a consistent way. For instance, software engineering
involves the integration of various knowledge sources that are constantly changing.
The management of this knowledge and how it can be applied to software
development and maintenance efforts has received little attention from the software
engineering research community so far [9]. Tools and techniques are necessary to
capture and process knowledge in order to facilitate subsequent development and
maintenance efforts. This is particularly true for software maintenance, a knowledge
intensive activity that depends on information generated during long periods of time
and by large numbers of people, many of whom may no longer be in the organisation.

This paper presents a multi-agent system in charge of managing the knowledge that
is produced during software maintenance. The contents of this article are organized as
follows: section 2 describes the different types of knowledge that are generated during
the software Maintenance Process (MP) and presents the advantages of using a
Knowledge Management (KM) system in maintenance. Section 3 proposes a multi-
agent architecture and describes the roles played by these agents. The ontology that
conceptualises the types of information in maintenance is also outlined in this section.
Section 4 illustrates the functionality of the system when used in different types of
maintenance scenarios. Finally conclusions are presented in section 5.

2. Knowledge in Software Maintenance

Software maintenance consumes a large part of the overall lifecycle costs [13], [1].
The incapacity to change software quickly and reliably causes organizations to lose
business opportunities. Thus, in recent years we have seen an important increase in
research directed towards addressing these issues.

On the other hand, software maintenance is a knowledge intensive activity. This
knowledge comes not only from the expertise of the professionals involved in the
process, but it is also intrinsic to the product being maintained, and to the reasons that
motivate the maintenance (new requirements, user complaints, etc.) processes,
methodologies and tools used in the organization. Moreover, the diverse types of
knowledge are produced in different stage of the MP.

During the software maintenance activities different people intervene. Each person
has partial information that is necessary to other members of the group. If the
knowledge only exists in the software engineers and there is no system in charge of
transferring the tacit knowledge (contained in the employees) to explicit knowledge
(stored on paper, files, etc) when an employee abandons the organization a significant
part of the intellectual capital goes with him/her.

Another well-known issue that complicates the MP is the scarce documentation
that exists related to a specific software system, or even if detailed documentation was
produced when the original system was developed, it is seldom updated as the system
evolves. For example, legacy software written by other units often has little or no
documentation describing the features of the software. Using a KM system the diverse
kinds of knowledge generated may be stored and shared. Moreover, new knowledge
can be produced, obtaining the maximum benefit from the current information. By
reusing information and producing relevant knowledge the high costs associated with
software maintenance could also be decreased [5].

Another advantage of KM systems is that they help employees build a shared
vision, since the same codification is used and misunderstanding in staff
communications may be avoided. Several studies have shown that a shared vision
may hold together a loosely coupled system and promote the integration of an entire
organisation (e. g., [12])

3. A Multi-Agent System to Manage Knowledge in Software

Maintenance

The above explained issues motivated us to design a KM system for capturing,
managing, and disseminating knowledge in a software maintenance organisation, thus
increasing the workers’ expertise, the organisation's knowledge and its
competitiveness while decreasing the costs associated with the software MP.

The KM system that is described in this paper is an extension of the MANTIS
environment [18], for this reason it is called KM-MANTIS. MANTIS is an integrated
environment for the management of software maintenance. Its main feature is that it

integrates practically all the aspects that must be taken into account for directing,
controlling and managing software maintenance projects.

3.1 Ontology

First of all it was necessary to clearly delimit the domain where the system would be
used. In order to have a shared vision of the MP it is advisable to define a
conceptualisation of the domain. An explicit specification of such conceptualis ation is
an ontology [7]. An ontology represents a certain view on an application domain in
which the concepts that live in this domain are defined in an unambiguous and
explicit way [2]. Besides, as [7] claims an ontology enables knowledge to be shared
and reused, precisely what we pretend.

