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Abstract. In this paper, the Cellular Neural Network Universal Ma-

chine (CNNUM) [7] is presented as a novel hardware architecture which

make use of complex spatio-temporal dynamics [1] for solving real-time

image processing tasks. Dealing with actual VLSI chip prototypes [6], we

�nd the limitation of a �xed piecewise-linear (PWL) saturation output

function. In this work, a novel algorithm for software emulation of any

piecewise-linear (PWL) output functions on the CNNUM VLSI chip is

presented.

1 Introduction

CNN topology is essentially characterized by a local interaction between non-

linear dynamical cells distributed in a regular 2-D grid [1]. This fact makes the

CNN an useful computation paradigm when the problem can be reformulated as

a task where the signal values are placed on a regular 2-D grid, and interaction

between signal values are limited within a �nite local neighborhood [4]. Besides,

local interaction facilitates the implemetation of this kind of networks as eÆcient

and robust VLSI chips [5] ,[6]. The Cellular Neural Network Universal Machine

(CNNUM) [7] is a programmable neuroprocessor based on CNN dynamics and

implemented alongside photosensors which sense and process the image in a sin-

gle VLSI chip. The main drawbacks encountered when using this chip in image

processing application is the limitation in �ltering capabilities to 3�3 dimension

templates and the restricted possibilities provided by the �xed piecewise-linear

(PWL) saturation output function in nonlinear �ltering. Thus, we �nd in this

framework a rigid relationship between an extremely high computing speed and

a limitation in the complexity of the image processing operators.

In this work, the CNN dynamical model and the architecture of the Cellular

Neural Network Universal Machine (CNNUM) prototyping system are intro-

duced. Then, we describe a novel and general algorithm for achieving any type

of PWL approximation of an arbitrary output function on the framework of the

CNNUM chipset. By means of this methodology, we break the rigid relation-

ship speed/complexity and it is provided a 
exible framework to the designer of

image processing algorithms.



2 CNNUM: Dynamics and Architecture

The dynamic of the array can be described by the following set of di�erential

equations

d

dt
xi;j(t) = �xi;j(t) +

X
k;l2Nr

Ak;lyi+k;j+k(t) +
X

k;l2Nr

Bk;lui+k;j+k(t) + I (1)

with output nonlinear function

y(x) =
1

2
[jx� 1j � jx+ 1j] (2)

The input,state and output, represented by ui;j ; xi;j and yi;j are de�ned on

0 � i � N1 and 0 � i � N2 and Nr represents the neighborhood of the cell with

a radius r as Nr = f(k; j) : max fjk � ij ; jl � jjg � rg. The B template and I

coe�cient form a simple feedforward �ltered (FIR) version of the input. On the

other hand, the temporal evolution of the dynamics network is mathematically

modeled by the A template operating in a feedback loop along with the �xed

saturation nonlinearity previously de�ned.

The CNNUM architecture is an analogic (analog+logic) spatio-temporal ar-

ray computer wherein analog spatio-temporal phenomena provided by the CNN

and logic operations are combined in a programmable framework to obtain more

sophisticated operation mode [7]. Every implemented neuron includes circuitry

for CNN processing, binary and gray scaled images storage supplied by

{ a local analog memories (LAM) which allow to save intermediate analog

results of the algorithms.

{ a local logic memory (LLM) distributed alongside analog processors

{ a local logic unit (LLU) which permit logic operation among binary images

{ a local comunication and control unit (LCCU) is the necessary con�guration

circuitry for electrical I/O and control of the di�erent operations.

In this work we present an algorithmic way to deform the saturation output

function de�ned in (2) in order to obtain a general piecewise-linear continuous

function. Thus, it is convenient to study the stability of the dynamical network

under the reshaped output function y(x).

2.1 Stability Criteria

All image processing applications are based on the assumption that neither the

oscillation nor the chaotic phenomenon is exhibited. In this section, some math-

ematical criteria which guarantee complete stability are presented.

Theorem 1 (State-Boundedness Criterion). If the function y(x) de�ned in

(2) is continuous and bounded, then the state xi;j(t) of each cell of a standard

CNN is bounded for all bounded threshold and bounded inputs.



