
Indeed: Interactive Deduction
on Horn Clause Theories

Oscar Olmedo-Aguirre1 and Guillermo Morales-Luna2?

1 Computer Science Section, CINVESTAV-IPN,
Av. I. P. N. 2508, 07300 Mexico City, MEXICO,

oolmedo@cs.cinvestav.mx
2 Computer Science Section, CINVESTAV-IPN,
Av. I. P. N. 2508, 07300 Mexico City, MEXICO,

gmorales@cs.cinvestav.mx

Abstract. We introduce the declarative programming language Indeed

that uses both deduction and interaction through multi-agent system
applications. The language design is addressed by providing a uniform
programming model that combines two refinements of resolution along
with some control strategies to introduce state-based descriptions. We
show that the logical calculus in which the computational model is based
is sound and complete. Finally, we compare our approach to others pro-
posed for coupling interaction with automated deduction.

Keywords. Logic programming, interaction, automated theorem prov-
ing, Horn clause theories.

1 Introduction

Artificial intelligence, largely based on formal logic and automated reasoning
systems, has become increasingly more interactive. As indicated by Wegner [10],
dynamic acquisition of interactive knowledge is fundamental to diminish the
complexity of interactive tasks, to better their performance, and to better the
expressiveness of their modeling. On the other hand, there is a fundamental
distinction between deduction and interaction. In high order logics provers, as
HOL [4] and, particularly, Isabelle [6], insteraction is meant as a direct user
guidance to construct a proof. The kind of interaction we have in mind is closer
to the notion shown in [3]: different agents scan a common work-place to pursue
with their common goal, e.g. to prove the current theorem.

Models of algorithmic computation, like automated theorem provers and Tur-
ing machines, are characterized by their closed and monolithic approach. Their
simple observable behavior comprises a three-stage process of interactive input,
closed data processing, and interactive output. Nonetheless, modern applica-
tions involving collaboration, communication and coordination, require richer
behaviors that cannot solely be obtained from algorithmic computation.
? Partially supported by Programa de Ingenieŕıa Molecular, Instituto Mexicano del

Petróleo.

2

In this work, we propose a logic programming language that extends a
resolution-based theorem prover with interaction. The computational model
comprises SLD-resolution and UR-resolution, to describe respectively stateless
deduction and state-based transitions. The coordination model consists of a
transactional global memory of ground facts along with a strategy for the theo-
rem prover to control program execution by syntactically guided rule selection.
In addition, the set of support restriction strategy coordinates the input and out-
put of facts with the shared memory, maintaining the coherence of the current
state of the computing agent.

Let us briefly explore other approaches that can be compared with ours:
resolution theorem provers, constraint logic programming and coordination logic
programming.

The resolution-based theorem prover OTTER [11, 12] comprises a number
of refinements of resolution along with a set of control strategies to prune the
explosive generation of intermediate clauses. However, OTTER does not account
for interaction. The set of all instantaneous descriptions essentially corresponds
to the set of support strategy. In OTTER, a clause is selected and removed from
the set of support to produce a new set of clauses deduced from the axioms of
the theory. Then, after simplifying a new clause by demodulation and possibly
discarding it by either weighting, backward or forward subsumption, the new
clause is placed back to the set of support.

Concurrent Constraint Programming (CCP) [7] proposes a programming
model centered on the notion of constraint store that is accessed through the
basic operations ’blocking ask’ and ’atomic tell’. Blocking ask(c) corresponds to
the logical entailment of constraint c from the contents of the constraint store:
the operation blocks if there is not an enough strong valuation to decide on c.
In this respect, the blocking mechanism is similar to the one used in Indeed to
obtain the set of ground facts that match with the left-hand side of some rule.
Besides, the constraint store shares some similarities with the global memory of
ground facts. However, operation tell(c) is more restrictive than placing ground
atoms in the global memory because constraint c must be logically consistent
with the constraint store.

Finally, Extended Shared Prolog (ESP) [3] is a language for modeling rule-
based software processes for distributed environments. ESP is based in the PoliS
coordination model that extends Linda with multiple tuple spaces. The language
design seeks for combining the PoliS mechanisms for coordinating distribution
with the logic programming Prolog. Coordination takes place in ESP through
a named multiset of passive and active tuples. They correspond to the global
memory of facts in Indeed, although no further distinction between passive and
active ground facts is made. ESP also extends Linda by using unification-based
communication and backtracking to control program execution. In relation to
the theoretical foundations, ESP has not a clean integration of interaction and
deduction as suggested by Indeed in which the coordination component is given
by providing a particular operational interpretation of the memory of facts.