KM-MANTIS uses an ontology based on the one proposed in [11]. This ontology
is structured in several partial subontonlogies for software maintenance (Figure 1):
Products ontology: how the software product is maintained and how it evolves over
time.
Activities ontology: how to organise activities for maintaining software and what
kinds of activities they may be.
Processes ontology: This is divided into two different focuses, defining a sub-
ontology for each one:

Procedures sub-ontology: how the methods, techniques and tools can be
applied to the activities and how the resources are used in order to carry out
these activities.
Process Organization sub-ontology: how the support and organizational
processes are related to the software maintenance activities. How the
maintainer is organized, and what his/her contractual obligations are.

Peopleware ontology: what skills and roles are necessary in order to carry out the
activities, what the responsibilities of each person are, and how the organizations that
intervene in the process (maintainer, customer and user) relate to each other.

M e t h o d T e c h n i q u e S c r i p t

H u m a n R e s o u r c e

H a r d w a r e R e s o u r c e

U s e r s

N e w R e q u i r e m e n t s

I n v e s t i g a t i o n A c t i v i t y

C o r r e c t i o n
E n h a n c e m e n t

C h a n g e d I m p l e m e n t a t i o n

C h a n g e d R e q u i r e m e n t s

C u s t o m e r

M a n a g e m e n t A c t i v i t y

M a n a g e r

n e g o t i a t e s _ w i t h

p e r f o r m s

M a i n t e n a n c e H u m a n R e s o u r c e

M a i n t e n a n c e O r g a n i z a t i o n * *

e m p l o y s

C l i e n t H u m a n R e s o u r c e s

C l i e n t O r g a n i s a t i o n * * *

e m p l o y s

S e r v i c e L e v e l A g r e e m e n t

M a i n t e n a n c e E v e n t

I n v e s t i g a t i o n R e p o r t

M o d i f i c a t i o n A c t i v i t y *

E v e n t M a n a g e m e n t

c o n s t r a i n s

r e c e i v e s

p r o d u c e s

C h a n g e C o n t r o l

r e c e i v e s

a p p r o v e sh a s

M o d i f i c a t i o n A c t i v i t y *

M a i n t e n a n c e M a n a g e m e n t

C o n f i g u r a t i o n M a n a g e m e n t

s c h e d u l e s

M a i n t e n a n c e O r g a n i s a t i o n S t r u c t u r e

d e f i n e s

P r o d u c t U p g r a d e

d e l i v e r s

C l i e n t O r g a n i s a t i o n * * * M a i n t e n a n c e O r g a n i z a t i o n * *

R e s o u r c e

E n g i n e e r

P r o d u c t

u s e s

s u p p o r t s

P a r a d i g m

S o f t w a r e R e s o u r c e

M a i n t e n a n c e A c t i v i t y

u s e s

p e r f o r m s

A r t e f a c t

i s _ i n p u t _ t o

i s _ o u t p u t _ t o

c o m p r i s e s

P r o c e d u r e

c o n s t r a i n t s
a u t o m a t e s

a d o p t s

p o s s i b l y _ a d o p t s

m o d i f i e s

D e v e l o p m e n t T e c h n o l o g y

c o n s t r a i n t s

Figure 1. Summarised and integrated view of the ontologies in KM-MANTIS

3.2 KM-MANTIS System Architecture

The system is formed of a set of agent communities which manage the different types
of knowledge represented by the subontologies. The system has one community
termed "products community" to control information related to products. Another
community is in charge of the activities. This is the "activities community". And the
last community denoted as "peopleware community" arranges information related to
the people involved during the MP. There is no community in charge of the process
since the information about the MP itself is divided in all the communities. The
process defines how methods and tools should be applied to maintenance activities
and which skills are necessary to carry them out [11]. Hence, the information related
to these topics are stored in the activities and the peopleware communities.
Products Community: Each product has its own features and follows a specific
evolution. For this reason the architecture has one agent per product. The agents have
information about the initial requirements, changes made to the product, and about
metrics that evaluate features related to the maintainability of the product. Therefore,
the agents monitor the product's evolution in order to have up to date information
about it at each moment. Besides the information explicitly related to the products
each agent has information which is also contained in other communities. For
example, the products community also has information about which activity/ies
was/were performed each time the product was modified and which person/people
(staff member, client, users) was/were involved in that change. Thus, different
communities may compare or interchange information and detect inconsistencies.
Agents can communicate with each other and benefit from other communities'
knowledge. This is one important feature of the architecture since each agent has
enough information to be independent and autonomous. Agents can also consult other
agents' information as needed.

