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Abstract. A family (βeta) of new attribute selection criteria for TDIDT (Top 
Down Induction Decision Trees) algorithms is introduced. These splitting 
criteria are based upon the majority class (βest class). They are permissible 
(following the definition introduced by Michael Kearns and Yishay Mansour in 
1999), allow us to work with experiences with fuzzy classes, easy to compute 
(no algorithm appears in their definition), and produce good empirical results. 
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1   Introduction 

Inductive learning is a branch of Artificial Intelligence of which the family of TDIDT 
algorithms is well-known [2][13]. From a set of experiences, these algorithms build a 
decision tree [9]. ID3 [15][16] is the best-known algorithm of this family. Developed by 
J.R. Quinlan in 1979, this algorithm builds decision trees by using Entropy [21] as the 
splitting criterion. Other splitting criteria, crisp as well as fuzzy, have been defined 
[3][8][11][12][16]. In general, every TDIDT algorithm [1][5][17][20][22][23] needs a 
splitting criterion. 
 
We define new splitting criteria which fulfil three objectives: 
 
1) That all are permissible following Michael Kearns and Yishay Mansour's [10] defini-
tion, i.e., that for two crisp classes each are: symmetric, concave, take the value one at 
the mid-point and value zero at points zero and one. 
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2) That they can be applied to experiences with fuzzy classes. 
 
3) That their computation is simple and free of logarithms in their formulation.  
 
The first ensures a certain goodness-of-fit at the theoretical level [10] if boosting tech-
niques are utilized [6]. 
The second is very useful as there are applications in which the attributes are crisp but 
the classes are fuzzy. For example, there are medical problems where we have crisp 
results proceeding from clinical analysis, but where the classification of the patient or 
disease is done by the doctor in a fuzzy way. 
The third is useful where the speed and reliability of the computation is critical, e.g., in 
real-time learning applications or those that handle huge data sets (terabytes). 
In this paper we define four new splitting criteria β1, β2, β3, and β4, which fulfil the 
proposed criteria. All splitting criteria are based on the majority class (the βest class). 
In section 2 we develop the concepts that we will use. In section 3 we define the new 
splitting criteria in which it is made clear that they are easy to compute. The goodness 
of the splitting criteria is shown in section 4 by means of experimental results. Finally, 
the conclusions are presented. 

2   Notation And Concepts 

We assume knowledge of TDIDT algorithms and the splitting criteria cited above. 
Only the concepts necessary to define the new splitting criteria are introduced. 
The following notation is in line with our previous works [18][19]: 

 

A problem with a attributes and k  class is a vector ( m , k ) ∈ Na × N, where m =    (m1, 
..., ma). 
The domain of each attribute Xi is called Di = {1, 2, ..., mi} , i = 1, ..., a. 
In addition, to avoid partial functions, an attribute X0 is included with domain D0 = ∅. 
The attribute set is denoted by X :  X = {X0 , X1 , ..., Xa}. 
A special attribute with k  values called class is denoted by C, and its domain D is 
codified D = {1, 2, ..., k}. 
 
Example 1. Let us consider two attributes: height and weight, and the class “struc-
ture” with three values (proportioned, well-proportioned, and very well-proportioned). 
The attributes can be considered as discrete with four height intervals and five weight 
intervals. This problem is defined by: 
( m , 3 ) ∈ N2× N,  m = ( 4 , 5 ) , 
X = {X0 , X1=height , X2=weight}, 
D0 = ∅ 
D1 = {1, 2, 3, 4} 
D2 = {1, 2, 3, 4, 5} 
And for C=structure, the domain is D = {1, 2, 3} 



 
Remark 1. This representation is mentioned in [17]. The author, J. Ross Quinlan, 
states: “This transformation does not lose any of the functionality of ordinal attrib-
utes, but does make the resulting classifier more difficult to understand.” However, it 
is possible to do in the output the reverse translation, in order to understand the re-
sults. 
 
An observation for a problem (m , k) with m = (m1, ..., ma) is a vector with values of the 
a attributes obs = ( v1 , v2 , ..., va ) with vi ∈ Di  i=1,...,a . 
We consider the fuzzy set Cj  j=1,...,k . Thus, the observation obs belongs to each  Cj  
with different degrees: αµαµ k1 (obs)   ,. . .  ,(obs) CC k1

== . 