3

The paper is organized as follows. First we illustrate the forward and back-
ward search schemes that arise from our model with a programming example.
Next, we introduce the declarative language: the syntax and the declarative
semantics of the programming language.

2 A programming example

Dynamic systems can generally be decomposed into a collection of computing
agents with local state. The distributed state of the entire system corresponds
to the set of local states of each individual agent, whereas the specification of
the system behavior is described by the axioms of logical theories. As agents
perceive the surrounding environment through sensors and act upon it through
effectors, their interaction can effectively be decoupled by a coordination medium
consisting of a multiset of ground facts. By abstracting away interaction from
deduction, the inherently complex operational details of sensors and effectors
become irrelevant.

As an example, consider the problem of parsing simple arithmetic expres-
sions. The compiler uses the context free grammar (CFG):

E → 0 | 1 | (E) | E + E | E × E

where non-terminal E stands for “expression”. Ground atoms are used to rep-
resent the tokens forming the input expression and to represent well-formed
sub-expressions as well.

Table 1 shows theory Natural for the natural numbers written in Indeed.
This theory uses backward rules that have the general form p ⇐ p1, . . . , pn with
n ≥ 0. The logical propositions of the theory are built upon infix predicates =,
<, and ≤, whose recursive definitions are given by pure Prolog clauses N1 to
N5. Natural represents the computational component of the interactive parser.

theory Natural
axioms
[N1] 0 + y = y ⇐ .
[N2] (x + 1) + y = (x + y) + 1 ⇐ .
[N3] 0 ≤ y ⇐ .
[N4] (x + 1) ≤ (y + 1) ⇐ x ≤ y.
[N5] x < y ⇐ (x + 1) ≤ y.
end

Table 1. Natural numbers using backward rules.

Table 2 shows the theory Parser that extends Natural written in Indeed. This
theory uses forward rules that have the general form p1, . . . , pn ⇒ p with n ≥ 0.
The rules of Parser define a bottom-up parser for simple arithmetic expressions

4

whose syntactic entities are represented by ground atoms. T (n, x) asserts that
token x occurs at position n while E(n1, n2), with n1 ≤ n2, asserts that the
sequence of tokens from n1 to n2 is a well-formed arithmetic expression. It is
defined by self-explanatory rules in accordance with the given CFG.

theory Parser
extends Natural
axioms
[P1] T (n, ′0′) ⇒ E(n, n).
[P2] T (n, ′1′) ⇒ E(n, n).
[P3] T (n1, ′(′), E(n2, n3), T (n4, ′)′)

| n1 + 1 = n2, n2 ≤ n3, n3 + 1 = n4
⇒ E(n1, n4).

[P4] E(n1, n2), T (n3, ′+′), E(n4, n5)
| n1 ≤ n2, n2 + 1 = n3, n3 + 1 = n4, n4 ≤ n5
⇒ E(n1, n5).

[P5] E(n1, n2), T (n3, ′×′), E(n4, n5)
| n1 ≤ n2, n2 + 1 = n3, n3 + 1 = n4, n4 ≤ n5
⇒ E(n1, n5).

end

Table 2. Bottom-up parser for arithmetic expressions.

Table 3 sketches the interaction of the parser that takes place in the common
memory with sensors and effectors, dealing with the rather trivial, although
illustrative, string:’(1+0)×1’. Atoms based on predicate T are placed in the
memory by sensors and displayed from left to right as they are produced. As
soon as the atoms occurring on the left-hand side of some rule of Parser become
available, the parser removes them and places the atom occurring on the right-
hand side of the rule. An effector may take the last produced atom to inform
the editor that the analyzed expression is well-formed.

A transactional memory ensures the ’all-or-nothing’ property in the shared
resource concurrent access. Intuitively, the interaction parser proceeds as follows:

1. The initial agent’s state is given by ground atoms. As no inputs have been
detected from sensors, no rules apply and nothing can be deduced.

2. Eventually, after detecting some activity, sensors place in the shared memory
the initial readings as ground atoms.

3. The interactive component determines which responses are necessary by se-
lecting an appropriate forward rule whose left-hand side have a match with
the contents of the shared memory.