Each agent only knows the name of the activity and the names of the people
involved. The complete information about the activities or the staff is contained in
their corresponding community.

In addition to information, the agents also have knowledge that they obtain from
their learning, experience and their statistics. The knowledge generated by the agents
is communicated to a special agent, "the coordinator agent", which stores the
knowledge in a central database common to all the agents of this community. In this
way the knowledge generated is useful for the entire community. Otherwise, each
agent would be the owner of its knowledge and the same would occur as in
organisations where employees do not share their knowledge.

The coordinator agent has reasoning techniques, which enables it to infer
additional knowledge. We shall describe an example to clarify how this works: When
a product agent detects that whenever a requirement A is demanded shortly after a
requirement B is also requested, the agent should detect this pattern and communicate
this fact to the coordinator. So this knowledge might be utilised by other agents. The
coordinator agent, could use its knowledge in order to deduce additional knowledge.
For instance, it might estimate that after requirements A and B another requirement C
is often demanded. In this case, the coordinator would inform the first agent that a
new requirement C will be demanded in brief. Therefore, the agent could prepare
itself to perform the requirement C. Moreover, the system would inform (for instance

via e-mail) the staff in charge of maintaining the product that a new requirement C
should be performed.
Activities community: Each new change demanded implies performing one or more
activities. This community, which has one agent per activity, is in charge of managing
the knowledge related to the different activities.

In order to carry out an activity, as the procedures sub-ontology indicates, methods,
and techniques can be applied and different resources could be used as well. We had
considered adding a new community to the architecture in charge of controlling this
information. However, the fact that this information is so narrowly related to the
activities changed our minds and we now consider that the information related to
methods, techniques, tools and resources should be managed by each agent belonging
to the activity community.

As with the previous community, in this community the agents have information
related to other communities. For instance, each agent knows for what requirement
and in what product/s each activity is carried out. The agents also have references to
the people involved in that activity. Furthermore, the agents have knowledge obtained
from their experience and learning. For instance, an activity agent can learn what
resources are always used in order to carry out a task or which method gives better
results.

The activity community also has a coordinator agent that is informed about all the
knowledge generated. As in the previous case, it has reasoning techniques that help
produce new knowledge.
Peopleware Community: An analysis was performed with the objective of indicating
which people are involved in the MP. This showed that three profiles could be clearly
differenced: the maintainer, the customer and the user. The result of the analysis and
the description of the roles of each profile can be found in [14]. We have designed
three agents, one per each profile detected. One agent is in charge of the information
related to staff (maintainers). This is the staff agent. Another manages information
related to the clients (customers) and is called the client agent. The last one is in
charge of the users and is termed the user agent.

The staff agent knows the personal data of the employees, in what activities they
have worked, and what product they have maintained. Of course, the agent also has
current information about each member of staff. Therefore it knows where each
person is working at each moment.

As happened in the previous community, there is common information (such as,
name of products and activities) which may be used in a similar way to a foreign key
in databases, enabling the communities to be connected.

The agent utilises the information that has to generate knowledge. For instance, it
calculates statistics that indicate the time that an employee took to perform a task or
calculates the performance graph of each member.

The client agent stores the information of each client, their requirements (even the
initial requirements if they are available) and the name of the product which should be
modified.

The client agent also tries to obtain new knowledge. For instance, it tries to guess
future requirements depending on previous requirements or it estimates the costs of
changes that the client wants to make, warning him for instance of the high costs
associated to a specific change request.

The user agent is in charge of knowing the necessities of the users of each product,
their background and also their complaints and comments about the products. New
knowledge could be generated from this information, for example by testing to what
degree the users' characteristics influence the maintenance of the product.

As will be described in more detail later, the agents use different information and
generate new knowledge through different artificial intelligent techniques. This is one
of the most important advantages of using agents, since they contain the capacity to
manage information and reasoning. Another feature associated with agents is that
they are proactive: they act when they consider that it is convenient to do so and
nobody has to indicate to them when and how to act [19].