We need a simplified notation where these degrees are components of an amplified 
vector of the observation, called experience. Additionally, we will write Cj(obs) instead 
of (obs)C j

µ . These notations are condensed in the following: 

 

Let us consider a problem ( m , k ) ∈ Na × N, with a attributes whose domains are   D1, 
D2, ... , Da . 
We define the universe of experiences  UE  =  D1 × D2 × ... × Da × [0,1]k . An experi-
ence e is an element of UE, that is, a vector with a+k  components: e = ( X1(e), X2(e), ..., 
Xa(e), C1(e), C2(e), ..., Ck(e) ) ∈ UE , where Xi(e) is the value of the i attribute in the e 
experience and Cj(e) is the membership degree of the e experience to the j class. 
We will work with finite sequences of experiences E = {e1 , e2 , ..., eN}, where some ele-
ments could be repeated. 
The set of all finite sequences of experiences is represented by E. 
 
Example 2. Let us consider the problem described in example 1. 
An experience would be, for example, e = ( 3 , 2 , 0.3 , 0.8 , 0.1 ), X1(e)=3 (third interval 
of height), X2(e)=3 (second interval of weight), C1(e)=0.3 (proportioned),  C2(e)=0.8 
(well-proportioned),  C3(e)=0.1 (very well-proportioned). 
An example of E, that will be used later, is as follows: E = { e1 , ... , e20 }  with: 
e1 = ( 4 , 4 , 0.4 , 0.1 , 0.7 )  e2 = ( 4 , 5 , 0.1 , 0.1 , 0.9 )  
e3 = ( 4 , 5 , 0 , 0.1 , 0.8 )  e4 = ( 4 , 4 , 0.4 , 0.1 , 0.7 ) 
e5 = ( 3 , 3 , 0.2 , 0.5 , 0.8 )  e6 = ( 3 , 3 , 0.2 , 0.9 , 0.4 )  
e7 = ( 3 , 3 , 0.1 , 0.7 , 0.3 )  e8 = ( 3 , 5 , 1 , 0.1 , 0 )  
e9 = ( 3 , 1 , 0.8 , 0.2 , 0.1 )  e10 = ( 2 , 1 , 0.4 , 0.6 , 0.1 )   
e11 = ( 2 , 4 , 0.9 , 0 , 0.3 )  e12 = ( 2 , 2 , 0.6 , 0.6 , 0.2 ) 
e13 = ( 2 , 2 , 0.4 , 0.7 , 0.1 )  e14 = ( 1 , 5 , 1 , 0.1 , 0.1 )   
e15 = ( 1 , 5 , 0.9 , 0.2 , 0.2 )  e16 = ( 1 , 1 , 0.4 , 0.6 , 0 )   
e17 = ( 1 , 1 , 0.2 , 0.5 , 0.1 )  e18 = ( 1 , 5 , 0.8 , 0.1 , 0.1 )  
e19 = ( 1 , 1 , 0.5 , 0.6 , 0.2 ) e20 = ( 1 , 3 , 1 , 0.1 , 0  )  
where, for example, e1 = e4 . 
 



A splitting criterion is a function:  criterion :  E  →  R. A real value is assigned to a 
sequence of experiences. Usually, the splitting criteria are defined normalized to the 
[0,1] interval, i.e.,   criterion:  E  →  [0,1] . 
In this paper we consider normalized splitting criteria. This decision is not critical be-
cause each splitting criterion selects the same attribute in both versions (normalized or 
otherwise). 

3   The β   Splitting Criteria 

Let (m , k) be a problem. Let E = {e1 , e2 , ..., eN} be a finite sequence of experiences for 
this problem. 
We define the M function as: 

M : UE  →  D 

M(e) = min{ j∈D | Cj(e) = max{ C1(e) , C2(e) , ..., Ck(e) }  } 

(1) 

and we define the S function as: 

S : UE × D  →  {0,1} 

S(e,j) = 1   if    M(e) = j 

S(e,j) = 0   if    M(e) ≠  j 

(2) 

For  j=1, …, k  let: 
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be the rate of experiences in E where the j class has the greatest degree of membership. 
 