4. Once a forward rule is selected, the reasoning component attempts to prove
that its guarding constraints are satisfied.

5. Whenever the drawn conclusions hold, responses are produced by placing
the ground atoms of the consequent part into the shared memory.

5

⇒ T (1, ′(′)
⇒ T (2, ′1′)
P2⇒ E(2, 2)

⇒ T (3, ′+′)
⇒ T (4, ′0′)
P1⇒ E(4, 4)
P4⇒ E(2, 4)

⇒ T (5, ′)′)
P3⇒ E(1, 5)

⇒ T (6, ′×′)
⇒ T (7, ′1′)
P2⇒ E(7, 7)
P5⇒ E(1, 7)

Table 3. Interactive parsing.

6. However, if the drawn conclusions are false, another forward rule, if any, is
selected. If there is not a successful forward rule available, the agent waits
for the reading of appropriate ground atoms obtained from the sensors.

7. Computation continues until no agent can apply a forward rule.

The current content of the memory is a key factor in selecting a forward rule.
However, backward rules participate in the decision to apply the rule and the
deduction of additional information.

3 Indeed formal description

In this section we provide the formal description of our programming language
Indeed. First, we present the programming syntax along with the rules of the
logical calculus. Then, we show a programming model derived from the inference
rules. Finally, we will just point out the soundness and completeness of this
particular logic.

3.1 Inference rules

The names signature of the language comprises a set C of constructor names and
a set X of variable names. The set T(X) of terms with variables is the minimal
set contaiining C ∪ X, closed under composition of a constructor with a term
sequence. The set T of ground terms consists of the terms with no variables. The
set A(X) consists of atoms, e.g. compositions of predicate symbols with term
sequences. The set A of ground atoms consists of all atoms with no variables. A
clause is a disjunction of literals, i.e. atoms or negated atoms, and is represented
as a set P = {p1, . . . , pn}. An unit clause contains only one atom. A positive

6

clause contains no negated atoms. A negative clause contains no positive atoms.
A definite clause contains at most a positive atom. A goal consists only of nega-
tive atoms and the set of goals is denoted by G(X). A guarded goal has the form
P | G in which the atoms of P are defined by forward rules whereas the atoms
of G are defined by backward rules. The set of all guarded atoms is denoted by
GG(X). A substitution is a map σ : X → T(X) and it admits a natural extension
to terms σ : T(X) → T(X).

The theory Ax consists of all backward and forward rules. The theory Bx con-
sists only of the backward rules in Ax. Both, backward and forward rules, have
the same declarative reading: p ⇐ P and P ⇒ p are read p holds if P holds. In
any case, p and P correspond to the antecedent and consequent parts of the rule.
Nonetheless, the operational interpretations of the rule types are remarkably
different. Backward rules have a goal directed control strategy, whereas forward
rules are driven by unit clauses representing the currently known set of facts.
With respect to unit clauses, their procedural interpretations coincide. Indeed,
the proposed notation maintains the declarative meaning of clauses and makes
explicit both the resolution method and the control strategy to be used. The
forward rules denotation of the usual Horn clause logic is extending the expres-
siveness of classical logic programming languages. Let Th(Ax) and Th(Bx) be
the sets of deduced clauses from Ax and Bx respectively. Deduction is determined
by the application of the inference rules shown in Table 4

Instantiation rules

BI :

p ⇐ P ∈ Bx
σ : X → T(X)

pσ ⇐ Pσ ∈ Th(Bx)
FI :

P | G ⇒ p ∈ Ax
σ : X → T(X)

Pσ | Gσ ⇒ pσ ∈ Th(Ax)

Resolution rules

BR :

p ⇐ P ∪ {q} ∈ Th(Bx)
q ⇐ Q ∈ Th(Bx)

p ⇐ P ∪Q ∈ Th(Bx)
FR :

p1 · · · pn | G ⇒ p ∈ Th(Ax)
⇐ G ∈ Th(Bx)
⇒ pi ∈ Th(Ax) ∀i ≤ n

⇒ p ∈ Th(Ax)

Table 4. Inference rules.

Backward rules roughly correspond to the procedural interpretation of SLD-
resolution, while forward rules can be related to UR-resolution. Both resolutions
are known to be sound and refutation complete on definite clauses. Furthermore
they can be combined with other strategies such as the set of support.