Proof. Equation (1) can be recast into the form

d

dt
xi;j(t) = �xi;j(t) + g(t)

where

g(t) =
X

k;l2Nr

Ak;lyi+k;j+k(t) +
X

k;l2Nr

Bk;lui+k;j+k(t) + I

Since both I and ui;j are bounded by hypotheses, there exists �nite constant

K such that

max
0<t<1

jg(t)j < K

It follows via Gronwall's Lemma that

jxi;j(t)j �
��xi;j(0)e�t��+

����
Z t

0

e�(t��)g(�)d�

����
� jxi;j(0)j e

�t + max
0<t<1

jg(t)j

Z t

0

e�(t��)d�

< jxi;j(0)j+K; 8t > 0:

3 PWL Approximation by the In�nity Norm Criterion

When considering the VLSI CNN chip model, we deal with a rigid PWL satu-

ration output function due to diÆculties in implementing 
exible non-linearities

on silicon. In this Section, we present a general method to approximate any non-

linear output function on current CNNUM chips by superposition of piecewise-

linear (PWL) saturation blocks as de�ned in (2).

3.1 Previous De�nitions

The following notation is used: Æij denotes Kronecker delta, Bzo;r denotes de

open ball Bzo;r := fz 2 Z : kz � zok < rg, k�k is the weighted Euclidean norm

de�ned as kzk =
�Pn

i=1 !iz
2
i

�1=2
, with !i > 0; k�k

1
the weighted in�nity norm.

Increment and sum of succesive function in an indexed list is denoted by �hi :=

hi+1+hi and �hi := hi+1�hi; and the simbol ' denotes di�erentiate on variable

x.

3.2 PWL Approximation by the Chebyshev Criterion

In order to approximate a desider output function, a superposition of piecewise-

linear saturation functions are considered in the following structure:

f(x) =

�X
i=1

�
1

bi
y(aix� ci) +mi

�
(3)



where y(x) is de�ned in (2). Each summing term consists in a linear trans-

formation of the same PWL original saturation function; thus, f(x) yields an

adjustable PWL function where ai; bi; ci;mi 2 IR; are the parameters of the

structure. Basically, (3) is a nonlinear combination of linear aÆne lines,

�i :=
1

2
[j(aix� ci)� 1j � j(aix� ci) + 1j] ; i 2 [1; �] (4)

The problem under study can be stated as follows: Given a smooth function

f : S ! IR; where S � IR is compact, we want to design a PWL function f

that minimizes the error between f and f in some sense. Formally, given a �xed

number "� we want to �nd the optimal parameter vector �� = [a�i ; b
�

i ; c
�

i ;m
�

i ]

that makes the objective functional J :=


f(x)� f(x)




1

= "� 8x 2 S, with

the most eÆcient shape.

The functional based on the in�nite norm k�k
1

is supported by a physical

e�ect observed in the implementation of CNNUM VLSI chips: the analog signals

involved in the processing task are computed with an analog accuracy of 7 bits

of equivalent digital accuracy [5]. Thus, this fact gives us a �xed value for " �

2�7, which assure that the error introduced by the approximation procedure is

less or equal that the error introduced by the performance of the implemented

chip.The functional proposed in this paper is an alternative to the


f(x)� f(x)




functional studied in several papers [3], [2]. This cuadratic criterion yields a

nonlinear optimization problem characterized by the existence of several local

minima. One practical technique used to undertake this serious problem consist

in the use of iterative algorithms which produce new random search direction

when a local minimum in reached.

The point of departure used to obtain the approximating PWL function

based on the in�nity norm is the following

Theorem 2 (Minimax). Let f(x) be a function de�ned in the open subset

(xi; xi+1), xi; xi+1 2 IR and Pn(x) a polynomial with grade n. Then Pn(x)

minimizes kf(x)� Pn(x)k1 if and only if f(x) � Pn(x) takes the value " :=

max(jf(x)� Pn(x)j) at least in n+2 points in the interval (xi; xi+1) with alter-

nating sign.