Example 3. Let us consider the problem and the sequences of experiences E described 
in example 2. 
For  e1  = ( 4 , 4 , 0.4 , 0.1 , 0.7 )  we have: 

M( e1 ) = 3  and  S( e1  , 1 ) = 0 ,  S( e1  , 2 ) = 0 ,  S( e1  , 3 ) = 1 . 
For  E = { e1 , ... , e20 }  we have: 

r1 = 8/20 = 0.4 ,  r2 = 7/20 = 0.35 ,  r3 = 5/20 = 0.25 . 
 
Let   r1º ,  r2º ,  r3º , ... ,  rkº   be the rj values in decreasing order. 
We define: 

rmax =  max { r1 , r2 , ... , rk }     ( rmax =  r1º ) (4) 

 
 



The splitting criterion β1 is defined as follows: 

β1 :  E  →  [0,1] 

β1(E) =  1 - rmax 

(5) 

The second splitting criterion β2 is defined as follows: 

β2 :  E  →  [0,1] 

β2(E) =  1 – sumax 

where   sumax  =  rmax  -  rmax
2  +  ∑ ( ri )

2 

(6) 

Another splitting criterion β3 is defined as follows: 

β3 :  E  →  [0,1] 

β3(E) =  1 – supot 

where   supot  = ∑
=

k

1n

n
ºn )r(  

(7) 

Finally, we define the splitting criterion β4:  

β4 :  E  →  [0,1] 

β4(E) =  1 – sum 

where   sum  =  ∑ ( ri )
2 

(8) 

 
Example 4. Let us consider the problem and the sequences of experiences E described 
in example 2. 
For  E = { e1 , ... , e20 }  we have: 
β1(E) =  1 - rmax  =  1 – 0.4  =  0.6  
β2(E) =  1 - sumax  =  1 - ( 0.4 + (0.35)2 + (0.25)2 )  =  1 - 0.585  =  0.415 
β3(E) =  1 - supot  =  1 - ( 0.4 + (0.35)2 + (0.25)3 )  =  1 - 0.538125  =  0.461875 
β4(E) =  1 - sum  =  1 - ( (0.4)2 + (0.35)2 + (0.25)2 )  =  1 - 0.345  =  0.655 
 
If all experiences in E have the greatest degree of membership in the same class then 
the values of these four splitting criteria are zero (we consider that E is totally or-
dered). 
β1 indicates the fraction of experiences erroneously classified if the prediction of the 
majority class is considered. 
β2, β3, and β4 take into account the prediction of the majority class and the dispersion 
of erroneous experiences in the remainder class. There is more order when the sizes of 
the erroneous classes are more unequal. 



β2 and β3 are weighted criteria and β4 is not. 
The difference between β2 and β3 is that in β2 all erroneous classes have the same 
weight, and in β3 these weights are decreasing. 
 
Remark 2. The splitting criteria β2, β3, and β4 for two classes coincide -- if these are 
crisp then they are equal to Gini's criterion -- from which it can be deduced that their 
quadratic roots coincide with Kearns and Mansour's criterion. This criterion has the 
least maximum theoretical bound for learning by boosting with TDIDT algorithms [10]. 
 
These splitting criteria are used to obtain a decision tree. These form our basis to de-
fine the gradient function, that is, a function to select the attribute for each node 
[18][19]. 

 

Given a criterion,  criterion′ :  X × E  →  [0,1]   is defined as follows: 

criterion′( Xi , E ) =  (
j

mi

=
∑

1
criterion( Ej ) )   /   N      where 

Ej = { e ∈ E  |  Xi(e) = j }     and     N  =  | E | 
Then, the gradient function,   ∆ :  X × E  →  [0,1]   is defined by: 

∆( Xi , E ) = criterion( E )  - criterion′( Xi , E ) 
 
By considering the criteria  β1, β2, β3 or β4, the modified criteria are, respectively: β1′, 
β2′, β3′ or β4′. 
The selected attribute is the attribute that maximizes the gradient function (for the 
considered criterion). 
All the βeta criteria are easy to compute, especially the first one. Thus, these can be 
useful when the time of learning is critical (learning in real-time) or when the data set is 
very big (terabytes). 
The next section shows that these criteria also produce good results. 