4 Interpretations, soundness and completeness

Let HAx be Herbrand universe of Ax. The Herbrand base BAx for the definite
program Ax is the set of all ground atoms formed using predicate symbols com-

7

posed with ground terms at the Herbrand universe. The relation A |= Cσ among
a Herbrand algebra A, a substitution σ and a clause C is canonical: C is true
when its variables are substituted according to σ. A clause C is true in the in-
terpretation A, written A |= C, if C is true for every substitution. A clause C is
not true in the interpretation, A 6|=C, when C is not true for some substitution.
When C is an unsatisfiable goal, we may write A |= ⇐ C instead of A6|=C. Also:

– If p(t1, . . . , tn) is an atom, then A |= p(t1, . . . , tn) σ iff (t1σ, . . . , tnσ) ∈ pA.
– A |= {p1, . . . , pn}σ iff A |= pi σ for all i = 1, . . . , n.
– A |= (p ⇐ P)σ iff A |= P σ implies A |= p σ.

In particular, A |= (p ⇐) σiff A |= p σ.
– A 6|= ⇐.

For a set S of clauses, A models S if A is an interpretation for each clause in
S. Given two set of clauses S and T , S semantically implies T , S |= T ,if every
model of S is also a model of T . The following is inmediate:

Lemma 1. Let C and S be sets of definite clauses and G a definite goal. Then,

1. C |= Cσ for any substitution σ
2. S ∪ {C} |= C
3. S |= S′ and S′ |= S′′ imply S |= S′′

4. S |= C implies S |= C ′ if C |= C ′

Let us consider the problem to decide whether Ax |= C. Let I be a Her-
brand interpretation for Ax. The monotonic map TAx : 2BAx → 2BAx , I 7→
TAx (I) =̂{pσ ∈ BAx | P ⇒ p ∈ Ax, Pσ ⊆ I, σ : X → T} progressively de-
termines the set of ground atoms that are logical consequence from the theory.
Namely, TAx(∅) = {pσ | (⇒ p) ∈ Ax and σ a ground substitution} corresponds
to the set of all ground facts of the theory. Let:

T 0
Ax=̂∅ ; Tn

Ax=̂T (Tn−1
Ax) if n > 0 ; Tω

Ax=̂
⋃
n=0

Tn
Ax.

We may identify the least Herbrand model with the minimal model A = Tω
Ax.

The success set consists of all ground atoms refutable in the backward theory.

4.1 Soundness and completeness of forward deduction

The following propositions are proved strightforwardly:

Proposition 1. Forward resolution preserves consistency. I.e:

(Ax |= Q | G ⇒ p & Ax |= Gσ & Ax |= qσ ∀q ∈ Q) ⇒ Ax |= ⇒ pσ

Proposition 2 (Soundness of forward resolution as a deduction calcu-
lus). Any ground atom q derived from Ax is a semantic consequence of Ax.

Also, the following proposition holds:

8

Proposition 3 (Completeness of forward resolution as a deduction cal-
culus). If a positive ground atom p has a Herbrand model, then p can be derived
from Ax by forward resolution.

Proof. If the positive ground atom p has a Herbrand model then one of the
following relations holds:

1. Ax |= p
2. Tω

Ax is a model for ⇒ p
3. By definition of TAx, there exists a minimal integer n such that ⇒ qσ ∈ Tn

Ax.
Then, there exists a rule Q | G ⇒ q and a ground substitution σ such that,
either Qσ | Gσ ⊆ ∅ if n = 0 or Gσ : Qσ ⊆ Tn−1

Ax if n > 0, with p = qσ

In any case, it follows directly that Ax ` ⇒ p.

4.2 Computational model

In this section we will construct a computational model for the previously de-
fined logic. Let ID = GG(X)×(X → T(X)) consist of instantaneous descriptions,
i.e. pairs id consisting of a guarded goal and a substitution instantiating the
variables appearing at the goal. ID can be provided of two transition relations
/, . ⊂ P(ID)×P(ID) between sets of instantaneous descriptions, each one defin-
ing, respectively, the backward and forward computation relations. Transition
relations are determined by the rules shown in Table 5.

Backward computation

p ⇐ P ∈ Bx
(⇐ G ∪ {pσ2}, σ1) / (⇐ Gσ2 ∪ Pσ2, σ1σ2)

Forward computation

p1 · · · pn | G ⇒ p ∈ Ax
(⇐ G, σ) /∗ (⇐, σ)

I ∪ {(p1σ, σ1), . . . , (pnσ, σn)} . I ∪ {(⇒ pσ, σ1 · · ·σmσ)}

Table 5. Rules for relation “transition”.