Theorem 3. Let f(x) be a function with f 00 > 0 in the interval (x1; x2), x1; x2 2

IR and P1(x) :=Mx+B. Then P1(x)
1 minimizes kf(x)� P1(x)k1 if and only

if

M = �f= �x1; B =
1

2
[f(x2) + f(xa)��fi= �xi (xa + x2)] (5)

where xa is obtained by solving

f 0(xa) = �fi=�xi (6)

1 This straight line is called Chebyshev line in the literature.



Proof. It follows from minimax theorem that it must be three points xl; xc; xr
in (x1; x2) which maximize E(x) := f(x) � P1(x) . This condition implies that

xc is an intermediate point in the interval (x1; x2) with E0(x)jxc = 0; this is the

same that f 0(x)jxc = M . Since f 00(x) > 0; f 0(x) is a strictly growing function

and can equate M only once, this means that xc is the only one intermediate

point which minimizes E in the interval; thus xl = x1 and xr = x2. Applying

the minimax condition we obtain E(xl) = �E(xc) = E(xr) and by solving these

equations we can conclude

M = �fi= �xi; B =
1

2
[f(xi+1) + f(xa)��fi= �xi (xa + xi+1)] (7)

Corollary 1. Under the previous conditions, " := kf(x)� P1(x)k1 is given by

" = f(x)�

�
�fi

�xi
x+

1

2

�
f(xi+1) + f(xai)�

�fi

�xi
(xai � xi+1)

��
(8)

Remark 1. From the proof of this theorem it can be advised that in the case of

f 00 < 0; " = �E(xl) = E(xc) = �E(xr)

Theorem 4. Let f(x) be a function with f 00 > 0 in the interval (xa; xb), xa; xb 2

IR , "� an arbitrary small real number and f(x) =
P�

i=1�i; where �i :=
1
2
[j(aix� ci)� 1j � j(aix� ci) + 1j], i 2 [1; �]; ai; bi; ci;mi 2 IR, i 2 [1; �]. Then

f(x) makes


f(x)� f(x)




1

= "� minimizing the number of summing terms �

if the parameters of f(x) ful�ll the following conditions:

ai = 2= �xi, bi = 2= �fi, ci = �xi= 2, i 2 [1; �]; (9)

m1 = �fi= 2� "�, mj = �fj= 2� f(xj)� "�, j 2 [2; �] (10)

where xi is obtained from the following set of discrete equations:

"� �
1

2

�
xi +

�fi

�xi
(xai � xi)� f(xai)

�
= 0 being f 0(xai) =

�fi

�xi
, i 2 [1; �] (11)

Proof. In order to demonstrates this theorem we can express �i as

�i :=

8<
:
mi � b�1i ; 8x 2

�
ci + a�1i ;1

�
mi +

�fi
�xi

(x� ci); 8x 2 Bci;a
�1

i

mi + b�1i ; 8x 2
�
�1; ci � a�1i

�

Replacing the values of the parameters given in the statement of the theorem

�i :=

8<
:
Æ1i (f(xi)� "�) ; 8x 2

�
ci + a�1i ;1

�
Æ1i (f(xi)� "�) + �fi

�xi
(x� xi); 8x 2 Bci;a

�1

i

Æ1i (f(xi)� "�) +�fi; 8x 2
�
�1; ci � a�1i

�



If we consider xa 2 (xj ; xj+1) and expand f(xa) taking into account the value

of "� given in Corollary 1, it is obtained

f(xa) := �1 +
Pj�1

i=2 �i +�j +
P�

i=j+1�i

= (f(x1)� "�) +
Pj�1

i=2 �fi +
h
�fj
�xj

(x� xj)
i

= f(xj)� "� +
�fj
�xj

(x� xj)

= �fi
�xi

x+ 1
2

h
f(xi+1) + f(xa)�

�fi
�xi

(xa + xi+1)
i

this is the equation of the Chebyshev line that approximated f(x) in the interval

(xj ; xj+1) with kf(x)� P1(x)k1 = "� as it was expressed in Theorem 3.

Corollary 2. Since the PWL function is continuous in the intervals (xi; xi+1)

and the term
P�

i=j+1�i is null in the expansion of f(xa) performed in the

previous proof, it can be aÆrmed that lim�x!0 f(xi+�x) = lim�x!0 f(xi��x);

and f(x) is a PWL continuous function.

