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Abstract. Particle Swarm Optimization is a novel algorithm where a
population of candidate problem solution vectors evolves ”social” norms
by being influenced by their topological neighbors. Until now, an individ-
uval was influenced by its best performance acquired in the past and the
best experience observed in its neighborhood. In this paper, we introduce
new ways an individual can be influenced by its neighbors.

1 Introduction

Recently, the importance of population topologies in particle swarm perfor-
mance has been demonstrated [3] [2]. Experimentation with various topologies,
along with indepth analysis of the trajectories of individual members of a particle
swarm population [1] [4] [6], has resulted in improvements in the performance of
the algorithm. However, we feel that there is still more ground to cover, especially
when it comes to the way an individual is influenced by his neighborhood.

The canonical particle swarm can be described as a population of vectors
whose trajectories oscillate around a region defined by each individual’s previous
best success and the success of the single best particle in its neighborhood. In
this paper, our aim is to extend that notion, incorporating information of the
best positions found by all the particles in the neighborhood. The rationale is
that when looking for success, an individual is not only influenced by the best
performer in his entourage, but by some aspects of all individuals observed.

Drawing on the social-psychological analogy, it seems reasonable to think that
the strength of an individual’s influence depends on his success, i.e., a successful
individual influences our decisions more than a less successful one. Therefore, we
present two models, both combining information about the sucess of the particles
in the neighborhood. One of the models equally regards each particle and the
other weighs each contribution according to its importance.

Section 2 describes the basics of particle swarm and presents our approach,
section 3 presents the neighborhoods used, section 4 presents the functions to
minimize, used to compare the algorithms, the results of the experiments and
discusses them, finally, the last section presents the conclusions.
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2 The algorithms

In the traditional particle swarm, each particle explores around a region
defined by its previous best success and the success of the best particle in its
neighborhood. The canonical equation, using type 1" constriction as proposed by
Clerc in [1], describing the velocity and position of particle 4 is given as follows:

vir1 = X (v + (P — Xy)) (1)
X1 = Xy + 0441 (2)

for each coordinate, with v; being the current velocity along that coordinate,
X being the particle’s position, @, = 4.1 and x = 0.729844. F,, represents the
point in search space a particle will converge to. Traditionally, P, is calculated
using the best position attained by the particle ¢ (P;) and the best position found
by its neighborhood (Fy). Hence, P,, and ¢ are calculated as follows:

o1 = Ulo, 202 (3)
2 = U0, 222 (4)
Y=L+ @2 (5)

P, = Solpi‘;SOQPb (©)

In this paper, we suggest that the individual should gather information about
the whole neighborhood. For that, let us define A as the set of neighbors of 7,
Py, as the best position found by individual k and fi as the fitness (or quality)
of that position. Without loss of generality, and to keep the equations simple
(without need of normalization) we will only consider minimization tasks and
problems with only positive fitness values. As such, a lower f, represents a
better solution. We consider two approaches, one where each solution contributes
equally and another where the quality of the solution is also considered. For the
first approach, we have:

o =U [o, “mw] VkeN (7)
o= o (8)

keN
Py = Le{p L (9)

In the approach where the quality of the solutions is considered, P, is cal-
culated as:

Zke/\/ W}Pk
P, == 10
Sien 2 1o
In the rest of the paper, PSO will refer to the traditional method, PSON
to the first approach proposed (where each solution is considered equally) and
PSOWN will refer to the second approach.
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3 Population Topologies

As was shown in [3], the importance of population topologies is paramount.
In this study, we present the topologies we have designed. Several sociometries
were studied (see figure 1), all with population size of 20. These were

gbest which treats the entire population as the individual’s neighborhood.

Ibest where adjacent members of the population array comprise the neighbor-
hood.

pyramid a three-dimensional wire-frame triangle.
von Neumann a lattice whose extremities connect as a torus.

four clusters four clusters, completely interconnected, connected among them-
selves by a few shortcuts.

Fig. 1. Some of the topologies used: ghbest, 1best, four clusters and pyramid, respec-
tively.

To study the importance of including the past experiences of an individual,
these sociometries were implemented with and without self included, except for
four clusters.
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4 Experimentation

We use two measures of performance. The first is the best function result
attained after a certain number of iterations. In our case, we report the best
result found after 1000 iterations.

It is possible that an algorithm will rapidly reach a relatively good result
while becoming trapped on a local optimum. Thus, a second measure used is the
number of iterations needed for the algorithm to meet a criterion. The criteria
are given in Table 1. The algorithms were run for 10000 iterations or until the
criterion was met. If it was not met by that time, the measure was considered
infinite, that is, it was reported as if the criterion would never be met. Thus,
medians are reported rather than means for iteration results.