The architecture has certain information duplicated, and although this has the
problem of having to control the consistency of information, it allows agents to act
autonomously and independently since they have complete information. It also
increases the robustness of the system.

The architecture presented enables two types of collaboration. Collaboration
between agents belonging to the same community and between agents of different
communities. An example of the former occurs when an agent of the product
community asks another agent about the costs of performing a concrete activity.
Moreover, the agents belonging to the product and activity collaborate with their
coordinator agent sharing their knowledge with it so that the knowledge is accessible
to all the agents.

The second type of collaboration is produced between agents of different
communities. An activity agent may check, by asking the staff member, data about a
member who is performing a specific activity or verify whether the information that it
has is correct.

Both types of collaboration allow agents to take advantage of the information and
knowledge that other agents have, besides controlling the consistency of the
information.

3.3 General Roles of the Agents

Although each agent has specific roles, in a very general way agents should:

Compare new information that they receive with that which has already been
stored in order to detect inconsistencies between old and new information. If an
inconsistency is detected, the agent must consult those agents which contain related
information in order to discover where the inconsistency is and why it has occurred.

Inform other agents about changes produced. For example if the staff agent was
informed that a member in charge of the maintenance of a specific product was
substituted for another member, it will inform the product agent (and the activity
agent if necessary) about this change, since the product agent must know which
people are working on the product at each moment.

Predict new clients' demands. This role is played mainly by the products agents
since similar software projects often require similar maintenance demands. What a
company has done before tends to predict what it can do in the future [8]. This role is
very important, studies show that the incorporation of new requirements is the core
problem for software evolution and maintenance and supposes along with the
adaptive maintenance around 75% of the maintenance effort. As [1] claims, if

changes can be anticipated they can be built in by some form of parameterisation. In
this way costs and efforts are decreased.

Predict possible mistakes by using historic knowledge. As stated in [9], KM avoids
the repetition of common mistakes. In KM-MANTIS, when the activity community
coordinator agent is informed of a mistake which occurred in the development of an
activity, all the activities agents will be informed about this in order to prevent the
same mistake from being repeated.

Suggest solutions to problems. Storing solutions that have worked correctly in
previous maintenance situations helps to avoid the effect document by [20] in which,
due to the limited transfer of knowledge, companies are forced to reinvent new
practices resulting in costly duplication of effort. The best practices often linger in
companies for years unrecognised and unshared. The coordinator of the product and
the activity communities should know what solutions were the best (quicker and
cheaper) for problems.

Help to make decisions. This is one of the most important goals of the KM
systems. When knowledge is enhanced it is easier to improve problem identification,
development of alternative solutions and the selection of the best solution [6]. In the
system the agents of the activities community can advise, for instance, whether it is
convenient to outsource certain maintenance activities.

Advise certain employee to do a specific job. The staff agent has information about
each employee's skills, their performance metrics, and the projects they have worked
on. For example, the staff agent may process this information to suggest which person
is most suitable to carry out a task.

Estimate the cost of future interventions. Information available may be used to
make statistical analyses that help predict maintenance effort and costs. This is an
important issue since sometimes planned changes can not be performed because of
lack resources [1].

The agents use different types of information in order to play their different roles:
Data that the agents receive exp licitly. An example of this type of information is

the name of the member of the staff or the products that should be maintained.
Information and knowledge that agents generate from the data obtained. The agents

may infer new knowledge through different reasoning techniques. For example
analogy, they compare new types of knowledge with previous ones. Similarities and
differences are analysed in order to reach conclusions. Imitating experts' reasoning in
this way, experts seem to employ a form of analogical reasoning where effort is
estimated by comparing the problem at hand with cases attempted earlier [3]. One
advantage of using an multi-agent architecture is that each agent can have its own
reasoning technique depending on the type of task they perform. For instance, genetic
algorithms can be used in optimisation tasks, while neural networks will be
appropriate for agents that need to find complex mappings between patterns of data.
The type of reasoning used is hidden in the agent and can be updated as needed
without affecting the rest of the agents. This architecture also allows to incorporate
additional agents to perform new tasks.