Remark 2. Theorem 4 gives us the possibility of approximating any contiuous

function f(x) with f 00 > 0 by means of a piecewise-linear function with an

arbitrarily small in�nite norm "�: Besides, the intervals of the approximation

function can be obtained in a forward way if we know the analytical expression

of f(x), by means of solving the uncoupled set of discrete equations stated in

(11). This fact supplies a direct method to design the intervals of approximations

in comparison with the annealing iterative method needed in the minimization

of the cuadratic norm.

3.3 CNNUM-based Approximation

In order to implement the previous theoretical results, we are going to modi�-

cate the original PWL original saturation as de�ned in (2) to adopt it to every

aÆne plane �i as stated in Theorem 4 and superpose these modi�ed saturation

functions to obtain f(x) as de�ned in (3).

The saturation function y(x) can be modi�ed by the aÆne transformation
1
bi
y(aix � ci) +mi. This reshaping translates the corners locates at (-1,-1) and

(1,1) in the original saturation (2) to (ci�
1
ai
, mi�

1
bi
), (ci +

1
ai
, mi+

1
bi
) in the

modi�ed one. This transformation is performed on the CNN by means of the

following two templates run in a sequential way

TPWL
k;1 =

�
A2
ij = 0;B1

ij = akÆ2jÆ2i); I
k = �akck ,8i; j

	
(12a)

TPWL
k;2 =

�
A2
ij = 0;B1

ij = b�1k Æ2jÆ2i); I
k = mk ,8i; j

	
(12b)

where Æij denotes Kronecker delta.

The optimal parameter vector �� = [a�i ; b
�

i ; c
�

i ;m
�

i ] that makes the objective

functional J = "� can be obtained by means of calculating the intervals obtained

by recursively solving the uncoupled set of discrete equations (11), and applying

(10). Thus, we �gure the templates given by (12) taking into account the values of



�� in order to obtain each summing term �i needed to de�ne the approximating

function f(x).

The most eÆcient procedure to add each term �i in the framework of CN-

NUM computing is introducing the input image into the CNN and operating

the image by means of the nonlinear dynamics resulting from the connectivity

de�ned in TPWL
1;1 and TPWL

2;1 . After this, we save the result of the analog compu-

tation into the LAM. The same operation must be accomplished with templates

TPWL
1;2 and TPWL

2;2 on the original input image. The result of the second step is

accumulated in the LAM with the previous result. Making this process through

every stage we �nally obtain the image processed by a point operator that per-

forms desired approximationg function f(x).

Lastly, it will be used a value "� = 2�7 in the analytical deduction of the

parameter vector �� because of the physical implementation of the CNN-UM

chip allows an analog accuracy of this magnitude. In the case of f(x) = ln(x);

the discrete equation in Theorem 4 yields the following implicit discrete equation

ln

�
�xi

� lni

�
+

�
� lni

�xi

�
xi � ln(xi)� 1 = 2"� (13)

and in the approximation of an exponential function it can be similarly deduced

the following condition

� expi
�xi

�
ln

�
� expi
�xi

�
+ xi + 1

�
� exp(xi) (14)

where � lni = ln(xi+1)� ln(xi), � expi = exp(xi+1) exp(xi) and "� = 2�7: Both

equation can be easily solved by standard numerical methods in order to obtain

the neighboring points of the intervals that construct the PWL approximating

function f(x) in a recursive and forward way.

4 Conclusions

In this paper, it has been introduced the equations that govern the complex

CNN spatio-temporal dynamics and the CNNUM computational infrastructure

implemented on silicon. After this, we have presented a general technique that

allows us to approximate any nonlinear output function on the CNNUM VLSI

Chip. For this purpose, we have given a theoretical analysis of an approxima-

tion technique based on the in�nity norm criterion. Also, it has been comment

the advantages of this technique in comparison with the cuadratic error cri-

terion. The main motivation of this work is to release CNNUM emphanalogic

(analog+logic) architecture from using emphdigital computers when CNN image

processing computing capabilities are unable to perform any required nonlinear

�ltering step.
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