A third dependent measure was derived from the second. That is a sim-
ple binary variable describing whether the criterion was attained within 10000
iterations or not.

For each configuration of algorithm and topology, 40 runs were used on each
function to gather the data necessary to compare the different approaches. The
results presented are the result of those tests.

4.1 Functions

Five standard test functions were employed in the present research. These
were the Sphere function, Rastrigin, Griewank, Rosenbrock and Schaffer’s {6
[5]. Table 1 shows the parameters for each function used. Two instances of
the Griewank function were used because both are quite chalenging. In fact,
Griewank in 10 dimensions presents a serious problem for the canonical PSO,
and was one of the motivations of our quest for variants that could overcome it.

Function Dimensions Initial Range Criterion

Sphere 30 +100 0.01
Rastrigin 30 +5.12 100
Griewank10 10 +600 0.05
Griewank30 30 +600 0.05
Rosenbrock 30 +30 100
Schaffer {6 2 +100  0.00001

Table 1. Parameters and Criteria for the test functions

Sphere fi(z) is a very simple, unimodal function. The minimum is f;(0) = 0.

n
file) =2} ;€ [-100,100]
i=1
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Rastrigin f>(z) is a multimodal version of the Sphere, characterized by deep
local minima arranged as sinusoidal bumps. The global minima is f>(0) = 0.

n
folx) =) a? —10cos(2mz;) +10;  x; € [-5.12,5.12]

i=1
Griewank f3(x) has many local optima, whose importance diminishes when

the number of dimensions rises. It is very difficult to find the true minimum
at fg (O) =0.

" (z; — 100)2 42 ;— 100
OEDY (m: —100)7 I] cos (%) +1, ;€ [-600,600]
=1 =1 t

Rosenbrock f4(z) is extremely steep when the optimum is being approached
from afar and banana shaped close to the optimum.

n—I1
fal@) =100 (21 —23)? + (z — )% 24 € [-30,30]
i=1

Schaffer 6 f5(x) is a very difficult function, especially devised to trick opti-
mization algorithms with its many local optima arranged in concentric circles
around the global optimum that is itself located in a narrow basin, making
it very hard to reach the global optima at f(0) = 0.

sin(y/22 + 22)* - 0.5 2 € [~100,100]
(14 0.001 (22 + z2))2 ! '

4.2 Methodology

We believe that it is important to find a method that will be able to achieve
good performance on all the functions tested. The No Free Lunch theorem [7]
[8] asserts that no algorithm can perform better than any other, averaged across
all possible functions. We do think it desirable though to find a problem-solver
that performs well on a variety of functions that have been identified as hard
problems. To achieve this goal, it is necessary to have a method capable of
comparing values of different magnitude.

We standardized the results of the tests over each of the functions. A stan-
dardized result X is computed according to formula (11), where p is the average
of the values and o is the standard deviation. A value below zero is below aver-
age and a positive one is above average. Using standardization, it is possible to
compare algorithms by the average of the normalized results obtained over all
the functions.

X, = (11)
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4.3 Results

To clarify the visualization of the results, we show the rankings of the different
configurations instead of the standardized values. Table 2 shows the results,
where the fields are proportion of runs that reached the criteria and respective
rank (PropRank), ranking of median number of iterations to reach the criteria
(CritRank) and ranking of average performance at 1000 iterations (PerfRank).
Note that the neighborhoods whose name starts with s correspond to the version
with the self included, i.e. where the particle belongs to its own neighborhood.

Method Neighborhood Proportion PropRank CritRank PerfRank

PSOWN Ibest 100.00% 1 19 22
PSON vneumm 98.75% 2 4 1
PSON slbest 98.75% 2 11 14

PSOWN slbest 98.33% 4 5 6
PSON Ibest 96.67% 5 22 23

PSOWN vneumm 96.25% 6 3 2

PSO vneumm 92.50% 7 10 10
PSO four_clusters 92.08% 8 9 15
PSON pyramid 91.67% 9 6 5

PSOWN four_clusters 91.67% 9 2 9

PSON four_clusters 91.25% 11 7 7
PSO slbest 91.25% 11 13 20
PSO Ibest 90.83% 13 12 12

PSOWN pyramid 90.00% 14 1 8

PSO svneumin 87.50% 15 18 16
PSO pyramid 87.08% 16 17 13
PSOWN svneumim 86.67% 17 8 3
PSO spyramid 85.42% 18 16 17