Knowledge generated from learning. One of the most important features of the
agents is that they can learn. Agents can use neuronal nets or other learning
algorithms such as ID3 to learn from previous information. One important advantage
of the system is that besides managing knowledge it also generates knowledge.

Knowledge shared by other agents. Agents collaborate with the agents of their own
community and with those of other communities

4. Using KM-MANTIS in Software Maintenance

In order to illustrate the system's functionality two scenarios are described. Each
scenario corresponds to a type of maintenance. The goal of this section is to indicate
how KM-MANTIS would work in each situation and what benefits would be obtained
from its use.

There exist different classifications of maintenance. In our work we use the
classification considered in MANTEMA [17], this classification is based on the norm
ISO 12207 [10]. MANTEMA is a complete methodology designed for software
maintenance [15].

Experience has shown that the process of maintenance is different when it is urgent
and when it is not. When there is urgent planning is practically non-existent. For this
reason, the maintenance is divided into plannable and non-plannable. Plannable
maintenance would be the perfective, the adaptive, the preventive and the corrective
non-urgent. Non-plannable maintenance is the urgent corrective.

The first scenario that is described illustrates how the system would act in a case of
maintenance plannable. The second example shows a case of maintenance non-
plannable.

4.1 Plannable Maintenance
When, for instance, a change to improve the quality of a product is demanded and
performed, the coordinator of the products community would check whether products
with very similar functions are being maintained. In this case, KM-MANTIS could
predict that the same change might be required for these products in the future and
inform the staff in charge or their maintenance. This might be the case, for instance,
of changes in the tax law that originate changes in collection of software systems.

The system, besides predicting new changes, could check in what moment it is
advisable to perform them. Sometimes it is better to delay the modification tasks thus
reducing the possibilities of introducing new errors. Apart from checking whether a
change is suitable for other products, the system would inform the staff about the
predictions of possible changes or the convenience of carry out them.

4.2 Non-plannable Maintenance
A common source of maintenance tasks is generated when a user informs the staff
that the program that he is using no longer works and it shows a strange error
message. In this case the staff must act immediately: there is no time to plan the
activities to perform. The staff could consult the system in order to obtain information
about the error and the causes that could have motivated it. The system might also
indicate the questions that should be asked to the user to obtain additional information
that may help deduce the origin of the problem.

The coordinator agent of the products community would test whether a similar
situation had already occurred and if so, retrieve the solution given to that problem. If

the answer was positive, the coordinator of the product community would contact the
coordinator of the activity community asking for the appropriate method or technique
to solve the problem and their associated costs. The staff agent could also be asked to
suggest who can carry out the changes and how to contact them.

If the error have not occurred before, the product agent would process the
information that it had and the new information incorporated by the indications of the
user, with the goal of trying to predict how the error could be solved.

Once the solution is found (by the system or by the staff) all the information
related to the mis take is stored to be used in similar circumstances in the future. Thus,
all new situations offer new opportunity to learn.

 5. Conclusions

Software maintenance is one of the most important stages of the software life cycle.
This process takes a lot of time, effort, and costs. It also generates a huge amount of
different kinds of knowledge that must be suitably managed. This fact is more visible
in big companies since the larger the product the more likely it is that product
knowledge will be spread among the maintenance staff, making it more difficult to
find the cause of problems. Furthermore, the more people working together the more
opportunities there are for misunderstandings that may lead to quality problems.

We have presented a multiagent system in charge of managing this knowledge in
order to improve the MP. The advantage of using agents is that, apart from managing
information they also learn and generate new knowledge

The scenarios described have illustrated the use of KM-MANTIS in plannable and
non-plannable maintenance. They have also helped to show how the system would
assist maintenance engineers perform their jobs. In addition, costs and efforts would
decrease by using KM-MANTIS because solutions that worked in the past are reused
and good decis ions are made. New changes could also be predicted thus increasing
the organisation's competitiveness.

References
1. Bennet K.H., and Rajlich V.T.(2000). Software Maintenance and Evolution: a Roadmap,

in Finkelstein, A. (Ed.), The Future of Software Engineering, ICSE 2000, June 4-11,
Limerick, Ireland, pp 75-87.