4   Experimental Results 

We have applied the TDIDT algorithm, without pruning, by using five different split-
ting criteria: classical Entropy (ID3) and the four new splitting criteria. The experiment 
was carried out without pruning so that the only factor responsible for the different 
results was the different splitting criteria used. The application is carried out on the 
four standard sets, car, ecoli, hayes-root, and tic-tac-toe, which can be obtained from 
MLRepository [14]. We have used these sets as they are well-known and by using 
them we can compare the new splitting criteria with classic Entropy. The following 
table is a brief resume of their characteristics. 



Table 1. Characteristics of standard experiences sets. Car.=Cardinal; A.=Attributes; 
Cl.=Classes;  I.E.=Initial Error. 

Name Car. A. Types Subject  Cl. I.E. 
car 1728 6 Symbolic Automobile 4 29.98 
ecoli 336 7 Numerical Protein 8 57.45 
hayes-root 132 5 Symbolic Character 3 61.37 
tic-tac-toe 958 9 Symbolic Game 2 34.66 

 
Each numerical attribute has been divided into several intervals of similar size accord-
ing to the range of values. 
The experimental results have been obtained by ten cross-validation [4][7]. The aver-
age of the success index (SI), the marginal improvement (Marginal), the number of 
rules (Rules), and the number of nodes (Nodes), for each splitting criterion (S.C.) are 
shown in the following tables (Tables 2--5). 
 

Table 2. Experimental results for car set. S.C.=Splitting Criterion; SI=Success Index.  

S.C. SI Marginal Rules Nodes 
Entropy 89.35 64.47 269.7 375.9 

β1 85.94 53.10 343.1 494.3 
β2 89.35 64.47 269.7 374.8 
β3 89.35 64.47 269.5 374.9 
β4 89.47 64.87 270.1 374.1 

 

Table 3. Experimental results for ecoli set. S.C.=Splitting Criterion; SI=Success Index.  

S.C. SI Marginal Rules Nodes 
Entropy 72.60 52.30 51.0 121.8 

β1 72.33 51.83 52.8 119.2 
β2 73.22 53.38 51.4 121.0 
β3 73.51 53.89 51.9 120.7 
β4 73.21 53.36 50.4 121.1 

 

Table 4. Experimental results for hayes-root set. S.C.=Splitting Criterion; SI=Success Index.  

S.C. SI Marginal Rules Nodes 
Entropy 62.97 39.66 35.6 50.8 

β1 65.22 43.32 35.8 52.7 
β2 63.74 40.91 35.7 51.1 
β3 65.28 43.42 35.9 51.3 
β4 65.28 43.42 35.9 51.3 



Table 5. Experimental results for tic-tac-toe set. S.C.=Splitting Criterion; SI=Success Index.  

S.C. SI Marginal Rules Nodes 
Entropy 81.31 46.06 181.6 285.0 

β1 83.39 52.07 212.4 336.4 
β2 82.04 48.18 177.9 279.9 
β3 82.04 48.18 177.9 279.9 
β4 82.04 48.18 177.9 279.9 

 
 
β2 and β3 have an SI better than Entropy in three of four sets, and they have an SI as 
good as Entropy in the other set; β4 has an SI better than Entropy in all sets; β1 has  
SI values near to Entropy in one set, and better than Entropy in two other sets; the 
core advantage is simplicity of computation. 

5   Conclusions 

A new family of splitting criteria based upon the “βest class” concept has been de-
fined. They are permissible , easy to compute (no logarithms appear in their definition), 
allow us to work with experiences with fuzzy classes, and produce good empirical 
results. β1 is very easy to compute. This ease of computation could be of more impor-
tance than a better SI in some applications. β2, β3, and β4 can be computed more 
easily than Entropy, and the success indexes are better, with a similar number of rules.  
For these reasons we think that this family of splitting criteria should be considered 
when deciding the appropriate splitting criterion for a concrete problem. 
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