PSON svneumm 81.25% 19 20 4

PSOWN spyramid 78.33% 20 21 11

PSO gbest 75.42% 21 15 19
PSO sgbest 75.42% 21 14 21

PSON spyramid 70.42% 23 23 18

PSOWN gbest 22.08% 24 25 25

PSOWN sgbest 18.33% 25 26 26
PSON gbest 16.67% 26 24 27
PSON sghest 13.75% 27 27 24

Table 2. Results of the tests

The configuration that was able to reach the criteria every time was PSOWN
with the lbest neighborhood. However, it was 22th in performance. In other
words, this variant consistently found the global optimum, but took a long time
getting there. If performance is considered more important, that is, the best
function result at 1,000 iterations, then the best configuration is PSON with
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the von Neumann neighborhood. This variant also has a very high proportion
of sucess (it is the second in ranking with a proportion of 98.75%) and is one
of the fastest algorithms, ranking fourth in the median number of iterations to
reach the criteria.

The best performing neighborhoods over all the algorithms are lbest (in terms
of proportion of success) and von Neumann, in terms of both proportion and
performance. The latter is an overall performer, and should be considered as a
good alternative to the sociometries used so far. Gbest is a bad performer on
PSON and PSOWN. The reason for this is that if each individual is influenced
by a considerable part of the population, then the information derived from the
population is the same, the center of gravity of the population, which inhibits
exploration because of lack of diversity. In a sociometry where the neighborhood
of each individual is small, each of the individuals will have a different vision of
the search space, and therefore will have a better performance.

Method Neigh Sph Ros Gri30 Rast Gril0 Sch
PSON vneumm 2.62e-13 55.28001 0.004797 18.55624 (.014131 0.000863
PSOWN vneumm 3.24e-15 41.07052 0.001905 19.45144 0.009542 0.002397
PSOWN slbest 1.99e-14 56.63672 0.006164 67.66419 0.021161 0.001492
PSO vneumm 2.92e-06 112.8217 0.012733 66.43264 0.049096 0.001946
PSO Ibest 0.000262 129.2118 0.009787 80.90703 0.046919 0.001945
PSON slbest 3.11e-13 55.18398 0.009572  90.0651 0.043936 0.001952
PSO svhneumm 3.14e-08  93.4288 0.014248 74.79059 0.066009 0.002916
PSO gbest 1.34e-09 77.63808 0.030719 70.24394 0.08057 0.004615
PSO slbest 7.34e-06  117.461 0.010339 84.50814 0.051867 0.005105
PSO  sgbest 1.09e-08 129.6299 0.081115 78.22841 0.094794 0.004372
PSOWN Ibest 36.50434 3584.292 1.377846 182.3623 0.152637 0.001006
PSON Ibest 60.28522 12801.69 1.552355 178.3093 0.172 0.001592
PSON  sgbest 777.2214 66402.33 15.4314 106.8297 0.239283 0.007165
PSOWN gbest 1197.985 104401.3 14.79815 85.97243 0.165539 0.00785
PSOWN  sgbest 1244.63 105420.1 14.325 103.51 0.190038 0.006315
PSON gbest 1106.068 81166.54 16.07105 78.22476 0.259984 0.008197

Table 3. Comparison of the average performance of the configurations over the func-
tions

Both PSON and PSOWN present better results than the canonical PSO. The
best result obtained by the canonical PSO is with the von Neumann sociometry,
ranking 7th in proportion rank and 10th in performance. Specifically, PSON
and PSOWN are able to converge in the Griewank function in 10 dimensions,
while the canonical PSO couldn’t. Table 3 compares some of the best performing
configurations for each algorithm.

It is interesting to notice that PSON is able to achieve better results than
PSOWN (specifically, with the von Newmann neighborhood), even though the
latter uses more problem specific information; it does not help to weight the
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contributions of the neighbors based on their performance. Even if this conclusion
is somewhat counterintuitive, it is a bringer of good news as the simpler PSON
has a lower time complexity than PSOWN.

5 Conclusions and further work

Our proposed approach achieves a better performance in fewer iterations
(and thus using fewer function evaluations) for the test functions. We conclude
that there is valuable information to be gained by combining aspects of each of
the individuals from the neighborhood and not only from the best individual. It
is interesting to notice that the best results do not take into consideration the
past experience of the individual.

It is important to study the influence of topologies in these two variants.
Even though the von Neumann sociometry seems to be a very good performer,
it is important to understand why it is such a good choice. It seems also im-
portant to consider the implications of apparently not needing to consider the
past experience of the individual. Also, these new variants need to be thoroughly
tested with different problems, to attest for their robustness.
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