2. Card, D.N., and Glass, R.L .(1990) Measuring Software Design Quality. Prentice Hall,
Englewood Cliffs, NJ.

3. Carr, M., and Wagner, C. (2002). A Study of Reasoning Processes in Software
Maintenance Management. Journal of Information Technology & Management. Pirkul, H.,
and Vargheses .J (Eds.). Vol. 03. Kluwer Academic Publichers, pp 181-203.

4. Deridder, D., (2002). A Concept-Oriented Approach to Support Software Maintenance
and Reuse Activities. KBOSSE Workshop. ECOOP, Málaga. 11 June.

5. De Looff, L.A., Information Systems Outsourcing Decision Making: a Managerial
Approach. Hershey, PA: Idea Group Publishing, 1990.

6. Gnyawali, D.R., Stewart, A.C., and Grant J.H. (1997). Creating and Utilization of
Organizational Knowledge: An Empirical Study of the Roles of Organizational Learning

on Strategic Decision Making. Academy of Management Best Paper Proceedings, pp. 16-
20.

7. Gruber, T. (1995). Towards Principles for the Design of Ontologies used for Knowledge
Sharing. International Journal of Human-Computer Studies, 43(5/6), pp 907-928.

8. Gupta, A., and Govindarajan, V. (2000). Knowledge Flows within Multinational
Corporations. Strategic Management Journal, 21(4), pp. 473-496.

9. Henninger, S., and Schlabach, J. (2001). A Tool for Managing Software Development
Knowledge, 3ª International Conf. on Product Focused Software Process Improvement.
PROFES 2001, Lecture Notes in Computer Science, Kaiserslautern, Germany, pp 182-
195.

10. ISO/IEC, 1995. International Standard Organization, ISO 12207: Information
Technology-Software Life Cycle Processes. Switzerland.

11. Kitchenham, B.A., Travassos, G.H., Mayrhauser, A., Niessink, F., Schneidewind, N.F.,
Singer, J., Takada, S., Vehvilainen, R. and Yang, H. (1999). Towards an Ontology of
Software Maintenance. Journal of Software Maintenance: Research and Practice. 11, pp.
365-389.

12. Orton, J.D., and Weick, K.E. (1990) Loosely coupled systems: A reconceputalization.
Academy of Management Review, 15(2), pp 203-223.

13. Pigoski, T.M. (1997). Practical Software Maintenance. Best Practices for Managing Your
Investment. Ed. John Wiley & Sons, USA, 1997.

14. Polo, M., Piattini, M., Ruiz, F. and Calero, C. (1999): Roles in the Maintenance Process.
Software Engineering Notes; vol 24, nº 4, pp. 84-86. ACM.

15. Polo, M., Piattini, M., Ruiz, F., and Calero, C. (1999): MANTEMA: A complete rigorous
methodology for supporting maintenance based on the ISO/IEC 12207 Standard. Third
Euromicro Conf. on Software Maintenance and Reengineering (CSMR’99). Amsterdam
(Netherland). IEEE Computer Society, , pp. 178-181.

16. Ruhe, G. (2002) Learning Software Organizations. Handbook of Software Engineering
and Knowledge Engineering. Chang, S.K. (Ed.) Vol.1, World Scientific Publishing.

17. Ruiz, F., Piattini, M., Polo, M., and Calero, C. (1999). Maintenance types in the
MANTEMA methodology. International Conf. on Enterprise Information Systems
(ICEIS’99). Setubal (Portugal). Filipe and Cordeiro (Eds.), pp 192-202.

18. Ruiz, F., García, F, Piattini, M., Polo, M. (2002) Environment for Managing Software
Maintenance Projects. In Advances in Software Maintenance: Technologies and Solutions.
Idea Group Publishing, USA (in press).

19. Russell, S. J. and Norvig, P (1995). Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Cliffs, NJ.

20. Zell, D. (2001) Overcoming Barriers to Work Innovations: Lessons Learned at Hewlet-
Packard. Organizational Dynamics, 30 (1), pp 77-86.