Given an instantaneous description (⇐ {pσ2} ∪ G, σ1), the first transition ap-
plies backward resolution over corresponding instances σ2 of the goal {p} ∪ G
and the rule p ⇐ P . If more than one backward rule can be applied, just one
candidate rules is non-deterministically selected. The second transition applies
forward resolution over a set of ground atoms {(⇒ p1σ, σ1), . . . , (⇒ pnσ, σn)} for
some n > 0. The transition requires a suitable instance of rule p1, . . . , pn | G ⇒ p
under some substitution σ such that piσ = qiσ for each i ∈ {1, . . . , n}. Then, a

9

new instantaneous description (⇒ pσ, σ1 · · ·σnσ) is obtained if the guarding con-
dition Gσ has a refutation with σ as the computed answer. If the guard Gσ fails,
another forward rule is selected non-deterministically. Note that σ must lead to a
ground goal Gσ. The substitution σ1 · · ·σnσ enables a form of unification- based
communication among the computing agents.

Let ↪→ be the refelxive-transitive closure of the union of . and /, ↪→= (.∪/)∗.
Then, the correctness of the computational model can be stated as follows:

Proposition 4. For any Q,G, p:

Ax |= Q | G ⇒ p ⇔ ∀σ : (Ax ∪Q ∪G, σ) ↪→ (p, σ) .

We have implemented the programming model in a prototype system writ-
ten in Prolog consisting of a compiler and a small run-time library. The main
difficult in this implementation lies in the inherent complexity posed of selecting
appropriate forward rules. A forward rule with n antecedents, each one having
a set of k atoms realizes a match in time complexity O(kn) in the worst case.
Fortunately, most applications typically have rules with no more than two an-
tecedents. Our architecture adopts an event-driven approach that reduces the
complexity in one order, i.e. O(kn−1). Although the results are encouraging, we
believe that to take full-advantage of this approach, a further improvement in
the expressiveness of the language constructs is still necessary.

5 Conclusions

In this paper, we have addressed the problem of coupling interaction in resolu-
tion theorem provers. Our experimental programming language Indeed has been
designed by distinguishing between state-based descriptions using forward rules
and stateless deduction using backward rules. The distinction is important and
convenient as the programming model allow us to combine backward and for-
ward rule chaining in a single model. We have shown that our calculus is sound
and complete in the limit case in which no interaction occurs.

References

1. M. Belmesk, Z. Habbas, and P. Jorrand A Process Algebra over the Herbrand Uni-
verse: Application to Parallelism in Automated Deduction. In B. Fronhofer and G.
Wrighston. Parallelization of inference Systems. LNAI 590. Springer-Verlag. 1990.

2. N. Carriero and D. Gelernter, Linda in Context, CACM, 32(4):444-458, Apr 1989.
3. P. Ciancarini Coordinating Rule-Based Software Processes with ESP, ACM Trans.

on Software Engineering and Methodology, 2(3):203-227, July, 1993.
4. Gordon, M. J. C., and Melham, T. F. Introduction to HOL: A Theorem Proving

Environment for Higher-Order Logic. Cambridge University Press, 1993.
5. J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1987.
6. Nipkow, T. , Isabelle HOL: The Tutorial, http://www.in.tum.de/~nipkow/, 1998
7. V.A. Saraswat Concurrent Constraint Programming. Records of 17th ACM Sympo-

sium on Principles of Programming Languages, 232-245. San Franciso, CA. 1990.

10

8. S. Tahar and P. Curzon, Comparing HOL and MDG: A Case Study on the Verifi-
cation of an ATM Switch Fabric. Nordic Journal of Computing, pp. 372-402, 6(4),
Winter 1999.

9. R.D. Tennet, Semantics of Programming Languages, Prentice Hall Intl., 1991.
10. P. Wegner, Interactive Software Technology, CRC Handbook of Computer Science

and Engineering, May 1996.
11. L. Wos, R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning. Introduction

and Applications, McGraw-Hill, Inc., 1992.
12. L. Wos and G. Pieper, A Fascinating Country in the World of Computing: Your

Guide to Automated Reasoning, World Scientific Publishing Co., 1999.

